CEUR-WS.org/Vol-2734/paperl.pdf

Immediate Data-Driven Positive Feedback Increases
Engagement on Programming Homework for Novices

Samiha Marwan
North Carolina State Univ.
Raleigh, NC, USA
samarwan@ncsu.edu

Min Chi
North Carolina State Univ.
Raleigh, NC, USA
mchi@ncsu.edu

ABSTRACT

Learning theories and psychological research show that pos-
itive feedback during practice can increase learners’ motiva-
tion, and correlates with their learning. In our prior work,
we built a system that provides immediate positive feed-
back using expert-authored features, and found a promising
impact on students’ performance and engagement with the
system. However, scaling this expert-feedback system to
new programming tasks requires extensive human effort. In
this paper, we present a system that provides automated,
data-driven, immediate positive feedback (DD-IPF) to stu-
dents while programming. This system uses a data-driven
feature detector that automatically detects feature comple-
tion in the current student’s code based on features learned
from historical student data. To explore the impact of DD-
IPF on students’ programming behavior, we performed a
quasi-experimental study across two semesters in a block-
based programming class. Our results showed that students
with DD-IPF were more engaged, as measured by time spent
on the programming task, and also showed marginal im-
provement in their grades, compared to students in a prior
semester solving the same task without feedback. This sug-
gests that positive feedback based on data-driven feature
detection can provide benefits in student engagement and
performance. We conclude with design recommendations
for data-driven programming feedback systems.

1. INTRODUCTION

Intelligent tutoring systems (ITSs) are software systems that
have been shown to improve student performance and learn-
ing by providing individualized feedback to each student, as
human tutors do [26]. One particularly effective form of hu-
man tutor feedback is positive feedback, which can improve
students’ affective outcomes [5], and correlates with their
learning [10]. Mitrovic et al. noted that ITSs “that teach

Copyright () 2020 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0).

Thomas W. Price
North Carolina State Univ.
Raleigh, NC, USA
twprice@ncsu.edu

Tiffany Barnes
North Carolina State Univ.
Raleigh, NC, USA
tmbarnes@ncsu.edu

primarily by addressing errors and misconceptions might be-
come yet more helpful if extended with a positive feedback
capability [18].” However, there are two barriers to using
positive feedback effectively in I'TSs.

First, little work has empirically evaluated the effect of pos-
itive feedback in ITSs, especially in traditional classrooms,
and it is unclear how it will affect students in practice. On
one hand, one might think that students who have already
correctly completed a step will not need additional feed-
back since they are already on the right track. On the other
hand, considering that novices have not yet established their
programming understanding, it might be particularly bene-
ficial for them to get positive reinforcement when they cre-
ate a correct step. Novices have a range of prior knowledge
and confidence levels, and unexpected results in the pro-
gramming environment may cause students to question their
knowledge. Providing students with feedback that confirms
their correct steps could, therefore, reduce their uncertainty
[18], and this may also improve their performance [17], but
further empirical evaluations are needed to test this. Sec-
ond, positive feedback is rarely present in current program-
ming ITSs, since correct steps can be difficult to detect in
programming problems, due to their huge, possible solution
strategies and sparse, diverse data from students.

In this work, we present a system that provides data-driven
immediate positive feedback (DD-IPF) to novice students
while programming. In this system, we combine both au-
tomated data-driven feature detection with low-effort expert
human labelling to provide high quality data-driven feed-
back. To do so, the DD-IPF system uses a data-driven fea-
ture detector algorithm that learns common code structures
(features) that are present in correct solutions from prior
student data, and then detects when these features are com-
pleted or broken in a student’s code. We combined these
features into a set of objectives with meaningful labels de-
signed by human experts. We integrated our DD-IPF system
into a block-based programming environment. As shown in
Figure 1, the interface of our DD-IPF system has two com-
ponents: a progress panel that displays human labels of the
data-driven features of a programming task and shows when
they are completed, and pop-up messages triggered based on
the completion of these features or lack of progress.

We performed a quasi-experimental pilot study across two
semesters to investigate our primary research question: How
does the data-driven immediate positive feedback system im-
pact student engagement and performance while program-
ming? Through log data analysis, we found that students
who received DD-IPF spent significantly more time with the
system, and had a somewhat better performance than stu-
dents who did not work with the DD-IPF system. We argue
that this increase in time shows that students were more en-
gaged to work more on the programming assignment, which
had historically low engagement, and this resulted in an in-
crease in students’ scores.

