
Lean Measurement: A Proposed Approach

Sylvie TRUDELa[0000-0002-4983-1679] and Olga ORMANDJIEVAb[0000-0001-5641-0976]1

a Université du Québec à Montréal, Montréal, QC, Canada
b Concordia University, Montréal, QC, Canada

trudel.s@uqam.ca; ormandj@cse.concordia.ca

Abstract. Lean approach highly promotes value stream between production steps
in order to improve software development processes. The main focus of a Lean
approach is to identify and eliminate process waste, called “muda”, where non-
value-added activities must be eliminated to constantly reduce the overall cycle
time. Literature proposes solutions for mitigating the waste in Lean manufactur-
ing and Lean software development. However, an approach covering the meas-
urement process for identifying and eliminating measurement-related muda, is
missing. In order to address this, we made a parallel between the software devel-
opment waste types and software measurement activities, within the metric eco-
system. We focused on using the concept of waste as a lens for identifying non-
value-producing measurement process elements. In order to achieve this, we con-
structed a waste identification approach through which we identified eight soft-
ware measurement wastes, and proposed guidelines for measurement waste iden-
tification and reduction. These guidelines can help companies identify measure-
ment process issues that are present in their process in a timely and efficient man-
ner.

Keywords: Lean, Measurement, ISO 15939, Waste.

1 Introduction

The face of the software measurement universe has been through many transformations
over the last couple of decades. The metrics being measured and the usage of their
results had to evolve over time, in accordance with the evolution of the software engi-
neering and software management practices. For instance, there was a time when soft-
ware size was measured in Source Lines of Code (SLOC) for means of productivity
and estimation. Today, with the evolution of the software measurement field and the
advances in the software engineering body knowledge, software organizations are
measuring the software with recognized ISO standards. Software development and
management methods have also greatly evolved, where organizations are seeking a
never-ending efficiency improvement. In order to improve their efficiency, and also
their effectiveness of delivering quality software, many organizations implemented

1 Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).

Lean approaches to their development and maintenance activities, including Agile
methods and frameworks (i.e. Scaled Agile Framework for Enterprise - SAFe), and the
DevOps approach.
In this paper we apply Lean principles to software measurement, more specifically, the
Lean approach to identifying waste types and eliminating process waste, to the software
measurement process in the context of the metrics ecosystem founded on the ISO stand-
ards ISO/IEC/IEEE 15939:2017 on measurement process and ISO/IEC 25021:2012
Systems and software Quality Requirements and Evaluation (SQuaRE). The proposed
measurement process improvement and guidelines aim at eliminating or reducing waste
in the metrics ecosystem.

2 The Lean approach

The Lean approach has its roots within manufacturing when Toyoda, Ohono, and
Shingo defined and introduced fundamental principles of manufacturing at Toyota Mo-
tors in Japan in the 1930s2. This approach is known as the “Toyota Production System
(TPS)”. From 1988, TPS was renamed as “Lean Production System” [1]. The main
focus of a Lean approach is to identify and eliminate process waste, called “muda” in
Japanese, where non-value-added activities must be reduced or eliminated [2].

There are five key principles of the Lean approach2:
• Value is specified from the customer point of view;
• Value stream is defined so that wasted steps are identified and eliminated;
• The product goes through a Continuous Flow of its remaining value-added

steps;
• The process applies a Pull approach where products are not pushed to the next

step, but the next step pulls the products when capacity is available;
• Teams are seeking Perfection where cycle time must be constantly reduced.

Regarding the wasted steps from the 2nd principle, there were originally seven types of
“muda” or types of waste3, having relationships to one another:

1. Overproduction: producing more than necessary, often to compensate for de-
fects;

2. Waiting (time on hand): resulting from lack of coordination or misunderstand-
ing of the value stream (e.g. waiting for an approval, material, equipment
availability, etc.);

3. [Unnecessary] transport (or conveyance): often due to unnecessary distance
between two or more steps of the process;

4. Extra-processing: adding tasks, activities or materials that do not add value
for the customer, often from lack of understanding of its needs;

5. Excess inventory: stocking more in-process or final products than the de-
mand, often as a result of overproduction;

2 https://en.wikipedia.org/wiki/Lean_manufacturing, last accessed 2020/07/08.
3 Adapted from https://en.wikipedia.org/wiki/The_Toyota_Way, last accessed 2020/07/08.

