
 "Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0)"

Improving the Structural Size Measurement Method

Through the Assessment of Nested (Multi-Level) Control

Structures in UML Sequence Diagram

Hela Hakim1, Asma Sellami1, Hanêne Ben Abdallah2, and Alain Abran3

1 Mir@cl Laboratory, University of Sfax, ISIMS, BP 242. 3021.Sfax-Tunisia.
2 Higher Colleges of Technology, Dubai, UAE

3 École de Technologie Supérieure – ETS, University of Quebec (Montréal, Canada)

hakim.hela@yahoo.fr, asma.sellami@isims.usf.tn, hbenabdallah@hct.ac.ae,
alain.abran@etsmtl.ca

Abstract. The COSMIC ISO 19761 method is used in software industry as a

contributor to estimation improvements and for comparability across projects.

The COSMIC method is based on the identification of data movements but it

does not consider the data manipulations. To take into account data manipulations

associated with data movements at a detailed level of granularity, the

measurement of control structures, also referred to as structural size, has been

suggested previously. While the previous work focused on the use of constructs

(alt, opt, and loop) for one structural level, the multi-level had not been

considered. This work proposes refinements to our previous structural size

measurement method through the assessment of the nested (multi-level) control

structures in the sequence diagram. This refined method proposes detailed

measures in different situations where the three constructs can be nested. These

measures can be very useful for the software project planning that requires better

effort estimation. A web site case study “Digital-Training Center” is used to

illustrate and apply the proposed measurement algorithms.

Keywords: Functional size measurement, Structural Size Measurement SSM,

COSMIC, ISO 19761, combined fragments, nested combined fragments, mutli-

level.

1 Introduction

The software development industry as a whole has a disappointing track record when

it comes to completing a project on time and within budget. The Standish Group well-

known Chaos Report confirms that only 32% of software development projects are

completed successfully within the estimated schedule and budget [21].

Software developers are constantly under pressure to deliver on time and on budget.

As a result, many projects focus on delivering functionality at the expense of meeting

the details of functionality, defined as the different scenarios describing one

functionality [20]. When software details become visible and clients’ demands on

software quality increase, functionality details can no longer be considered of

secondary importance. Many systems fail or fall into disuse precisely because of

inadequacies in these details. In an object oriented technology such details are modeled

in an UML sequence diagram and some others diagrams related to modeling

functionality. In practice, UML sequence diagrams notation is considered as the most

popular diagram [7].

mailto:asma.sellami@isims.usf.tn

Early in the software project lifecycle, details of the specific requirements of the

software to be built as well as the staffing needs and other project variables are unclear.

The variability in these factors contributes to the uncertainty of project effort estimates.

As the sources of variability are further investigated and pinned down, the variability

in the project decreases, and thus the variability in the project effort estimates can also

decrease.

A number of measurement methods (e.g., Mk II [3], NESMA [4], IFPUG [2],

FISMA [5], and COSMIC [1]) are proposed for sizing software functionality and for

estimation purposes. Although the design of COSMIC Functional Size Measurement

method has been proposed to overcome the shortcomings of the first generation

methods, it does not separately assess the data manipulations associated with data

movements. For a finer level of granularity of measurement, the structural size

measurement with a focus on the nested multi-level control structure has been

proposed: it provides development team and managers with a more detailed software

size measurements and could lead to a more accurate level of estimates. This work

proposes an improvement (refinement) of our previous structural size measurement

method for sizing detailed requirements expressed in the form of UML sequence

diagrams. In this paper, we focus on how to assess the nested combined fragments (such

as opt, alt and loop) within a sequence diagram.

The remainder of the paper is organized as follows: Section 2 presents an overview

of the COSMIC method, the Structural Size Measurement method and the UML

sequence diagram and its Combined Fragments. It also discusses some related works.

Section 3 describes the refined Structural Size (SS) Measurement method. Section 4

illustrates its application combined with the COSMIC through the “Digital-Training

Center” case study. Section 5 discusses and presents some limitations of our work.

Finally, section 6 concludes the presented work and outlines some of its possible

extensions.

2 Background

2.1 COSMIC- FSM: ISO 19761

The COSMIC Functional Size Measurement (FSM) method is becoming popular

because of its ability to size different types of software (e.g., business application, real-

time software, embedded software, mobile apps, neural networks, etc.) [1]. COSMIC

measures the software size from the Functional User Requirements (FUR) in terms of

COSMIC Function Point (CFP) units. Some measurement concepts need to be

understood before starting the use of COSMIC method: the FURs describe a set of data

movements that move data groups consisting of one or more data attributes to and from

functional processes. Functional processes are the behavior of the software as viewed

by the functional users. A functional user is either a human, an external device or

another software that sends or receives data described in FUR. A boundary acts as an

interface between the functional users and the software to be measured. In fact, four

data movement types occur between functional users, functional processes and

persistent storage: Entry (E): The functional user sends data to the functional process

through the boundary. eXit (X): The data is sent from the functional process to the user

through the boundary. Read (R): The data is moved from persistent storage through the

functional process. Write (W): The data is moved to persistent storage through the

functional process.

