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ABSTRACT
Entity resolution is the task of identifying equivalent real-world
entities across different sources. We found that standard methods
based on unsupervised learning are slow during the resolution
step. Thus, we propose an alternative approach with mock labels.
Mock labels are sets of strings that ideally represent real-world
entities. Using a running example, we show how to create mock
labels from the training data and use them in the resolution step to
match real-world entities efficiently. We applied this approach in
the SIGMOD 2020 Programming Contest and achieved significantly
faster execution times in the resolution step compared to other
top ranked teams. Since all the top ranked teams had the same
F-measure, the execution speed of the resolution step was decisive.

CCS CONCEPTS
• Information systems→ Entity resolution.
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1 INTRODUCTION
Entity resolution is a problem that occurs in data integration, data
cleansing, web search, and e-commerce search scenarios [4]. Given
two or more sources, we need to identify real-world entities that
do not have unique identifiers that tell us which records from one
source match those in the other sources. In addition, records rep-
resenting the same entity may contain different information. For
example, if we use digital cameras as real-world entities, one record
may have the brand or the model misspelled, and another may be
missing some fields such as pixel count or zoom factor. Further-
more, it is possible that information within individual records is
contradictory, such as an incorrect pixel count for a particular cam-
era model. An entity resolution algorithm has to deal with these
inconsistencies in the data and identify records corresponding to
the same real-world entity as best as possible [2].

1.1 Background
There are basically two types of entity resolution, namely Pair-wise
Entity Resolution, and Group-Wise Entity Resolution.
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Definition 1.1 (Pair-wise Entity Resolution). Given a set of objects
𝑆 , the output is a set of pairs {(𝑜𝑖 , 𝑜 𝑗 ) | 𝑜𝑖 , 𝑜 𝑗 ∈ 𝑆, 𝑜𝑖 and 𝑜 𝑗 refer to
the same real-world entity}.

Definition 1.2 (Group-wise Entity Resolution). Given a set of ob-
jects 𝑆 , the output is a family of sets {𝑆𝑖 | all objects in 𝑆𝑖 refer to
the same real-world entity} where 𝑆𝑖 ∩ 𝑆 𝑗 = ∅ if 𝑖 ≠ 𝑗 .

Pairwise Entity Resolution approaches often use similarity or
distance functions for determining whether two objects refer to the
same real-world entity. Group-wise Entity Resolution approaches
additionally use clustering techniques for assigning an object to a
group or cluster. The results of these two types of entity resolution
are not always consistent [4].

1.2 SIGMOD 2020 Programming Contest
The challenge of the SIGMOD 2020 Programming Contest was to
design an entity resolution system for cameras. The input data
consisted of about 30,000 e-commerce websites. Each website was
provided as a JSON formatted file that specified a real-world product
offer. Not every website contained a single valid camera. Camera
accessories such as bags or zoom lenses, TVs, and entire camera
bundles were also part of the dataset. Also, the product descrip-
tions in the JSON files were inconsistent (varying attribute names,
different semantics and syntax). Only the page title attribute was
always present. See Figure 1 for an example of a JSON formatted
website that represents a specific camera.

{
"<page title>": "Canon PowerShot SX 500IS | eBay",
"brand": "Canon",
"manufacturer warranty": "No",
"megapixels": "16.0 MP",
"model": "SX500IS",
"optical zoom": "30x"

}

Figure 1: Example specification for a camera in JSON format.
The page title exists on all websites, whereas the brand and
model attributes are only specified on eBay websites.

The task was to find as many identical camera pairs as possible
among all e-commerce websites (Pair-wise Entity Resolution). A
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valid submission consisted of a CSV file containing only the match-
ing camera pairs found during the resolution step. The Submissions
were ranked based on the F-measure [3], which was computed
on a secret evaluation dataset. The five finalist teams all achieved
an F-measure of 0.99. Because of this tie, the running time of the
resolution step was decisive [1].

1.3 Outline
The rest of this paper is organized as follows. Throughout the paper
we use a running example. In Section 2 we describe the training step
of our approach. We show that by preprocessing the training data
and using additional information about synonymous camera names
from theweb, it is possible to createmock camera labels that roughly
represent the real-world camera entities. In Section 3 we describe
our resolution step, that is, how we match the contents of the JSON
files with the generated mock labels. To speed up the execution
time, we use sorted integer sets for the mock labels and the real-
world camera descriptions. Furthermore, we give recommendations
on how to speed up the cleansing of input data. In Section 4 we
evaluate our solution. Finally, in Section 5 we conclude this paper
with a discussion of the features and limitations of our approach.