6. Motion: useless motion of people or equipment, including searching for doc-
uments;

7. Defects: wasting effort on fixing defects, managing rejects, or doing rework.

Later, when the Lean approach was combined with the Six Sigma approach [3], an

8th muda was added:
8. Underutilization of skills relates to any form of skills or competencies un-

derutilization, such as delegating tasks to undertrained employees, not using
talents where they could bring more value and not benefiting from participa-
tion of skilled workers as their improvement ideas are simply ignored.

2.1 Applying Lean principles to software development

After the Agile Manifesto was published in 20014, it became obvious that Lean princi-
ples were also applicable to software development. Agile methods that followed, such
as Scrum and more specifically Kanban, have put forward Lean principles built-in these
methods [4]:

• The customer defines the value and sets the priorities;
• The process is streamlined in a continuous flow to provide value;
• The work in a given timeframe is planned based on the team capacity and

known cycle time;
• The team assesses its process regularly to improve its cycle time, mainly

through a practice called “retrospective”.
The main purpose of a retrospective session is to improve the software process, which
should later be reflected in the reduction of the cycle time or, in other words, in the
increase of team’s productivity. In conformance with the Lean principles, Mary and
Tom Poppendieck explain that in order to improve the cycle time, a software team must
first identify and eliminate waste in its process. They make a clear parallel between
manufacturing waste types and software development waste types (see Table 1) [4].

Table 1. Parallel between manufacturing and software development waste types
(adapted from [4]).

The wastes of Lean
manufacturing

The wastes of Lean software development

Overproduction

Extra features, such as trying to include more features than the team
capacity to end up having no other choice but to work overtime, which
may be a source of unnecessary fatigue leading to more defects as de-
velopers become tired, thus it lowers the product quality.

Waiting
Waiting, resulting in wasting effort. E.g. compiling the software using a
slow hard drive when it can be much faster on an SSD drive; waiting for
multiple authorizations to acquire or upgrade a needed tool, etc.

4 Beck, K. et al. (2001). Manifesto for Agile Software Development,

URL: http://agilemanifesto.org/, last accessed 2020/06/25.

The wastes of Lean
manufacturing

The wastes of Lean software development

Transport Task switching, such as assigning a developer to work concurrently on
several projects during the same day.

Extra processing

Extra processes, tasks or activities that do not add value from the cus-
tomer point of view, often caused by inadequate tools, an obsolete pro-
cess, or misunderstanding of customer needs. E.g. An analysis process
requiring that data elements to be defined textually in detail at the end of
the use case documents, duplicating information normally found in a
centralized data dictionary (related to defects, as copying is likely to in-
troduce inconsistencies).

Inventory

Partially done work, such as early completion of analysis on very low
priority functionality when the risks of abandoning it are very high.
Other examples: starting the development of several functionalities in
parallel at the beginning of a sprint, but not completing any of them by
the end of the sprint, only to find out later that the user’s needs were
misunderstood.

Motion

Motion, useless motion of people, information or equipment. E.g.
Searching over 20 minutes for an analysis or architecture document on
the local network that has been misplaced, going back and forth to the
supervisor office (at a different location) asking permission for every
step to be carried on (related to underutilization of skills).

Defects Defects, such as bugs, unclear requirements, inconsistent data model
and inadequate design or architecture.

Underutilization of
skills

Underutilization of skills, such as assigning software tasks to under-
trained developers. Other examples: limited authority and responsibili-
ties, micromanagement, multiple authorizations to upgrade a laptop or a
software tool (also relating to waiting), low problem resolution when
people are working alone, an employee unable to verify the quality of
work he/she produced, etc.

The above listed manufacturing and software development types of waste are likely to
have a parallel in software measurement activities and information products. The next
section discusses first the metrics ecosystem from the available ISO standards view-
point. Then the waste types of software measurement are defined and illustrated with
practical examples.

3 Metrics Ecosystem

According to many studies on the application of measurements and models in industrial
environments, measurement, in order to be effective must be [5]:

1. Focused on specific goals;
2. Applied to all life cycle products, processes, and resources;
3. Interpreted based on characterization and understanding of the organizational

context, environment, and goals.
This means that measurement must be defined in top-down fashion, that is, it must

be based on goals and models. A bottom-up approach is not likely to work, because the
measurements used to evaluate the many observable characteristics in software and

how they are interpreted (e.g. duration, cycle time, number of defects, complexity, lines
of code, severity of failures, effort, productivity, defect density, etc.) require clarifica-
tion, which is impossible without the appropriate models and goals. In other words,
meaningful measurement entails a well-defined system of elements required to sustain
measurement for decision-making.

