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Abstract. Today there are a large number of computer programming
languages, e.g., Java, C, C++, Python, to name a few. The COSMIC
functional size measurement method can capture the functionality of
software written in any language. Automating functional size measure-
ment (FSM) from code allows a large number of projects to be mea-
sured in a short time. However, because of the diversity of programming
languages, a specific automation tool is currently needed for each one.
To address this issue, we exploit the property that once a program is
translated into machine code, it becomes independent of the original
language it was written in, which is a basis for designing a ‘universal’
automation tool. This paper proposes an approach for a ‘universal’ tool
based on COSMIC ISO 19761 for automated measurement of software
written in different programming languages. As a proof of concept, this
paper presents a prototype tool based on COSMIC and MIPS, with a
small-scale validation.

Keywords: COSMIC · MIPS ISA · Automation Tool · ISO 19761 ·
Measurement Automation.

1 Introduction

The COSMIC functional size measurement (FSM) method [1] is used to mea-
sure functional user requirements (FUR) throughout the software development
process, from the requirements specification phase for estimation purposes to
post-implementation analysis for productivity and bench-marking studies.

However, applying FSM procedures manually is tedious and time-consuming,
which is problematic for organizations with a large number of projects to measure
in a very short time, either for project estimation purposes or for productivity
studies. In addition, the manual application of FSM to a very large set of source
code inputs requires specialized expertise when there is a variety of languages in
which the source code has been implemented.

? Copyright c©2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 H. Soubra et al.

According to the Online Historical Encyclopedia of Programming Languages
[2], there are 8,945 programming languages, which fall into two categories: in-
terpreted or scripted, such as Perl and Python, and compiled, such as C, C++,
and Java. Furthermore, different programming languages produce different re-
sults when implementing the same set of requirements [3].

Automating COSMIC-based FSM requires a complete mapping between the
principles of the COSMIC method and the input notation that describes the
functional user requirements. Each programming language has its own nota-
tion. Hence, a specific mapping for each programming language is required for
automation to become feasible. A number of COSMIC-based automation tools
exist in the literature, e.g. a tool that uses the Simulink model [4] for automa-
tion from requirements models and ScopeMaster for automation from textual
requirements [5, 6].

A universal tool applicable to all types of input languages would be ideal,
but also challenging when measurement inputs are expressed in different pro-
gramming languages. To address this issue, we exploit the property that once
a program is translated into executable binary code, it becomes independent of
the programming language it was written in. This property could be helpful for
designing a ‘universal’ automation tool.

This paper presents a feasibility study of an approach to a ‘universal’ tool
based on COSMIC ISO 19761 and MIPS to automate the measurement of soft-
ware written in different programming languages. The paper is organized as fol-
lows. Section 2 presents an overview of the COSMIC – ISO 19761 measurement
method. Section 3 reviews the literature on existing COSMIC based measure-
ment automation tools. Section 4 discusses the proposed approach using MIPS
for automating the COSMIC measurement method. Section 5 details the pro-
posed automation prototype tool, including a measurement example. Finally,
section 6 presents our conclusions and a discussion of future work.

2 COSMIC Overview

ISO 14143-1 specifies that an FSM method must measure software FUR. In addi-
tion, the COSMIC–ISO 19761 [7] standard proposes a generic model for software
FUR that can capture the functionality of any type of software in a measurable
way. From this generic model of software FUR the following observations can be
made:

– Software is bounded by hardware. In the so-called “front end”, software used
by a human is bounded by I/O hardware, such as a mouse, keyboard, printer,
and display, or by engineered devices, such as sensors or relays. In the “back
end”, the software is bounded by persistent storage hardware, such as a hard
disk, or RAM or ROM memory.

– Software functionality is embedded within the functional flows of data groups.
These data flows can be characterized by four distinct types of data move-
ments. Two types of movement–Entries (E) and Exits (X)–allow the ex-
change of data with users across a boundary. Two other types of movement–
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Reads (R) and Writes (W)–allow the exchange of data with the persistent
storage hardware.

– Different abstractions are typically used for different measurement purposes.
In real-time software, the users are typically the engineered devices that
interact directly with the software, that is, the users are considered the
I/O hardware. For business application software, the abstraction commonly
assumes that the user is one or more humans who interact directly with the
business application software across the boundary, and the I/O hardware is
ignored.