2 TRAINING
Our approach is based on a concept we call mock labels. We call
them mock labels because they are not real identifiers, but only sets
of semi-automatically generated keywords. They may or may not
represent a real-world entity. For the sake of simplicity, we also refer
to mock labels in the text as labels. For creating mock camera labels,
we use cleanwebsites from the training datawhich give rise to about
950 labels. These labels are simply extracted from the corresponding
page titles by using stop words. We also use information about
synonymous camera names from Wikipedia which creates another
50 labels. Additionally, we combine the attributes brand and model
from provided eBay websites to create roughly another 1800 labels.
In Figure 2 we summarize our approach by constructing mock
camera labels for the running example.

3 RESOLUTION
In the training step described in the previous section we generated
mock camera labels. In this section we describe the resolution step
of our implementation, that is, how we match these labels with
textual descriptions of real-world cameras. Our resolution step is
subdivided into four parts:

• First, we convert the mock camera labels to an efficient in-
ternal representation (Section 3.1).

• Second, we create simplified mock labels that allow us to
match even incomplete camera descriptions (Section 3.2).

• Third, we extract camera descriptions from the JSON files
and preprocess them efficiently (Section 3.3).

• Finally, we match the camera mock labels with the extracted
camera descriptions (Section 3.4).

3.1 Internal Representation of Mock Labels
Internally, we represent a mock label as a sorted integer set. Repre-
senting mock labels as sorted sequences of integers enables us to

Canon IXUS 750 - . . . - Canon Europe

Canon EOS 7D kit . . . - ShopMania

Canon EOS 7D Mark II / . . . - Australia

1. clean page titles (stop words: -, kit, /)

3. brand + model attributes (eBay websites)

canon ixus 75 == canon powershot sd750

2. synonymous camera names (Wikipedia)

canon eos 7d

canon eos 7d mark ii

canon eos 7d mark iii

nikon d7000

labels.txt

canon powershot sd750, canon ixus 75

Input Output

"brand": "Nikon", "model": "D7000"

Canon EOS 7D Mark III / . . . - Australia

Figure 2: Semi-automatic generation of mock camera labels.
We use three sources to generate the labels. 1. The page ti-
tles of websites like canon-europe, shopmania or shopbot are
very clean. We extract labels from these websites by using
stop words. 2. Camera names may differ between countries.
We download synonymous camera names from Wikipedia.
3. We combine the brand and model attributes of eBay web-
sites from the training data to create additional labels. The
merged results of the three sources are saved to a text file (la-
bels.txt). Each line in labels.txt contains one ormore comma
separated sets of strings. Ideally, each line represents a real-
world camera entity.

compute matchings in Section 3.4 with real-world camera descrip-
tions faster than it would be possible using only strings. In Figure 3
we convert the mock labels from Figure 2 to sorted integer sets.
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Figure 3: Conversion ofmock camera labels to sorted integer
sets. We map each unique token (key) in camera labels to a
unique value. Based on these key-value-mappings, we con-
vert camera labels to sorted integer sets. A camera can have
different names in different countries. Therefore, repeating
IDs reference the same cameras (see, for example, ID=3).

3.2 Simplified Labels to Handle Missing Tokens
It is not always possible to create a match with a camera label
because some tokens may be missing in real-world camera descrip-
tions. We consider tokens that do not represent the camera brand
and alphanumeric model information as non-critical for the res-
olution step. Therefore, we create a second set of camera labels
without these specific tokens (see Figure 4). We use the simplified
camera labels in cases where the original camera labels fail to create
a match.
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Figure 4: Simplification of camera labels by removing cer-
tain tokens. The (greyed out) tokens eos and powershot are
removed from the camera labels. We include only camera
labels that are affected by the removal of tokens in the sim-
plified camera labels set. Note that the cameras canon ixus
75 and nikon d7000 are not included in the simplified cam-
era labels set as they contain no tokens that can be removed.
Note also that we use the key-value-mappings of the orig-
inal camera labels to convert the simplified camera labels
into an internal representation.