Below we briefly introduce ISO/IEC 25021 [6], which defines an initial set of
Quality Measure Elements (QME) to be used through the product life cycle for the
purpose of SQuaRE. The benefits of defining and using the QMEs include [6]:

• To provide guidance for organizations developing and implementing their
own QMEs;

• To promote the consistent use of specific QME for measuring and using the
product properties that are relevant to different product quality characteristics
and sub-characteristics;

• To help identify a set of QMEs that is uniquely required in developing all the
quality measures for a given set of product characteristics or a set of sub-char-
acteristics.

Quality Measure (QM) is defined and then QMEs are derived as depicted in Fig. 1. The
user of the measurement method should identify and collect data related to quantifying
the property (Fig. 1). Depending on the context of usage and objectives of the QME,
several properties and sub-properties can be identified from the artifacts, components,
and the behaviour of the target entity. These are the input to the measurement method,
as depicted in the figure below. A measurement method must be applied to a property
to define and identify a way to quantify a QME (ISO/IEC FDIS 25021: 2012). A meas-
urement function is applied to a QME to generate QM.

Fig. 1. Relationship between property to quantify, measurement method and QME [6].

ISO/IEC 15939: 2017 [7] standard establishes a common measurement process and
framework applicable to software engineering and management disciplines. The pro-
cess is described through a model that defines four measurement activities required to
specify what measurement information is required, how the measures and analysis re-
sults are to be applied, and how to determine the validity of the analysis results. The
measurement information model is a structure linking information needs to the relevant
QM and the corresponding QME that provide a basis for decision-making.

Consequently, the Metric’s ecosystem structured after ISO/IEC 15939: 2017 [7]
should include (see Fig. 2):

• Commitment for measurement (step 1 of ISO 15939), where requirements for
measurement are defined and communicated, participants are assigned and
trained, and other resources are provided for.

• Measurement plan (step 2 of ISO 15939), including identification and priori-
tization of information needs, selection, specification and definition of
measures and tools to satisfy those information needs, and definition of criteria
to evaluate information products and the measurement process (all issued from
step 2 of ISO 15939).

• Measurement results (out of step 3 of ISO 15939) where the measurement plan
is deployed to collect, store, verify and analyze data to provide information
items.

• Improvement process of the measurement process (step 4 of ISO 15939).

Fig. 2. Overview of ISO/IEC/IEEE 15939 [7].

As can be noted from this section, Step 4 of ISO 15939 calls for the improvement of
the measurement process. The following section discusses the amendment of the Met-
ric’s ecosystem with the Lean principles in order to enhance its processes.

4 Applying Lean principles to software measurement

In this section we elaborate on the mapping of the key Lean principles to the four steps
of the measurement processes.

The five key principles of Lean can be applied to software measurement, in support
of ISO 15939 for the following reasons:

• To ensure the software measurement process is value driven, information
needs and related objectives have to be clearly defined as inputs to measure-
ment (step 2 of ISO 15939).

• The measurement value stream should be highlighted in the measurement
plan (step 2 of ISO 15939), more specifically as a means to define the meas-
urement process graphically; value stream mapping in Lean also allows to un-
derstand the cost of measurement.

• The processing of data (collect, store, verify, analyze, report, and record)
should follow a continuous flow, where automation should play an ever-
growing role (step 3 of ISO 15939).

• Every step of the measurement process (step 3 of ISO 15939) should apply a
pull approach, in order to identify and address bottlenecks and limit the work
in progress (e.g. having too much data collected, but not analyzed because
verification has not been done).

• Owners of the measurement plan should strive to perfection on a regular basis
when evaluating measurement (step 4 of ISO 15939), including information
items and measurement process.

As mentioned earlier and in conformance with the Lean principles, a software team

must first identify waste in the measurement process. The following section explains
how the 4th step of ISO 15939 can be used to identify waste in the software measure-
ment process.

5 Identifying waste in the measurement process

Inspired by the work done by the Poppendieck [4], we constructed a waste identification
approach by outlining a parallel between manufacturing and software measurement
waste types, through which we identified eight software measurement wastes.