In summary, this work makes contributions to educational
data mining and computing education through: (1) an ap-
proach that combines a data-driven feature detector with
human labelling to provide data-driven immediate positive
feedback (DD-IPF), (2) a controlled quasi-experimental study
that suggests that DD-IPF in classrooms can increase stu-
dents’ engagement with the programming environment, and
has the potential to improve their performance as well, and
(3) recommendations on the design of data-driven feedback
systems for programming.

2. RELATED WORK ON POSITIVE FEED-
BACK

Intelligent tutoring systems are developed to adopt human
strategies to improve students’ learning, especially through
adaptive feedback [9, 27, 12]. For example, positive feedback
is given to students when they complete a problem-solving
step appropriately, e.g. “Good move” [3, 10, 12]. Empirical
studies of human tutoring dialogues show that positive feed-
back occurs eight times as often as negative feedback [10],
and correlates with learning [13, 10, 6, 7]. More importantly,
human tutors find positive feedback to be an effective moti-
vational strategy that improves student confidence [16]. In
programming, while various learning environments provide
feedback through compiler messages [22, 4], or error detec-
tors [1, 25], or autograders [2, 14], or hints [23, 20], far less
work has been devoted to integrate features that detect stu-
dents’ correct moves and provide positive feedback as human
tutors do.

To our knowledge, only two studies have focused on auto-
mated positive feedback for programming: Fossati et al.’s
iList[12] tutor for data structures, and Mitrovic et al.’s SQL
tutor, for databases [18]. In the iList tutor, Fossati et al.
provided students with positive feedback by calculating the
goodness and uncertainty of students’ moves. Authors de-
tected a good move if it improves the student’s probability
to reach the correct solution, while the uncertainty is de-
tected if a student spent more time than the time taken by
prior students at this point. If a student’s move is detected
as a good move and uncertain, then iList will provide posi-
tive feedback. Fossati et al. found that the iList tutor with
positive feedback improved learning, and students liked it
more than iList without positive feedback. The SQL tutor
is a constraint-based tutor using a knowledge base of 700
constraints. When a student submits their solution, the de-
tected satisfied constraints can trigger positive feedback to
students. An evaluation of SQL tutor showed that positive
feedback helped students master skills in less time. How-
ever, in both iList and SQL tutor studies, positive feedback

is just one of several supports provided, and their studies do
not attempt to separate the impact of the positive feedback
from the overall system.

In addition, the timing of positive feedback can be important
for retention. The SQL tutor, and programming autograders
like Lambda for Snap!/ [2], provide positive feedback only
when students submit their code, and usually this feedback
indicates which constraints or test cases are satisfied. This
means that students who become discouraged or confused
during programming may never receive any positive feed-
back at all. While prior work shows that immediate feedback
allows students to finish problems quickly [8], there is less
evidence on the impact of immediate positive feedback on
students in programming. Our DD-IPF system continuously
and adaptively confirms when students complete (or break)
meaningful objectives through its progress panel. Our sys-
tem also includes personalized pop-up messages addressing
the user as “you”, and tailored to our student population,
since personalization is key in effective human tutoring di-
alogs [5, 10] and has been shown to improve novices’ learning
[15, 19].

3. DATA-DRIVEN FEATURE DETECTOR (DDFD)

ALGORITHM

In our prior work [29], we introduced a data-driven feature
detector (DDFD) algorithm for block-based programming
exercises. In this context, a feature corresponds to a mean-
ingful objective or property of a correct solution. In brief,
this algorithm works as follows: First, it learns common fea-
tures from existing, correct student solutions. Each feature
is represented as a set of code blocks, referred to as code
shapes. For example, using a ‘pen down’ block, followed by
a ‘move’ block, is a necessary feature for any drawing task.
Second, the algorithm detects the presence or the absence
of each feature in each student’s code, generating a boolean
array that represents its feature state. For example, if the
algorithm learns four features for a given exercise, and for
a given student’s code it detects only the first and last fea-
tures, then the algorithm will output {1, 0, 0, 1} as the
code’s feature state.