3.3 Efficient Preprocessing of Input Data
Reading the input data from SSD and cleansing takes up a consid-
erable part of the overall running time of the resolution step. The
following findings are important to speed up preprocessing of the
input data:

• Reading many small files concurrently, with multiple threads
(compared to a single thread), takes advantage of the internal
parallelism of SSDs and thus leads to higher throughput [5].

• C-string manipulation functions are often significantly faster
than their C++ pendants. For example, locating substrings
with strstr is around five times faster than using the C++
std::string function find.

• Hardcoding regular expressions with while, for, switch or
if-else statements results in faster execution times than us-
ing standard RegEx libraries, where regular expressions are
compiled at runtime into state machines.

• Changing strings in place, instead of treating them as im-
mutable objects, eliminates allocation and copying overhead.

To achieve fast preprocessing of the input data, we use 16 threads
to read the JSON files from SSD and clean the page titles. We per-
form string operations in-place with C library functions, and hard-
code our regex expressions. The result of our preprocessing step
are sorted integer sets that represent the page titles (see Figure 5).

3.4 Matching of Mock Labels
After converting the page titles into sorted integer sets, we try to
assign unique camera IDs to them. First, we try to match labels
from the original camera labels with the page title. If we do not find
a match, we try to match the simplified labels with the page title.
We consider labels as matches if all the corresponding keywords are
also part of the title. If we can match more than one label with the
title, then we remove all labels that are subsets of other labels. This
allows us, for example, to distinguish between the cameras canon
eos 7d and canon eos 7d mark ii, because the first camera description

jsonjson json json
. . .

json

1. extract page titles from json files

2. clean page titles (in-place, hardcoded regex expressions)

10 month old canon  7d  mark ii  digital camera  good condition

new canon camera eos 7d for sale 

digital camera powershot sd750   from canon 3x zoom  ixus 75

camera bundle canon eos 7d mark ii and mark iii for  840

digi cam nikon d7000 fullhdvideo  16 megapixel

3. convert cleaned page titles to sorted integer sets

0, 2, 3, 40, 1, 2 0, 6, 7, 8, 910, 11a b c d e 0, 1, 2, 3, 4, 5

a

b

c

d

e

10 month old Cannon 7d (Mark II) digital camera, good condition

New Canon Camera EOS 7-D for sale 

digital Camera Power-shot SD-750IS from Canon 3x Zoom (IXUS 75) 

Camera bundle Canon EOS 7d Mark II and Mark III for $840

digi cam Nixon d-7000 Full-HD-Video, 16 Mega-pixel

a

b

c

d

e

Figure 5: Conversion of page titles to sorted integer sets. We
carry out all processing steps in parallel with 16 threads.
First, we extract the page titles from the JSONwebsites. Next,
we clean the page titles in-place with C-string library func-
tions, and hardcoded regex expressions. Finally, we convert
the cleaned page titles into sorted integer sets based on the
key-value-mappings of the original camera labels.

is a subset of the second. If the remaining labels have the same
camera ID, then we can clearly assign a camera ID to a page title.
Figure 6 shows our approach for assigning unique camera IDs to
page titles for the running example.

0, 2, 3, 40, 1, 2 0, 6, 7, 8, 910, 11a b c d e 0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4

0, 1, 2, 3, 5

1

2

0, 6, 7

0, 8, 9

3

3

10, 114

1. compute matching camera labels for each page title

0, 2

0, 2, 3, 4

0

1

0, 1, 20

2. remove labels that are subsets of other labels

0, 1, 2, 3, 4

0, 1, 2, 3, 5

1

2

0, 6, 7

0, 8, 9

3

3

10, 1140, 2, 3, 410, 1, 20

3. try to assign a unique camera ID for each page title

0 1 4 3 ambiguous

Figure 6: Assignment of camera IDs to page titles. First, we
compute the matching camera labels for each page title. If
all integer tokens of a label are within the title, we consider
the label a match. Note that we use the simplified labels for
the page title b because we cannot match a label from the
original camera labels. Next, we remove labels that are sub-
sets of other labels. If all remaining labels have the same
camera ID, we assign the ID to the page title.