A Functional process always has at least one entry data movement with either a

Write (W) to persistent storage or an exit (X) data movement. This will account for at

least two data movements and will be sized as two CFP. Thereafter, these data

movements are used to get better insights into sizing the software product.

2.2 Structural Size Measurement Method

In our previous work [20], we proposed the Structural Size Measurement (SSM)

method. It was designed by following the measurement process recommended in [8].

The main reason for creating such method was the need of detailed measures to

quantify data manipulations. As in the COSMIC method where the software functional

size is derived by quantifying the FUR [9], the structural size is derived by quantifying

the FUR at a detailed level (e.g., at the structural level).

The proposed SSM is applied on the combined fragments of a sequence diagram to

measure its structural size (SS). This SS, also named control structural size, refers to

the structural size of both conditional control structures CCS and iterative control

structures ICS, described respectively through the alt, opt, and loop constructs. The SS

of a sequence diagram is defined at a fine level of granularity (i.e., the size of the flow

graph of their control structures).

The use of SS requires the identification of two types of data manipulation

depending on the structure type CCS (alt and opt combined fragments in the flow graph)

and-or ICS (loop combined fragment in the flow graph). Each data manipulation is

equivalent to 1 CSM (Control Structure Manipulation) unit. The sequence structural

size is computed by adding all data manipulations identified for every flow graph.

2.3 UML Sequence Diagram and its Combined Fragments

The UML Sequence diagrams are a popular dynamic modeling solution in UML

because they specifically focus on lifelines, or the processes and objects that live

simultaneously, and the messages exchanged between them to perform a function

before the lifeline ends [7].

Sequence diagrams can be useful references for software developers who must

perform detailed design for each software component, and at different levels of details.

Basically, a sequence diagram is drawn to:

 represent the details of a UML use case;

 model the logic of a sophisticated procedure, function, or operation;

 see how objects and components interact with each other to complete a process;

 plan and understand the detailed functionality of an existing or future scenario.

In sequence diagrams, combined fragments are logical groupings, represented by a

rectangle, which contain the conditional structures that affect the flow of messages. A

combined fragment contains interaction operands and is defined by the interaction

operator. The type of combined fragment is determined by the interaction operator in

which the type of logic or conditional statement are identified. The interaction operator

defines the behavior of the combined fragment that can be used to describe several

control and logic structures in a compact and concise manner.

A combined fragment can also contain nested combined fragments or interaction

containing additional conditional structures that represent more complex structures that

affect the flow of messages. The combined fragments opt, alt, and loop are summarized

in Table 1.
Table 1. Description of Alt, opt, and Loop combined fragments

Fragment
types

Description

OPT The combined fragment “opt”: encloses a sequence that might happen or not.
The condition under which it occurs can be specified in the guard.

ALT The combined fragment “alt”: Contains a list of fragments that contain
alternative sequences of messages. Only one sequence occurs on any occasion.
A guard in each fragment indicates the condition in which it can run. A guard
of ELSE indicates a fragment that should run if no other guard is true. If all
guards are false and there is no ELSE, then none of the fragments executes.

LOOP The “loop” combined fragment repeats the condition as it is indicated in the
guard a number of times. The “loop” combined fragments have the properties
Min and Max that indicate a minimum and maximum number of times to be
repeated by the fragment. The default is not a restriction.

2.4 Related Work

Over the past two decades, researchers have proposed object-oriented software metrics

to measure the quality of software design and improve the productivity [10]: for

example, the CK metrics, MOOD Metrics, etc. [19, 18, 13, 12, 11, 14, 15]. The CK

metrics suite can be used for measuring the software complexity [17] serving both as

an analyzer and a predictor. To develop better quality software, it is necessary to

identify the complexity at module, method and class level (e.g., coupling, cohesion and

inheritance that have an effect on complexity). Most of these metrics studies have

focused on object-oriented design and are limited only to the static aspect of design

(class diagram) size.

In this paper, we focus on how to measure the dynamics aspect of software design

(e.g., sequence diagrams) at a fine level of granularity. In other words, measuring the

sequence diagram structural size not only at one level (as it is described in our previous

work [20]), but also at the multi-level where combined fragments (opt, alt, loop) are

nested.