This DDFD algorithm motivated us to build a system that
provides immediate positive feedback that can be easily scaled
to various programming tasks because of three reasons. First,
this DDFD algorithm can detect features at any phase of
student code, whether the code is complete, or incomplete,
and therefore can provide immediate feedback. Second, the
presence of features represents student progress towards the
correct solution, and therefore can provide positive feedback.
Third, it is designed to generate features for a variety of pro-
gramming tasks, as long as historical student data exists,
making it scalable to various contexts and tasks. However,
the DDFD algorithm suffers two limitations that make it
hard to deploy in practice. First, because features are code
shapes that are generated automatically, they are not la-
belled with meaningful names for students to understand
how they are making progress. Second, the generated fea-
tures are too specific and may need to be further clustered
into a smaller set of features, to limit their number and al-
low more concrete positive feedback. In the next section, we
describe how we took advantage of the DDFD algorithm,
and addressed its limitations to develop a system that pro-

vides data-driven immediate positive feedback to students
while programming. Rather than being fully data-driven or
fully expert-authored, this system applies a small amount of
expert curation to a largely data-driven process to achieve
scalable, higher-quality results.

4. DATA-DRIVEN IMMEDIATE POSITIVE

FEEDBACK (DD-IPF) SYSTEM

To build the DD-IPF, we first had to apply the DDFD algo-
rithm to a new dataset and overcome DDFD’s two main lim-
itations of having unlabeled features and having too many to
present to students. To do so, we first used three semesters
of previous correct students’ solutions to generate a set of
code shapes (features) of correct solutions of a program-
ming exercise (described in Section 5.2). As expected, (as
shown in the first column of Table 1), each of the seven gen-
erated features were too small to be used as an objective
(e.g. F1: create a procedure), and lacked labels to break the
larger task down into smaller meaningful objectives. There-
fore, the first author combined these seven features into four
features, and provided each with a label. The last author
briefly reviewed the combination and suggested a few minor
wording changes. Table 1 shows the mapping of the seven
data-driven features to four meaningful objectives, with hu-
man labels. The features were combined, ordered, and la-
beled based on their relevance and importance. Our goal
was to make the label clear, meaningful and concrete. Note
that not every aspect of the data-driven features is reflected
in the objective labels, so there is not a direct correspon-
dence between the objective label provided to students and
the process that the detector applies to detect it. We de-
cided to limit the number of objectives to 4, and that it was
more important to have independent objectives that stu-
dents could understand, than it was to tell students exactly
what constructs make up each objective. As we discuss in
more detail later, listing just a few objectives will necessarily
leave out information, there is no way to build an algorithm
that can correctly detect every possible solution, and there
is more complex information in the detectors than novice
programmers can understand. Given these important and
inherent limitations of automated feedback, we felt clarity
and brevity were of high value.

We strove to design the interface of the DD-IPF system to
help students’ track their progress, with the goal of improv-
ing their performance, and increasing their motivation to
complete the programming task. The DD-IPF system con-
sists of two main features that continuously provide adap-
tive, positive feedback to students based on their code edits:
1) a progress panel and 2) pop-up messages, shown in Fig-
ure 1. These two components are designed together to com-
prise a positive feedback system for open-ended program-
ming. The progress panel shows students the human labels
of data-driven features (objectives) for a task, and whether
they are complete, or broken, since prior research suggests
that students who were uncertain often delete their correct
code [11]. Initially, all the objectives are deactivated. Once
an objective is detected to be completed, it provides posi-
tive feedback by becoming green, but if it is detected to be
broken, it changes to red, as shown in the bottom right of
Figure 1. The pop-up messages provide positive messages
on students’ accomplishments, i.e. whenever they completed
an objective or fixed a broken one, as shown in the top left of

Figure 1. To increase students’ motivation, the system also
provides motivational pop-up messages if a student makes no
progress for more than three minutes (a threshold based on
instructors’ feedback). We integrated the DD-IPF system
into iSnap, a block-based programming environment that
extends Snap! programming environment [20].

We note that our current version of DD-IPF system has a
similar interface to our adaptive feedback system in [17],
but the approach to generate positive feedback is different.
Specifically, in our prior work we used expert-authored au-
tograders to monitor students’ progress instead of the data-
driven feature detector algorithm presented in our current
work (Section 3). This adaptation is important for scaling
the system to more programming tasks.