As an FSM method, COSMIC is aimed at measuring the size of software based
on identifiable software FUR.

3 Related Work

A number of COSMIC-based automation tools and prototypes exist in the lit-
erature. Google Scholar https://scholar.google.com/ was mainly used for the
literature review. The keywords used were: “COSMIC automation tool”, “COS-
MIC automated measurement; COSMIC functional size automation”.
Table 1 presents a summary of the various tools identified in the literature.

Table 1. Tools Identified in the Literature Review

Tool Year Author Domain Type

Tool using Simulink model 2011 Soubra et al. [4] Real-time
embedded
systems

Industrial
tool

ScopeMaster 2018 Hammond et al. [5] Real-time Industrial
tool

A tool for the automation of
functional size measurement
with RUP

2004 Azzouz and Abran [9] Real-time Academic
tool

µcROSE 2005 Diab et al. [10] Real-time Industrial
tool

A procedure that measures
the functional size

2015 Gonultas and Tarhan
[11]

Java business
application

Industrial
tool

A tool using SCADE model 2015 Soubra et al. [12] Real-time
embedded
system

Academic
tool

UML profile tool 2011 Lind and Heldal [13] Embedded
systems Com-
ponent

Academic
tool

Soubra et al. [4] proposed an automation tool based on the mapped rules be-
tween Simulink, a graphical programming environment for modeling, simulating
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and analyzing multidomain dynamical systems, and COSMIC. They also de-
tailed the algorithm behind the proposed tool and verified it using a three-state
protocol.

Hammond et al. [5] presented ScopeMaster, the first commercial tool, which
performs a COSMIC measurement on a set of free-form textual requirements in
English. ScopeMaster performs several successive steps of analysis, individually
and collectively, on the textual requirements in order to detect possible Objects
of Interest, potential users, potential data movements and potential defects. The
details of how ScopeMaster performs these techniques are proprietary and pro-
tected by a pending patent application; however, the results are fully transparent.
The underlying steps include natural language processing and several modules
of pattern matching.

Lind and Heldal [8] presented a tool based on COSMIC for measuring the
functional size of embedded automotive software early in the development cycle
using a UML profile that captures all the information needed for functional size
measurement and estimating code size.

Azzouz and Abran [9] presented an exploratory approach for the automa-
tion of functional size measurement with RUP based on direct mapping between
COSMIC-FFP and UML concepts and notation, where the inputs are the Ra-
tional Rose artifacts of the project to be measured. The tool provides a software
size determination at three stages of the development cycle (the use case level,
scenario level, and the COSMIC level). The first two levels provide early indi-
cators of the functional size, which is then more precisely measured in the third
level. This tool had a number of limitations such as the need to manually identify
and add the project scope and a tag for a triggering element; furthermore, no
large-scale testing had been carried out.

Another exploratory tool, called µcROSE, was proposed by Diab et al. [10].
The tool automatically measures COSMIC for Rational Rose RealTime (RRRT)
models. The paper stated that µcROSE improves COSMIC measurements in two
ways. First, it removes measurement variance and ensures perfect repeatability,
under the assumption that capsules selected belong to the same layer and, sec-
ond, because the measurement is automated it nearly eliminates measurement
cost. The seven supported functionalities of µcROSE are: i) visual support of
the COSMIC measurement process; ii) generation of an RRRT model in XML
format; iii) extraction of RRRT entities required in the measurement process;
iv) analysis of C++ code included in the RRRT model; v) identification of func-
tional processes, data groups, and data movements; vi) calculation of COSMIC
representing the functional size; and vii) aggregation and reporting of measure-
ment results.

A procedure that automatically measures the functional size was proposed
by Gonultas and Tarhan [11] for Java business applications with a user inter-
face and three-tier architecture. The procedure was developed within a software
package by 80 developers. According to the paper in order to use the package
as an automation tool for a Java application, it needs to be deployed first then
imported to the application.
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Soubra et al. [12] developed a COSMIC functional size measurement proce-
dure for real-time embedded systems in the aerospace domain. Their study pre-
sented an application of the proposed COSMIC FSM procedure to an aerospace
system example designed in SCADE. It also included a comparison between the
measurement results obtained by a manual procedure and the automated one
obtained by a prototype tool developed at ESTACA. This procedure measures
both management information and real-time system information, unlike tradi-
tional FSM methods. This paper illustrates the mapping between COSMIC and
the SCADE model with the Roll Control a real-time embedded system as an
example.