3 Improving the Structural Size Measurement Method through

the Assessment of Nested Control Structures

This section presents how the structural size measurement method can be improved by

taking into account the in-depth nested (multi-level) control structures in the Sequence

Diagram (SD). For this purpose, we propose different algorithms for assessing the

nested (multi-level) combined fragments (alt, opt, and loop).

In our earlier work we presented a structural size method for measuring data

manipulation expressed by the combined fragments opt, alt and loop based on Sequence

diagram descriptions. In this section, we extend our earlier work as follows:

 First, we classify the nested Combined Fragments into three levels and each level

is further divided into several cases.

 Second, we propose different algorithms to support the nested multi-level

combined fragment in the sequence diagrams and its corresponding flow graph.

3.1 Classifying the Combined Fragments at Different Levels (Muli-Level)

Before sizing the sequence diagram containing the multi-level nested control structures

in terms of CSM units, it is important for measurers to distinguish the combination of

nested control structures’ categories in each level that require more attention. This is to

avoid misinterpretation of measurement results.

There are many more cases to be identified for classifying the combined fragments

into categories at a multi-level hierarchy (including the following three cases). For

simplicity sake, we will focus only on the two first categories.

1. Case when one type of the SD control structures is used at all levels. Note that

the number of levels can be one or more.

2. Case when two types of the SD control structures are used at all levels.

3. Case when all the above SD control structures are used at all levels.

1st Category: A Single Control Structure Type used at all Levels

This category includes the alternative ALT Combined Fragment with several

alternatives, the choice OPT Combined Fragment, and the iterative LOOP Combined

Fragment.

 If the alternative ALT Combined Fragment contains or not one or more nested

blocks having the same control structure type (ALT Combined Fragment nested in

an ALT Combined Fragment), the following situations should be distinguished:

− All levels have n sequence flows and each alternative has nested ALT

Combined Fragment (where n is a constant number) (See Algorithm 1.1)

− All levels have n sequence flows and some alternatives do not have nested

ALT Combined Fragment (See Algorithm 1.1)

− 1stlevel has n sequence flows and all other levels have p sequence flows (with

p! = n) (See Algorithm 1.2)

− 1stlevel has n sequence flows and only some other levels have p sequence

flows (with p! = n) (See Algorithm 1.2)

− Each level has different number of sequence flows

 If the choice OPT Combined Fragment (two sequence flows where one branch is

connected to an end event) and all the nested blocks have the same control structure

type (OPT Combined Fragment).

− Each level contains OPT Combined Fragment restricted to two sequence flows

where one sequence flow is linked to end event (because it contains always a

single path) (See Algorithm 1.3).

 For an iterative LOOP control structure, we denote the case when each level

includes a number of iterative control structures (the number of iterations is

arbitrary). The following situations can be observed:

− Loop with n iterations at all levels (See Algorithm 1.4)

− Loop with n iterations in the first level and p iterations in the next levels (See

Algorithm 1.5)

− Loop with different iterations in each level (See Algorithm 1.6)

2nd Category: Two different Control Structures used at all Levels

This category may include the following cases:

1stcase:

 If the Alt combined fragment in the first level is followed by a nested OPT

Combined Fragment, the following situations are considered:

− All levels having OPT Combined Fragment (See Algorithm 2.1)

− Some levels having OPT Combined Fragment in which the following cases

are established:

− Each alternative in the first level contains the Opt combined fragment

and the other levels may have or not the OPT Combined Fragment (See

Algorithm 2.2)

− Each alternative may or not have the OPT Combined Fragment in all

levels (See Algorithm 2.3)

2ndcase:

 The OPT Combined Fragment in the first level is followed by a nested ALT

Combined Fragment.

 The OPT Combined Fragment in the first level is followed by a nested LOOP

Combined Fragment (See Algorithm 2.4).

3rd case:

 The LOOP Combined Fragment in the first level is followed by a nested OPT

Combined Fragment.

 The LOOP Combined Fragment in the first level is followed by a nested ALT

Combined Fragment.

3rd Category: All different Control Structures Type are used at all Levels

In this category, all possible combinations of the different control structures can be used.

 3.2 Sizing the Nested (Multi-Level) Control Structures in the Sequence Diagram

With the information from the sequence diagram and its corresponding flow graph,

measurers can quickly identify the combined fragments at different levels (including

the nested level). Thereafter, by applying the proposed algorithms (See Tables 2 and

3), the detailed structural size of a sequence diagram can be generated.

Let:

 SDm be a Sequence Diagram containing a nested (multi-level) combined

fragments,

 GSS be its corresponding flow graph,

 GSS(SDm) be the graph-based structural size function expressing the

Structural Size of the whole Sequence diagram, and

 GSS(F) be the graph-based structural size function expressing the Structural

Size of the combined fragment within the Sequence diagram.