C=IED

Draw Squiral

pen down

[setion [to 0

move (len steps
turn &, €D degrees
| change len | by €T

Squiral Objectives
¥ Make a Squiral custom block and use it in your code.
The Squiral custom block rotates the correct number of times
 The length of each side of the Squiral is based on a variable.

¥ The length of the Squiral increases with each side.

Figure 1: Data-driven immediate positive feedback
(DD-IPF) system integrated to iSnap, a block-based
programming environment. The script area — where
students add code blocks — is shown in the bottom-
left (blue box), the pop-up message is shown in top-
left (orange box), the stage where students can see
their output is shown in the top-right (green box),
and progress panel is shown in the bottom-right (yel-
low box).

5. CLASSROOM STUDY

Our goal in this study is to evaluate the impact of data-
driven immediate positive feedback on students in a class-
room setting. This study seeks to answer our primary re-
search question: How does the data-driven immediate pos-
itive feedback system impact student engagement and per-
formance while programming?

5.1 Population

The participants of this study were enrolled in two semesters
of an introductory programming course for computer science
non-majors, both taught by the same instructor at a large
southeastern university in the United States. The Spring
2019 class had 48 students and the Spring 2020 class had 42
students. We adopted a quasi-experimental design, where
the experimental (Spring 2020) group used iSnap with access
to the DD-IPF system on one assignment (Squiral, described
below), and the control (Spring 2019) group completed the
same assignment in iSnap but without the DD-IPF system.
Due to deployment issues, the first 15 students to complete
the assignment (36%) in the Spring 2020 class did not use

Table 1: Generated Data-driven features, and their Corresponding Objectives and Human Labels.

Data-Driven Features

Combined Features (Objectives) | Human Label

F1. Create a procedure OR ‘ReceiveGo’ block.
F2. Add procedure on stage.

Objective 1 = F1 + F2

Make a Squiral custom block
and use it in your code.

F3. Have a ‘multiple’ block with a variable
in a 'repeat’ block OR two nested ‘repeat’ blocks.

Objective 2 = F3

The Squiral custom block rotates
the correct number of times.

F4. Add parameter in the procedure.
F5. Add a variable in ‘move’ block
AND a variable in ‘repeat‘ block.

Objective 3 = F4 + F5

The length of each side of the
Squiral is based on a variable.

F6. Have a ‘move’ and ‘turn’ block inside a
‘repeat’ block AND a ’pen down’ block.
F7. Change a variable value inside a ‘repeat’ block.

Objective 4 = F6 + F7

The length of the Squiral increases
with each side.

Draw Squiral ’G

pen down

set length | to m

repeat o

repeat 4
[move (m steps
F::rn & €D degrees
rc;ange length | by @&

LS

Figure 2: One possible solution of Squiral program-
ming exercise (on the left), and its output (on the
right).

the DD-IPF system, and therefore we excluded them, re-
sulting in 27 students in the experimental group. Since this
exclusion may have biased our sample in the experimental
group, we also removed the first 36% of students (17) in
the Spring 2019 class, resulting in 33 students in the control

group.

5.2 Procedure

This study took place during the second programming home-
work in the CSO classroom. The programming task is called
Squiral, which asks students to create a method with one
parameter, r, that draws a square-shaped spiral with » ro-
tations. Figure 2 shows one possible solution to Squiral, and
its output. The instructor gave students one week to submit
this homework. In both semesters, the programming envi-
ronment provides students with access to on-demand next-
step hints, which provide students with single edits that can
possibly bring their code closer to a correct solution, but
this was independent of their access to the DD-IPF. Our
prior evaluations of expert-authored positive feedback sug-
gests it provides complementary benefits to hints, but does
not conflict with them [17].

5.3 Results

In this section we report the impact of using our DD-IPF
system on the time students took to finish the homework ex-
ercise, and the score of their submitted solution, as assessed
by a rubric.

Time: We measured a student’s total time from when they
began to program to the time when they either success-
fully completed the programming task, or submitted it in-
correctly. We did this because some students who completed
the task continued to work afterwards, so we did not include
the afterward time in their total time. We found the aver-
age time (in minutes) spent by students in the experimental
group (Med = 34.75; M = 42.29; IQR = 28.04) was much
greater than that spent by the control group (Med = 13.54;
M =20.14; IQR = 17.81), as shown in Plot A of Figure 3. A
t-test! shows that this difference is significant with a strong
effect size (£(40.78) = 3.96; p < 0.01; Cohen’s d = 1.08).