To avoid iterating over all camera labels when searching for
matches with the page title, we store all camera labels in a sorted
vector. We iterate only over relevant ranges in the vector. To look
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up the relevant ranges, we index the initial keywords of the labels.
For even faster matching of camera labels with the page title, we
recommend storing the camera labels in a sorted trie data structure,
as shown in Figure 7. Finding all labels that match a page title, is
then a matter of traversing the trie and comparing integer tokens.
In real-world camera descriptions it can happen that the tokens
of a label are scattered in the page title. The following traversing
strategy finds these scattered labels in the page title: If there is no
successor in a trie node for the current token in the page title, then
ignore the token and continue with the next token in the page title.

0 10

11

4

61 8

7 9

33

2

3

4 5

1 2

0

camera labels

0

7

3

2

3

4 5

1 2

0

simplified camera labels

Figure 7: Storing the mock camera labels in a sorted trie.

4 EVALUATION
Our approach is related to Group-wise Entity Resolution. In the
training step we semi-automatically construct mock labels that can
be understood as centroids of clusters. Ideally, each label represents
one real-world entity. In the contest solution we have also labels
that represent several real-world entities, or no real-world entity at
all. In the resolution step we try to assign each real-world camera
description to one cluster with set operations on sorted integer sets.
After assigning all camera descriptions to clusters, we compute
the Cartesian product of the cameras in each cluster and store the
unique pairs of identical cameras in a CSV file.

The quality of the results of our resolution step depends mainly
on the labels generated in the training step. With the 2800 semi-
automatically generated mock labels we achieved on the hidden
evaluation dataset an F-measure of 0.97. To achieve an F-measure
of 0.99, we manually added about 200 contest specific labels to the
semi-automatically generated ones. We extracted these additional
labels by inspecting page titles that did not match with any semi-
automatically generated labels. Since all five best placed teams
reached an F-measure of 0.99, the running time of the resolution
step was decisive. We were chosen as the overall winner. Table 1
shows also the running times of the resolution step of the five best
placed teams.

5 CONCLUSIONS
In this paper we presented our entity resolution approach, that
we submitted in the SIGMOD 2020 Programming Contest. Our ap-
proach is based on mock labels that we generate in a training step
and a fast matching algorithm that computes set intersections on
sorted integer sets in the resolution step. Our matching algorithm
knows nothing about the actual labels. The creation of labels in
the training step and the matching of camera descriptions with the
labels in the resolution step are decoupled. In contrast, rule-based

Table 1: Comparison of the F-measure and the running
times of the resolution step of the five best placed teams.
The input data for the resolution step consisted of 29,787 in
JSON formatted e-commerce websites. Measurements were
taken on a laptop running Ubuntu 19.04 with 16 GB of RAM
and two Intel Core i5-4310U CPUs. The underlying SSD was
a 500GB 860 EVO mSATA. We cleared the page cache, den-
tries, and inodes before each run to avoid reading the input
data from RAM instead of the SSD.

Team Language F-measure Running time (s)

PictureMe (this paper) C++ 0.99 0.61
DBGroup@UniMoRe Python 0.99 10.65
DBGroup@SUSTech C++ 0.99 22.13
eats_shoots_and_leaves Python 0.99 28.66
DBTHU Python 0.99 63.21

approaches, in which the rules for clustering are hardcoded into
the source code, are rigid and must be written from scratch for
new entity resolution tasks. But, there are also limitations of our
approach. For the matching we use set operations on integer tokens.
One integer token represents one word. If entities can only be dis-
tinguished by word order, then our approach needs to be adapted.
By allowing n-grams as tokens in the labels and not just individual
words, it is possible to integrate word order semantics into our
approach. Syntactic variations in the data can also be challenging
in our resolution step. In the contest we solved this problem by
preprocessing the input data by hardcoded regex expressions and
in-place string operations. A more general approach would be to
use distance metrics for deciding which tokens are present in real-
world descriptions. Still, the biggest challenge remains, namely to
generate representative labels from the data. If the training data is
unstructured or incomplete, it may be impossible to extract repre-
sentative labels for the resolution step. In the Programming Contest,
the training data was fairly well-structured and complete, that is,
the generation of mock labels was mainly a semi-automatic extrac-
tion task. This again shows that it is important to look at the data
first before deciding on an approach.
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