The sequence diagram structural size is derived as the sum of the Structural size of

all the combined fragments (multi-level) as shown by equation (1):

𝑆𝑆(𝑆𝐷𝑚) = ∑ 𝑆𝑆(𝐹𝑖)
𝑛
𝑖=1 (1)

where:

 n is the number of combined fragments Fi in the SDm,

 SS(Fi): the Structural size of a fragment Fi

Since each fragment represented in a SD can be itself decomposed into a new

fragment that refines it, each Fi can contain (or not) one or more nested control

structures. The structural sizes of these fragments are derived by using algorithms as

illustrated in section 3.2.2. Note that:

− GSSic(F) is the (sub)graph representing the structural size of the iterative control

structure SS(ICS),

− GSScc(F) is the (sub) graph representing the structural size of the conditional

control structure SS(CCS) that may include alt combined fragment and-or opt

combined fragment.

To measure the structural size of a fragment, we propose algorithms based on the

defined strategy.

Proposed algorithms for the 1st category.

When a single control structure type is used at all levels, we propose to use

Algorithm 1.1 and Algorithm 1.2. Algorithm 1.1 represents how sizing an ALT

Combined Fragment nested within another ALT Combined Fragment in the same SDm,

where all levels have n alternatives (with n a fixed number). Algorithm 1.2 illustrates

the ALT Combined Fragment nested within another ALT Combined Fragment where

the 1st level has n alternatives and all other levels have p alternatives (with p! = n).

Proposed algorithms for the 2nd category

When two types of the SD control structures are used, we propose to use Algorithm

2.1, Algorithm 2.2 and Algorithm 2.3.

1st case:

Algorithm 2.1 expresses the case when the Alt combined fragment is followed by

Opt combined fragment in each level. While Algorithm 2.2 and 2.3 represent the case

when the alternative Alt combined fragment is followed by some Opt combined

fragments, this situation represents two cases:

 Algorithm 2.2 represents that each sequence flow in the Alt combined

fragment (i=0) contains Opt combined fragment, and other alternatives in the

followed levels may contain or not an Opt combined fragment.

 Algorithm 2.3 represents that each alternative in the Alt combined fragment

(i=0) may or not have choice Opt combined fragment in all levels (Algorithm

2.3).

Table 2. Algorithms and measurement formulas for the 1st category

Algorithm 1.1. ALT combined fragmentnested

within anotherALT combined fragment in the

SDm (All levels have n alternatives (with n a

fixed number) and each node has a nested

Combined Fragment F

Begin

inti=0; // i = [0,1] i is the root or the1stlevel

alt=n; // n is the number of nodes in each level i

i=1;

int j=1// j = [1..h] where h is the number of nodes

in the 1stlevel

i=1; //Xij

For each level i

For each node xij

out-degree (xij) = n

𝑆𝑆𝑐𝑐(𝑥𝑖𝑗) = GSScc(𝑥ij)

End for

i++;

int m = [1..d]; where d is the number of nodes in

the second level(i=2)

For each level i

For each node yim

out-degree (yim) = n

𝑆𝑆𝑐𝑐(𝑦𝑖𝑚) = GSScc(𝑦im)
End for

End for

𝑆𝑆(𝐹) = ∑(𝑆𝑆𝑐𝑐(𝑦𝑖𝑚) ∗ (𝑆𝑆𝑐𝑐(𝑥𝑖𝑗)/𝑛)
𝑖)

𝑑

𝑚=1

= n*d

=n*ni

=ni+1

End for

End

Note that d= ni if there is a nested Alt combined

fragment in each alternative

SS(F)= ni+1

Else

𝑆𝑆(𝐹) = ∑(𝑆𝑆𝑐𝑐(𝑦𝑖𝑚) ∗ (𝑆𝑆𝑐𝑐(𝑥𝑖𝑗)/𝑛)
𝑖)

𝑑

𝑚=1

Flow graphs modeling Algorithm 1.1

Algorithm 1.2 Alt combined fragment nested in

an Alt combined fragment: 1st level has n

alternatives and all other levels have p

alternatives (with p! = n)

Begin

int i=0 ; // i=[0,1] i is the root or the1stlevel

alt=n; // n is the number of nodes in each level i

i=1;

int j=0// j = [0..h] where h is the number of

nodes in the first level

i=1;//xij

For each level i

For each node xij

 out-degree (xij) = n

𝑆𝑆𝑐𝑐(𝑥𝑖𝑗) = GSS(𝑥ij)

End for

i++;

int m = [1..d]; where d is the number of nodes in

the second level (i=2)