In another paper Lind and Heldal [13] proposed a UML profile tool to au-
tomate the estimation of the size of code based on COSMIC function points
(CFP). They investigated the manual effort involved in estimating code size
(e.g. it would require up to 2.5 person-years of effort to manually obtain the
value of CFP for a Saab car). This paper provided a case study for mapping
between COSMIC and a UML profile.
In conclusion, none of the proposed tools can be considered universal since they
require specific types of input languages/models. The concept of a universal tool
is a tool that is applicable to all types of input languages/models.

4 Proposed Approach for a Universal FSM Automation
tool

FSM automation tools are all based on the input artifacts. Therefore, a tool de-
signed for inputs implemented in C will not work for example for inputs in Java.
However, portable languages such as C and Java that have different notations
(syntax) are translated by a compiler into assembly language and then into bi-
nary machine instructions executable by the hardware. This section first presents
an overview of MIPS followed by our proposed approach to map COSMIC to
MIPS machine instructions.

4.1 MIPS Overview

MIPS [14] is a reduced instruction set computer (RISC) architecture evolved
and developed by MIPS Technologies. MIPS architecture is a high performance,
industry-standard architecture that provides a 32-bit (MIPS32) to 64-bit (MIPS64)
range instruction set. The MIPS64 architecture is backward compatible with
the MIPS32 architecture. Both the MIPS32 and MIPS64 architectures provide
a privileged environment to address the needs of operating systems. Both also
include provisions for adding optional components—modules of the base archi-
tecture, MIPS application-specific extensions (ASEs), user-defined instructions
(UDIs), and custom coprocessors. The key concepts of the MIPS architecture
are:

– Five-stage execution pipeline: fetch, decode, execute, memory-access, write-
result.
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– Regular instruction set, all instructions are 32-bit.
– Three-operand arithmetical and logical instructions.
– 32 general-purpose registers of 32-bits each.
– No status register or instruction side-effects.
– No complex instructions (e.g. stack management, string operations, etc.).
– Optional co-processors for system management and floating-point.
– Only the load and store instruction access memory.
– Flat address space of four gigabytes of main memory (232).
– Memory-management unit (MMU) maps virtual to actual physical addresses.

The components of MIPS architecture are:

– MIPS instruction set architecture (ISA)
– MIPS privileged resource architecture (PRA)
– MIPS modules and application-specific extensions (ASEs)
– MIPS user defined instructions (UDIs)

The most important component of the MIPS architecture within the scope of
this paper is the MIPS ISA. MIPS is a RISC processor, so every instruction
has the same length — 32 bits (4 bytes). These bits have different meanings
according to their displacement. Table 2 shows the names of the different fields
in a MIPS instruction, along with their size and their use.

Table 2. MIPS instruction fields

Name Size in bits Used for

Opcode 6 Specification of instruction

Register specifications 5 Addresses of registers

Register-immediate 5 Second part of opcode for RI and CP instructions

Shamt 5 Constant value for shifts

Immediate constant value 16 Immediate value for arithmetic and logical (AL) operations

Address 26 Address for jumps and procedure calls

Funct 6 The second part of an opcode for instructions

MIPS architecture supports instructions with up to three registers: s-register,
t-register, and d-register; and seven types of instruction formats, as shown in
Table 3.
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Table 3. MIPS instruction components

Type Reg # Immediate Used for

R 3 5 bits AL and shift operations on registers

RI 1 16 bits Branches

I 2 16 bits AL operations with immediate values, load/stores, branches

J 0 26 bits Unconditional branches, procedure calls

COP0 2 5 bits Interaction with co-processor 0

Special2 3 5 bits MIPS32 extensions

Special3 3 5 bits MIPS32 secret instructions

4.2 Our Approach: Mapping COSMIC to MIPS

Our approach consists of two steps: Mapping COSMIC’s principles to the generic
MIPS elements and then creating the precise measurement rules to determine
the functional size according to the instruction, called the dictionary.

Rules The first step in our approach is the mapping of MIPS elements to
COSMIC elements. The mapping helps identify the meaning of MIPS elements
to COSMIC which facilitates the measurement of the functional size while giving
room for further improvements. Table 4 shows the proposed mapping rules.