The generic concept of waste in the manufacturing processes is used to identify
non-value-producing measurement process elements based on the general definition of
waste. Table 2 provides a parallel between the eight types of waste in Lean and what
would be their equivalence in software measurement.

The value of these software measurement waste types is that they can be used as
an input to regular retrospectives on the measurement program (step 4 of ISO 15939).
It is expected that organizations derive a checklist for that matter, including those waste
types that they might have encountered previously. This checklist would then be part
of their measurement experience base.

Table 2. Parallel between manufacturing and software measurement waste types.

The 8 wastes of Lean
manufacturing

The 8 wastes of Lean software measurement

Overproduction

Overproduction: producing more measurement data and indicators
than required by information needs, stated or implied. E.g., collecting
measurement data that are never used for analysis or decision-making.
For example, collecting software complexity data without analyzing
the outliers.

Waiting

Waiting: unproductive time or effort derived from unavailable infor-
mation, people or tools. E.g., spending time reminding people of their
missing timesheets several days after they are due, which may lead to
imprecise effort data (related to Defects).

The 8 wastes of Lean
manufacturing

The 8 wastes of Lean software measurement

Transport

One-size-fits-all: Applying an existing measurement plan when the
new context requires changes or adaptations. E.g., insisting on having
classic monthly project status reports for a new Agile project with 3-
week sprints.

Extra Processing

Extra processing: non-value-added processing of data and indicators.
E.g., processing data analysis not linked with any goal or information
needs; setting up an expensive statistical tool only to use basic func-
tions available for free in Excel.

Inventory
Partially done work: any incomplete portion of the measurement pro-
cess. E.g., having accumulated many metrics, analyzed but not shown
or used by those who could make decisions based on them.

Motion Motion: useless motion of people, information or equipment. E.g.
Moving data manually across applications or tools.

Defects

Defects: wrong or inadequate measure or its related measurement re-
sults. E.g. inadequate measure for the type of decision that needs to be
done with it; data of inappropriate unit of measure; wrong or inade-
quate quality of data; etc.

Underutilization of
Skills

Under-utilization of skills: not benefiting adequately or bad utiliza-
tion of skills and competencies of the workforce. E.g. Tasking a devel-
oper to measure the functional size without training or support; not de-
fining potential actions based on measurement results that would ena-
ble the workers to take action instead of having to wait for the man-
ager.

6 Conclusion and Future Work

This paper focused on proposing definitions of waste types, corresponding decision-
making and resultant waste-elimination actions for the measurement process in support
of step 4 of ISO 15939. Waste could be found in the measurement activities, inadequate
usage of measurement tools or skills, unreliable data collection, or inappropriate meas-
urement analysis and/or indicators that are impossible to trace to the information needs
of the organization. The paper proposed guidelines for step-4 of ISO15939 aiming at
identifying waste elements as part of the measurement retrospective analysis activity in
step-4. These guidelines can help organizations identify and mitigate the issues in their
measurement processes in a timely and efficient manner. The choice of ISO 15939 is
justified by the fact that the standard is already widely accepted by the industry, where
it is being adapted to their specific information needs of its users.

Our future work will explore the applicability of other key principles from Lean
software development, such as elimination of waste, amplification of learning best
measurement practices, and optimization of the whole measurement process. Future
research directions will tackle case studies and ISO standardization of the waste iden-
tification method in Lean software measurement processes.

References
1. Krafcik, J.F.: Triumph of the Lean Production System, MIT Sloan Management Review,

Volume 30, Number 1, Fall 1988, Cambridge (MA), USA. (1988).
2. Rousseau, C.: Le Lean Manufacturing (in French), URL: http://leleanmanufacturing.com/,

last accessed 2020/04/25.
3. Geoffrey, M.: Eliminate all muda, Manufacturing Engineering, Vol. 126, Nb. 4, (2001).
4. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit, Addi-

son-Wesley Professional, May 2003, ISBN-13: 978-0321150783, (2003).
5. Fenton, N., Bieman, J.: Software metrics: a rigorous and practical approach. CRC Press,

(2014).
6. ISO/IEC 25021:2012: Systems and software engineering — Systems and Software Quality

Requirements and Evaluation (SQuaRE) — Quality measure elements, International Organ-
ization for Standardization (ISO), Geneva, Switzerland (2012).

7. ISO/IEC/IEEE 15939:2017 Systems and Software Engineering — Measurement Process,
ISO, Geneva, Switzerland (2017).