For each level i

For each node yim

 out-degree (yim) = p

𝑆𝑆𝑐𝑐(𝑦𝑖𝑚) = GSS(𝑦im)
End for

End for

𝑆𝑆(𝐹) = ∑(𝑆𝑆𝑐𝑐(𝑦𝑖𝑚) ∗ (𝑆𝑆𝑐𝑐(𝑥𝑖𝑗)/𝑛)
𝑖)

𝑑

𝑚=1

= (p*d) CSM

End for

End

𝑆𝑆(𝐹) = ∑(𝑆𝑆𝑐𝑐(𝑦𝑖𝑚) ∗ (𝑆𝑆𝑐𝑐(𝑥𝑖𝑗)/𝑛)
𝑖)

𝑑

𝑚=1

Flow graphs modeling Algorithm1.2

Algorithm 1.3 Opt combined fragmentand all

the nested blocks have the same control structure

type (Opt combined fragment)

Begin

int i=0; // i = [0, l] i is the root or the1stlevel

alt=n=1; // n is the number of nodes in each level

i

i=1;

For each level i

For each node xi

 out-degree (xi) = n=1

𝑆𝑆𝑐𝑐(𝑥𝑖) = GSS(𝑥𝑖)
End for

End for

i++;

For each level i

For each node yi

 out-degree (yi) = 1

𝑆𝑆(𝑦𝑖) = GSS(𝑦𝑖)
End for

End for

𝑆𝑆(𝐹) = (𝑆𝑆𝑐𝑐(𝑦𝑖) ∗ (𝑆𝑆𝑐𝑐(𝑥𝑖)/𝑛)
𝑖)

 = 1 CSM

End

Flow graphs modeling Algorithm 1.3

Algorithm 1.4 Each level contains iterative

control structures (LOOP Combined Fragment)

where the number of iterations is fixed (r)

inti=0; // i = [0..l] where i is the root or the1stlevel

int itr=r; // r is the number of iterations

i=1;

For each level i having r number of iterations

For each node xi

 out-degree (xi) = r

𝑆𝑆𝑖𝑐(𝑥𝑖) = GSS(𝑥𝑖)
End for

i++;

For each level i having r number of iterations (r is

a fixed number equal to the fixed number in the

previous level)

 For each node yi

 out-degree (yi) = r

𝑆𝑆𝑖𝑐(𝑦𝑖) = GSS(𝑦𝑖)
End for

End For

𝑆𝑆(𝐹) = 𝐺𝑆𝑆(𝑥𝑖) ∗ 𝐺𝑆𝑆(𝑦𝑖) = 𝑟𝑖
End for

Flow graphs modeling Algorithm 1.4

Algorithm 1.5 Each level contains iterative control

structures (LOOP Combined Fragment) where the

number of iterations is fixed in the first level and s

iterations in the next levels

inti=0; // i = [0,1] i is the root or the1stlevel

int it r= r; // r is the number of iterations in the first

level

int itr= s; // s is the number of iterations in other

levels

i=1;

For each level i having r number of iterations

For each node xi

 out-degree (xi) = r

𝑆𝑆𝑖𝑐(𝑥𝑖) = GSS(𝑥𝑖)
End for

i++

For each level i having s number of iterations

which is different to the previous level

 For each node yi

 out-degree (yi) = s

𝑆𝑆𝑖𝑐(𝑦𝑖) = GSS(𝑦𝑖)
End for

End For

𝑆𝑆(𝐹) = 𝐺𝑆𝑆(𝑥𝑖) ∗ 𝐺𝑆𝑆(𝑦𝑖) = 𝑟 ∗ 𝑠𝑖
End for

Flow graphs modeling Algorithm

1.5

Algorithm 1.6 Each level contains iterative control

structures (LOOP Combined Fragment) where the

number of iterations is different from each level

int itr=r; // r is the number of iterations in the first

level

int itr=s, t; // s and tare respectively the number of

iterations in the next levels

i=1;

For each level I having r number of iterations

For each node xi

 out-degree (xi) = r

𝑆𝑆𝑖𝑐(𝑥𝑖) = GSS(𝑥𝑖)
End for

i=2;

For each level i having s number of iterations (s is

different from the previous level)

 For each node yi

 out-degree (yi) = s

𝑆𝑆𝑖𝑐(𝑦𝑖) = GSS(𝑦𝑖)
 End for

End For

i++;