Score: To grade students’ submissions, we used a rubric
for the Squiral exercise created by researchers in prior work.
This rubric consists of six items, each with two points, mak-
ing a total of 12 points. T'wo researchers in block-based pro-
gramming graded students’ submitted code across the two
semesters?. We found that the average score of students in
the experimental group (Med = 91.7%; Mean = 86.4%;
SD = 14.5%) was more than that in the control group
(Med = 83.3%; Mean = 76.9%; SD = 25.5%), as shown
in Plot B of Figure 3. A Mann-Whitney U test® shows that
this difference is not significant, but has a medium effect size
(p = 0.19; Cohen’s d = 0.45).

6. DISCUSSION

In this section we discuss our primary research question:
How does the data-driven immediate positive feedback sys-
tem impact student engagement and performance while pro-
gramming? We found that the DD-IPF system increased the
amount of time students spent engaged with the program-
ming homework, and we found suggestive evidence that it
can improve students’ programming performance as well.

In our study we found students who used the DD-IPF sys-
tem (experimental group) took more than double the time
on average compared to students in the control group to
complete their homework. While increasing time on task
is sometimes considered a negative outcome (i.e. decreased
learning efficiency), for this homework, we believe that our
results suggest that the DD-IPF system increased students’

1Our use of t-tests indicates the data was normally dis-
tributed.

2We note that we found all students submitted their code
for grading.

30ur use of non-parametric tests indicates the data was non-
normal.

Group Control EI Experimental
120-
A o B 100-
[]
j‘% 90-
= 75-
2 -
= @
£ °
3 g
60 -
g o
O 8 s50- o
) n
2
"E-‘ °
F 30-
25-
0.

Control Experimental Control Experimental

Figure 3: Boxplots comparing time (in minutes) to
complete the task (left) and score percent (right)
between the control and experimental groups.

engagement with the assignment. Squiral is a challenging
assignment for students, which should take students more
than the median 13.5 minutes spent by the control group
to compete correctly. However, this task was a program-
ming homework, where students were not observed and did
not have easy access to an instructor to get assistance. We
found that of the 15 students in the control group who sub-
mitted their homework in less than the median time of 13.5
minutes, 11 of these students (73.3%) had incorrect submis-
sions. This suggests that many students spent too little time
and submitted incomplete or incorrect work in the control
group. Overall, the control group had lower performance
(average grade 77%), in comparison with the experimental
group (average grade 86%). By contrast, only 2 students in
the experimental group spent less than 13.5 minutes. We
hypothesize that the DD-IPF system helped keep students
engaged by continuously informing students in the experi-
mental group about their progress, such as how far they are
from completing the homework, which might have motivated
them to keep working to try to get all the objectives marked
correct in the progress panel. However, we cannot directly
investigate this hypothesis with the current study (e.g. by
correlating student time and performance). For example,
higher-performing students may take less time to complete
the assignment (creating a negative correlation), even if any
individual student may perform better by taking more time.

However, we note that some of the increase in students’
time engaged with the assignment was not productive, (e.g.
2 students spending over 90 minutes). Some of this may
have resulted from errors in the data-driven feature detec-
tion. As shown in Table 1, a few of the data-driven features
do not correspond well to a concrete assignment objective.
For example, data-driven Feature 1 requires the use of ‘Re-
ceiveGo’ block (which can be used to start a script) to com-

plete Objective 1; however this is not necessary according to
the instructions. It is a feature that most students did in
the dataset used to train the DD-IPF system. Based on our
manual investigation of the experimental group log data, we
found a number of times where the system mislabeled a stu-
dent’s progress. For example, some students finished the
programming task, but not all the objectives were detected
by the system. As a result, a few students kept working for
more time, despite having completed the task, which was not
the case for students in the control group. We provide spe-
cific case studies on instances at which the DD-IPF system
provides incorrect feedback, and how students responded in
[24].

We also found that students with the DD-IPF system may
have had improved performance, since students in the exper-
imental group achieved higher average scores (almost 9.5%
higher) than those in the control group. We conclude that
the DD-IPF system may have increased students’ scores be-
cause it increased their working time in the programming
environment. The ability of the progress panel to confirm
correct steps might have increased students’ motivation and
reduced their uncertainty about their moves, leading to im-
proved performance. These results are consistent with the
“uncertainty reduction” hypothesis presented by Mitrovic et
al. [18], suggesting that the positive feedback helps stu-
dents to continue working because it reduced their uncer-
tainty about their code edits.