Table 4: MIPS/COSMIC mapping rules

Rule
number

COSMIC
element

Rule description

1 Functional
Process (FP)

Identify 1 functional process for each subroutine in the file.

2 Data
movement

Identify 1 Entry (E) for each source register in each
instruction in a FP.

3 Data
movement

Identify 1 Entry (E) for each immediate each instruction
in a FP.

4 Data
movement

Identify 1 Exit (X) for a destination register in each
instruction in a FP.

5 Data
movement

Identify 1 Exit (X) for the new PC value after branch and
jump instructions.

6 Data
movement

Identify 1 Exit (X) for the return value after branch and
link and jump and link instructions.

7 Data
movement

Identify 1 Read (R) for each Load instruction inside a FP.

8 Data
movement

Identify 1 Write (W) for each Store instruction inside a
FP.

9 Functional
process size

Aggregate the COSMIC Function Point (CFP) for each
data movement in a FP. to obtain the size of the process.
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10 Size of the
software

Aggregate the CFP of each FP. to obtain the size of the
whole software.

Dictionary The dictionary is the actual mapping of the MIPS instruction set
to COSMIC. The dictionary consists of 301 entries corresponding to the total
number of instructions in the MIPS instruction set (total of 301 instructions).
The dictionary is designed to contain information about both MIPS and COS-
MIC. It has two versions, the detailed main dictionary (for human interaction)
and a machine one (for the tool). The detailed dictionary has more details not
related to the tool and is divided into eight columns (Opcode, instruction name,
Entry, Exit, Read, Write, Total, Exceptions). The machine dictionary has six
columns used to calculate the functional size (Opcode, Entry, Exit, Read, Write,
Total). The main detailed dictionary is based on understanding the COSMIC
rules and having the latest version of the MIPS instruction set manual. The steps
behind formatting the dictionary include going through every instruction in the
instruction set and understanding the operation that this instruction performs,
then mapping the parts of the instruction into COSMIC. To map an instruction
from the instruction set manual to the dictionary the following points need to
be considered:

– The number of the source registers that will be mapped to Entries.
– The number of the destination registers that will be mapped to Exits.
– Dealing with the memory that will be mapped to Read or Write.
– Adding any exception that might occur.

5 COSMIC Based Automation Prototype for MIPS ISA

In this section the tool is discussed in detail followed by a small-scale validation
test.

5.1 The Tool

The tool was created using Eclipse Java. This section covers the logic behind
the tool, the user interface and error handling.

The Tool Logic The logical steps implemented in the tool are:

– Save the dictionary in a data structure: the chosen data structure is ArrayList
and was chosen for its dynamic data structure and ease of access to any of
its elements.

– Once the user has selected the file, the tool reads that file and stores it in
an ArrayList.

– The tool takes that ArrayList and performs string manipulation to split each
entry and obtain the Opcode.
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– The result of the string manipulation may not be an Opcode but a label
that identifies the start of a subroutine. The tool keeps track of the labels
and its number for the user because the subroutine is mapped into FP.

– The Opcode is then matched with the dictionary entries.

– If the tool finds a matching Opcode, it will increment the total number of
instructions, Entries, Exits, Read, and Write.

– The user has the option to save a detailed report after calculating the func-
tional size.

The saved report is named using the following convention: name of the selected
file concatenated with the word ”Report”.
It contains the following information:

1. Total number of lines of code in the file

2. Total number of instructions in the file

3. Total number of subroutines (FP)

4. List of the labels corresponding to each subroutine

5. Total number of entries in the file

6. List of the instructions that cause the aggregate of the Entries count with
an indication of the number of Entries corresponding to each instruction

7. Total number of Exits in the file, list of the instructions that cause the
aggregate of the Exits count with an indication of the number of Exits cor-
responding to each instruction

8. Total number of Reads in the file, list of the instructions that cause the
aggregate of the Read count with an indication of the number of Reads
corresponding to each instruction

9. Total number of Writes in the file

10. List of the instructions that cause the aggregate of the Write count with an
indication of the number of Writes corresponding to each instruction

11. The total functional size of the file

Graphical User Interface As shown in Fig. 1, the graphical user interface
-(GUI) contains four buttons: BROWSE to choose the file from the computer,
CALCULATE to measure the functional size for the selected file, SAVE THE
REPORT to save the resulting detailed report as a text file in the same directory
as the selected file, and CANCEL to cancel the operation and close the tool.
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Fig. 1. Graphical User Interface

Error Handling The tool handles some errors such as clicking on the Calculate
button without choosing a file 2, clicking on save the report without choosing a
file, and clicking on save the report without calculating the functional size.