 For each node yi

 out-degree (yi) = t

𝑆𝑆𝑖𝑐(𝑦𝑖) = GSS(𝑦𝑖)
End for

𝑆𝑆(𝐹) = 𝐺𝑆𝑆(𝑥𝑖) ∗ 𝐺𝑆𝑆(𝑦𝑖)
= 𝑟 ∗ 𝑠 ∗ 𝑡

End for

Flow graphs modeling Algorithm 1.6

Table 3. Algorithms and measurement formulas for the 2nd category

Algorithm 2.1: Alt combined fragment in the first level

is followed by nested opt Combined Fragment F in all

levels

Begin

inti=0 ; // i=0…l is the number of levels

 Alt=n ; // n is the number of nodes in the level i=1;

int j=1// j=1..h where h is the number of nodes in 1st level

For each level i having choice Opt combined fragment

For each alternative in level i

For each node xij

 out-degree (xij) = 1

𝑆𝑆𝑐𝑐(𝑥𝑖𝑗) = GSS(𝑥ij)

End for

i++

int m=1….d; where d is the number of nodes in 2nd level

For each level i

For each node yim

 out-degree (yim) = 1

𝑆𝑆𝑐𝑐(𝑦𝑖𝑚) = GSS(𝑦im)
End for

End For

𝑆𝑆𝐹 = ∑(𝑆𝑆𝑐𝑐(𝑦𝑖𝑚) ∗ (𝑆𝑆𝑐𝑐(𝑥𝑖𝑗))
𝑖)

𝑑

𝑚=1

𝑆𝑆𝐹 = 𝑆𝑆𝑐𝑐 =∑(GSS(𝑥𝑖)+GSS(𝑦))𝑖

𝑃

𝑖=1

End for

𝑆𝑆𝑠𝑒𝑞 =∑(∑(GSS(𝑥)+GSS(𝑦))
𝑖

𝑃

𝑖=1

)

𝑗

𝑛

𝑗=1

End for

End

Flow graphs modeling

Algorithm 2.1

Algorithm 2.2: Each sequence flow in the Alt

combined fragment (i=0) contains Opt combined

fragment, and other alternatives in the followed

levels may have or not an Opt combined fragment

Begin

Int i=0 ; // i is the number of levels

outdegree(x)=n;

j=1..n ; //j number of nodes from 1 to n

i=1..p; i//number of levels from 1 to p

Alt=n ; // n is the number of nodes

For (j=1, j<n, j++)

If the opt Combined Fragment F==True

out-degree (y) = 1

𝑆𝑆𝑐𝑐 = GSS(𝑦)
End if
i++

For each level i contains or not an Opt combined

fragment

 For each node z

Ifthe opt Combined Fragment CF=True

out-degree (z) = 1

𝑆𝑆𝑐𝑐 = GSS(𝑧)

𝑆𝑆𝑐𝑐 = ∑ GSS(𝑦)+GSS(𝑧)

𝑛∈𝑙𝑖,𝑝∈𝑙𝑖+1;𝑆𝑐𝑐

Else

𝑆𝑆𝑐𝑐 = GSS(𝑧) = 0

𝑆𝑆𝑐𝑐 = ∑ GSS(𝑦)+GSS(𝑧)

𝑛∈𝑙𝑖,𝑝∈𝑙𝑖+1

= 𝐺𝑆𝑆(𝑦) + 0

= 𝐺𝑆𝑆(𝑦)
End if

 End for

End for

𝑆𝑆𝐹 =∑(𝑆𝑆𝑐𝑐)𝑖

𝑃

𝑖=1

End For

End

Flow graphs modelingAlgorithm2.2

Algorithm 2.3: Each sequence flow in the Alt

combined fragment may or not have Opt combined

fragment in all levels

Begin

inti=0; // i is the number of levels

outdegree(x)=n;

inti=0 ; // I is the number of level

outdegree(e)=n;

j=1..n ; //j number of nodes from 1 to n

i=1..p; i//number of levels from 1 to p

Alt=n ; // n is the number of nodes

For (j=1, j<n, j++)

If Opt combined fragment=True

out-degree (x) = 1

𝑆𝑆𝑐𝑐 = GSS(𝑥)
End if
i++

For each level i contains or not opt

For each node y

If Opt combined fragment=True

out-degree (y) = 1

𝑆𝑆𝑐𝑐 = GSS(𝑦)

𝑆𝑆𝑐𝑐 = ∑ GSS(𝑥)+GSS(𝑦)