While the availability of on-demand hints might have af-
fected our results somewhat, students in both semesters had
access to hints, so the differences between semesters were
due primarily to the DD-IPF system. Interestingly, when
we compared the hint usage across the two semesters, we
found suggestive evidence that the DD-IPF system might
have increased students’ hint usage. We found that the av-
erage number of hints requested by the experimental group
(Mean = 17; Med = 11) was higher than that of the con-
trol group (Mean = 10; Med = 6.5). In addition, we found
that the average percent of followed hints in the experimen-
tal group (Mean = 66.64%; Med = 70%) was significantly
higher than that in the control group (Mean = 39.91%;
Med = 38.3%). We hypothesize a few possible implications
from these results: First, the progress panel may have mo-
tivated students to seek out and follow hints in order to
achieve the incomplete objectives it showed. Second, stu-
dents in the experimental group might have followed more
hints since the progress panel helps them to understand how
hints relate to a specific objective. Lastly, students might
have trusted the system more because the DD-IPF helped
them see some intelligence and intentionality behind the sys-
tem. This addresses a concern raised by prior work, which
suggests that students do not trust automated feedback be-
cause they did not believe the system really understands
what students are doing, or its ability to offer useful help
[21].

7. RECOMMENDATIONS FOR DATA-DRIVEN

PROGRAMMING FEEDBACK

Based on our current and prior work, we have several recom-
mendations for designing data-driven feedback for program-
ming [29, 17, 24]. Because of the very large, sparse solution
spaces for programming, we should always expect to have

some inadequacies in any data-driven features or detectors
for programs. For example, in our current work dataset, we
found cases where the DD-IPF system incorrectly detected
the completion of an objective and others where the student
completed an objective, but it was not detected. These flaws
point to a tradeoff between the more easily-generated, data-
driven features used in this work and the expert-authored
features that we used in our prior work [17]. A data-driven
positive feedback system is likely to learn less generalizable
features from prior students, and still needs to be labeled
and curated for presentation, but it can be scaled to various
programming exercises with less human effort. In contrast,
an expert-authored feedback can be designed to have un-
derstandable and generalizable features, but it is hard to
scale to various programming exercises, and requires exten-
sive time and effort to create autograders (e.g. with static
analysis [17, 28, 2]). In this work we combined both ap-
proaches, using data-driven feature detection to account for
the diversity of student solutions, and a human labeling pro-
cess to make the features more general, independent, and
understandable.

We recommend that data-driven feedback approaches should
be designed iteratively, learning and implementing an initial
set of feature detectors from a given dataset, and iteratively
detecting new features after each new dataset is added. For
example, despite extracting features from over 100 prior stu-
dent solutions to the Squiral programming exercise (which
can be solved in 7-11 lines of code), in this study, we found
two students who used a completely new strategy, not rep-
resented in the prior data. In particular, one of these two
students created a procedure (i.e. a custom block) to draw
a side of a Squiral, and called this procedure in an inner
loop of the main procedure, and as a result, the DD-IPF
system only detected the completion of two objectives that
matched the features it learned from prior students’ data,
as shown in Figure 4. This behavior should be expected and
planned for, since the process of providing automated data-
driven feedback is inherently uncertain. To mitigate this, we
propose to combine iterative cycles of data-driven feature
detection with expert authoring to achieve the best of both
worlds - building a system that can intelligently address the
diverse but correct ways that students solve problems (fit-
ting correct prior solutions), while benefiting from human
expertise in communication (labeling the objectives). There
is also a need to investigate how and when to communicate
the fact that feature detection will always be imperfect for
open-ended tasks in programming. We plan to explore ways
to explain how the system works to future students, both
to promote learning and to mitigate potential harms from
incorrect feedback.