Fig. 2. Clicking on save the report without choosing calculating the functional size.

5.2 Validation of the Prototype Tool

To validate the proposed tool 10 different test files were written. The test files
varied in file size, total number of instructions, total number of data movements,
and different cases of writing subroutines.
The validation was divided into three phases:
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– First phase: read the selected file and compare the Opcode with the dictio-
nary to calculate the functional size. This stage is mainly to check if the
tool correctly handles the exceptions that may occur during reading the file,
comparison, or even during performing the string manipulation.

– Second phase: write to a file, give the file a specific path, and also attempt
to handle any exceptions that may occur.

– Third phase: validate the part responsible for measuring the functional size
and the number of subroutines in the selected file.

Test Case Example The file used in our test case is, file written in Assembly
based on MIPS, called “TestFile.asm”. As shown in Fig. 3, it has a total of
14 lines, 10 instructions, does not have a main label, and has additional two
subroutines.

Fig. 3. TestFile.asm

As shown in Fig. 4, the report starts by stating the file name, total number
of lines in the file, total number of instructions in the file, and the COSMIC
measurement details. The number of functional processes FP identified is 3,
namely: 3 main, Loop, Exit. When TestFile.asm does not have a “main” label,
the tool automatically adds a label called “main” to the list of labels. The
prototype tool identified 22 Entry data movements, nine Exits, one Read and one
Write data movements. The total functional size of this TestFile.asm is: 33 CFP.
Table 5 shows the result of the COSMIC functional size manual measurement
of TestFile.asm.



12 H. Soubra et al.

Fig. 4. TestFileReport
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Table 5: COSMIC calculation

Rule
applied

Opcode Element Data movement
type

CFP value

2 addi 0 E 1
3 addi 23 E 1
4 addi s6 X 1
3 addi 5 E 1
2 addi 0 E 1
4 addi t5 X 1
2 sw t5 E 1
2 sw s6 E 1
3 sw 0 E 1
8 sw write operation W 1
2 addi 0 E 1
3 addi 8 E 1
4 addi s6 X 1
2 sll s3 E 1
3 sll 2 E 1
4 sll t1 X 1
2 add t1 E 1
2 add s6 E 1
4 add t1 X 1
2 lw t1 E 1
3 lw 0 E 1
4 lw t0 X 1
7 lw read operation R 1
2 bne t0 E 1
2 bne zero E 1
3 bne offset (Exit) E 1
3 bne pc E 1
6 bne new pc value X 1
2 addi s3 E 1
3 addi 1 E 1
4 addi s3 X 1
3 j target (Loop) E 1
6 j new pc value X 1

– Total E: 22
– Total X: 9
– Total R: 1
– Total W: 1

– Total: 33
CFP
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6 Conclusion

The goal of this paper was to propose an approach for a ‘universal’ tool based
on COSMIC ISO 19761 to ensure that the measurement of all types of input
software written in different programming languages is correctly automated. The
’universal’ tool may be achieved by generalizing the approach proposed in this
paper to cover, and use, the machine code (ISA-Instruction Set Architecture)
generated by any compiler/Assembler to get the COSMIC functional size of a
program.

A feasibility prototype tool based on COSMIC and MIPS was developed
using Eclipse Java based on the latest version of the MIPS architecture. The
tool uses a dictionary to classify the instructions inside a file and gives the user
a detailed report of the functional size of the file, including the details of the
functional size measurement. This paper was limited to only a specific release of
the MIPS architecture and a specific instruction set.

In the future, the accuracy and the precision of the tool will be analyzed
with more test cases. The dictionary should be expanded to include all MIPS
instructions, including pseudo-instructions and not just those in the ISA. Lastly,
generalizing the proposed approach to cover machine code, and developing a
plugin version of the proposed tool that can be added to the source-code editors,
software development and version control tools, or DevOps lifecycle tools ,such
as VSCode, GitHub and GitLab, to automate the measuring process of the
COSMIC functional size in each run or deployment.
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