𝑛∈𝑙𝑖,𝑝∈𝑙𝑖+1;𝐵𝑆𝑐𝑐

Else

𝑆𝑆𝑐𝑐 = GSS(𝑦) = 0

S𝑆𝑐𝑐 = ∑ GSS(𝑥)+GSS(𝑦)𝑛∈𝑙𝑖,𝑝∈𝑙𝑖+1;𝑆𝑆𝑐𝑐 =

𝐺𝑆𝑆(𝑥) + 0 = 𝐺𝑆𝑆(𝑥)
 End if

 End for

End For

𝑆𝑆𝐹 = 𝑆𝑆𝑐𝑐 =∑(𝑆𝑆𝑐𝑐)𝑖

𝑃

𝑖=1

End For

End

Flow graphs modelingAlgorithm2.3

Algorithm 2.4: LOOP Combined Fragment nested

in the Alt combined fragment: Each alternatives

contains LOOP Combined Fragment (with u a

fixed number of iterations)

Begin
int i=0; // i is the number of levels

outdegree(x)=0;

Alt=n; // n is the number of nodes

 For each level i

For each node x

out-degree (x) = n*i

𝑆𝑆𝑐𝑐 = GSS(𝑥)
end for

i++

For each level i having u number of iterations

For each node y

 out-degree (y) = u

𝑆𝑆𝑖𝑐 = GSS(𝑦)
end for

i++

For each level I (i=2) having w number of

iterations (wis a random number and it is NOT

equal to the previous levels)

 For each node z //z represents all nodes in any

levels except level 0 and 1.

 out-degree (z) = w

𝑆𝑆𝑖𝑐 = GSS(𝑧)
End for

End For

𝑆𝑆𝑖𝑐 = 𝐺𝑆𝑆(𝑦) ∗ 𝐺𝑆𝑆(𝑧) = 𝑤𝑖

End for

𝑆𝑆𝐹𝑖 = 𝑆𝑆(𝑖𝑐)
+ 𝑆𝑆(𝑐𝑐)

end for

End

Flow graphs modeling Algorithm 2.4

4 Case Study: Illustrative Example

This section illustrates the application of our proposed method through the case study

“Digital-Training Center” web site. It considers the interactions among trainings in this

web site, as an example of UML2.x SD modeling the behaviors of a distributed system

(see Fig.1 and Fig.2). The web site has independent components: the training officer,

the home page, the custom page, the training page and the authentication page.

We model the update of the training catalog by the training officer (Fig. 2): the

training officer must authenticate at first (Fig. 1). He enters the web site URL and he

can be redirected directly to the custom page if he has chosen, in the last connection,

the option to remain connected for a limited duration. Otherwise, he is redirected to the

authentication page. There are three possible cases:

1. successful authentication;

2. missing information - in this case the site asks the user to complete them;

3. wrong login and-or wrong password - in this case the site asks the training

officer to correct them.

In the second case, domain name system (DNS) attacks may accidentally occur.

Fig. 2 depicts the update of the training catalog. The training officer requests to update

the training catalog: he is redirected to the training page where he has three possible

alternatives: i) he can add new training and create a calendar session; ii) he can choose

a training and update a session, iii) he can remove a training - the list of participants to

this training is displayed.

Fig. 1. Authentication SD

Fig. 2. Update training catalog diagram SD

Table 4. Detailed COSMIC FS and SS Measurements - Digital-Training Center Web Site

SD Description of interactions FS(SD) SS(SD) SS(SDm)
Total

 A
u

th
en

ti
ca

ti
o

n
 (

F
ig

1
)

enter_url 1 CFP
8 CFP

102 CSM

redirect1 1 CFP 1 CSM

authentification_request 1 CFP

redirect2 1 CFP

authentification_accepted
1 CFP

100+1=101CSM

DNS_attack
1 CFP

please_complete
1 CFP

please_rectify
1 CFP

U
p

d
at

e
tr

ai
n

in
g

 c
at

al
o
g

 (
F

ig
2

)

update _request
1CFP 0 CSM 8CFP

9CSM
redirect3

1 CFP

3*3=9 CSM add_ training
1 CFP

create_calender
1 CFP

choose_ training-session
1 CFP

update_ session
1 CFP

delete_ session
1 CFP

view _list _of _participants
1 CFP

5 Discussion and Limitations

User requirements are the basis core of software projects and sizing requirements is a

crucial task for software project planning. Hence, if these requirements are poorly

described (in the analysis phase of the SLC) and modeled (in the design phase), the

software development/maintenance planning will be vulnerable. In practice, well

detailed User requirement are not always available since they require much time and

comprehension. However, the more time spent at the beginning of the process, the less

time will be required later. Consequently, detailed descriptions of user requirements are

needed: these detailed requirements can be easily represented in the form of sequence

diagrams that can be measured.

In our work, the proposed algorithms dealing with the nested (muti-level)

Combined Fragments in the Sequence Diagram have been illustrated through the case

study “Digital-Training Center”. To explore the efficiency of our refined measurement-

based algorithms, these algorithms must next be applied and tested in an industrial setting,

particularly in projects having a complex functionality that requires to be modeled with

these nested multi-levels.

6 Conclusion and Future Work

This paper extends our previous work [20] on a structural size measurement method by

proposing additional algorithms for measuring the combination of all nested (multi-

level) combined fragments. This extension is based on the most popular combined

fragments (ALT, OPT and LOOP) identified in the sequence diagrams (SD) as a whole

(without parsing the SD). More specifically, we proposed several algorithms to measure

the different categories of partial order between the events. We also proposed some

additional contributions for refining our proposed structural size method by focusing

on the different combinations of nested combined fragments of the SD in order to

support nested multi–level Combined Fragment. In our future work, we will focus on

automating the combination of functional and the extended Structural Size

Measurement methods. Furthermore, we plan to investigate the combination of these

measures to improve projects and tests effort estimation models by taking into account

both Functional size measurement and this refined Structural Size Measurement.

Moreover, this combination of measures should be explored by scrum masters to

evaluate and prioritize user stories and make appropriate decisions within an agile

context.

References

1. ISO/IEC 19761, Software Engineering – COSMIC: A Functional Size Measurement

Method, International Organization for Standardization, ISO, Geneva, (2011).

2. ISO/IEC 20926, Software and Systems Engineering – Software measurement – IFPUG

Functional Size Measurement Method Geneva, International Organization for

Standardization, ISO (2009).

3. ISO/IEC 20968, Software Engineering – Mk II Function Point Analysis – Counting

Practices Manual, International Organization for Standardization, ISO, Geneva, (2002).

4. ISO/IEC 24570, Software Engineering – NESMA Functional Size Measurement Method

Version 2.1 – Definitions and Counting Guidelines for the Application of Function Point

Analysis, International Organization for Standardization, ISO, Geneva, (2005).

5. ISO/IEC 29881, Information Technology – Software and Systems Engineering – FiSMA 1.1

Functional size Measurement Method, International Organization for Standardization, ISO,

Geneva, (2008).

6. ISO/IEC 14143-1, Information Technology – Software Measurement-Functional Size

Measurement–Part 1: Definition of Concepts, International Organization for

Standardization, ISO, Geneva, (2007).

7. OMG, Documents Associated with Unified Modeling Language (UML), V2.4.1, (2011)

8. Abran A, Software Metrics and Software Metrology, John Wiley & Sons, Inc. IEEE

Computer Society Press, (2010).

9. COSMIC Group, Non-Functional & Project Requirements with COSMIC: Experts Guide, ,

(2020)

10. Booch. G. Object-Oriented Design and Application, Benjamin/Cummings, Mento Park, CA.

(1991)

11. Brotoeabreu. F. D “Metrics Set”, in Proc. ECOOP’95 Workshop Metrics. (1995)

12. Briand. L. C, Daly. J. W and Wust. J. K. “A Unified Framework for Cohesion Measurement

in Object Oriented Systems”, Empirical Software Eng., 1, 1, 65- 117. (1998).

13. Bieman. J. M and B.K. Kang. “Cohesion and Reuse in an Object-Oriented System”, in Proc.

Symp. Software Reliability, 259-26. (1995)

14. Chae, H.S, Kwon. Y. R and Bae.D.H. Cohesion Measures for Object-Oriented Classes”,

Software practice and Experiences, 30, 12, 1405-1431. (2000)

15. Churcher. N. I and Shepperd. M. J. Comments on “A Metric Suite for Object-Oriented

Design”, IEEE Trans. on Software Engineering. 21, 263-265. (1995)

16. COSMIC: The COSMIC Functional Size Measurement Method, Version5.0., Measurement

Manual, COSMIC Group https://cosmic-sizing.org/measurement-manual/ (March 2020)

17. El-Emam, K. Object-oriented metrics: A review of theory and practice. In: Erdogmus, H.,

Tanir, O. (eds.) Advances in Software Engineering, pp. 23–50. Springer, New York. (2002)

18. Jacobson, I., Griss, M. and Johnsson, P, Software Reuse, Architecture, Process, and

Organization for Business Success. Addison-Wesley. (1997)

19. Lorenz, Mark & Kidd Jeff: “Object-Oriented Software Metrics”, Prentice Hall, 1994

20. Sellami, A., Hakim, H., Abran, A., and Ben-Abdallah, H., “A Measurement Method for

Sizing the Structure of UML Sequence Diagrams”, Information and Software Technology –

Elsevier IST - Elsevier, Vol. 59, March, pp. 222-232

http://dx.doi.org/10.1016/j.infsof.2014.11.002 (2015)

21. Standish Group, The CHAOS Report, Boston (2009)

https://cosmic-sizing.org/measurement-manual/