We also recommend learning features from student data in
an offline, section-by-section fashion, grouping students who
took the same course with the same instructor at the same
time. Objective features should be reviewed and edited to
be as independent as possible, and labeled so that students
can understand what each one means. Note, however, that
we do not believe that every feature detected must be fully
explained by experts. Detectors should be trained on prior
data, and cross validated with testing and training groups
from different sections. This is because we do not anticipate
being able to generate highly accurate data-driven feature

Squiral Objectives

© The length of

© The length of the S

Figure 4: A novel student solution, with a new and
correct, but undetected, strategy, where only 2 ob-
jectives were detected (see progress panel on the
right).

detectors that could be added to the system without expert
review. Therefore, validation should be conducted to match
the nature of how our system is used in practice: trained on
one dataset and used in a separate, later section. Further-
more, instructors can have a large impact on how students
approach problems, so each section of a class is very likely
to differ significantly due to that factor alone.

8. LIMITATIONS & CONCLUSION

This study has four primary limitations. First, this was
a quasi-experimental study and therefore there might be
other differences between semesters that affected our re-
sults. However, when we compared the students excluded
from both semesters (due to deployment problems as men-
tioned in Section 5.1), we found that the time taken by the
excluded students (the first 36% to complete or submit the
programming task) in Spring 2019, as well as their scores,
were very close to that of the excluded (first 36%) students
in Spring 2020. This suggests that the differences we found
in our study results were likely due to the DD-IPF system,
rather than inherent differences between semesters. The
second limitation is that, due to the structure of the pro-
gramming course, we were not able to measure learning with
pre/post tests. We hypothesize that the DD-IPF system can
improve learning, since it provides immediate feedback that
confirms that the programming steps a student just com-
pleted are those that contribute to the specific objective.
The third limitation is that we evaluated the DD-IPF sys-
tem on only one programming homework. The second and
third limitations, however, are somewhat addressed in our
prior work [17], making us optimistic that these limitations
can be successfully addressed in future studies. Our prior
work shows that, when compared to students in the con-
trol group with no positive feedback, students who used the
expert-authored positive feedback system performed better
on two tasks when they had access to the feedback, and con-
tinued to perform better in a third, more difficult task, with-
out positive feedback [17]. Finally, we acknowledge that our
DD-IPF system includes other features than positive feed-
back: it breaks down the programming task into smaller
objectives and provides corrective feedback when objectives
are broken. Our study presents the results of the whole
system, but we argue that the most salient aspect of the

system was its focus on providing immediate positive feed-
back during problem solving. In our future work, we hope to
conduct a larger-scale study with different treatment groups
to evaluate individual features of the DD-IPF system.

To conclude, we developed a system that combines a data-
driven feature detector with human labelling to provide data-
driven immediate positive feedback (DD-IPF) in a block-
based programming environment. We conducted a quasi-
experimental classroom study to evaluate the impact of DD-
IPF on students while programming homework. We found
evidence that the DD-IPF system increased students’ en-
gagement with the programming task, and it has the po-
tential to improve students’ programming performance. We
also provided recommendations to the computing education
researchers on how to design better data-driven feedback
systems. In our future work, we plan to improve the ac-
curacy of the DD-IPF system, test it across several pro-
gramming exercises, and evaluate its impact on students’
cognitive and affective outcomes. We also plan to research
ways to counteract the inadequacies of automated feedback
with interface design and opportunities for self-explanation
prompts to promote user trust and learning.

9. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation under grant 1623470. The au-
thors would also like to thank Preya Shabrina for her help
on data-analysis.

10. REFERENCES

[1] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned. The
journal of the learning sciences, 4(2):167-207, 1995.

[2] M. Ball. Lambda: An autograder for snap.
Masterscriptie. EECS Department, University of
California, Berkeley, 2018.

[3] D. Barrow, A. Mitrovic, S. Ohlsson, and M. Grimley.
Assessing the impact of positive feedback in
constraint-based tutors. In International Conference
on Intelligent Tutoring Systems, pages 250-259.
Springer, 2008.

[4] B. A. Becker, G. Glanville, R. Iwashima,

C. McDonnell, K. Goslin, and C. Mooney. Effective
compiler error message enhancement for novice
programming students. Computer Science Education,
26(2-3):148-175, 2016.

[5] K. E. Boyer, R. Phillips, M. D. Wallis, M. A. Vouk,
and J. C. Lester. Learner characteristics and feedback
in tutorial dialogue. In Proceedings of the Third
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 53—61. Association for
Computational Linguistics, 2008.

[6] W. L. Cade, J. L. Copeland, N. K. Person, and S. K.
D’Mello. Dialogue modes in expert tutoring. In
International Conference on Intelligent Tutoring
Systems, pages 470-479. Springer, 2008.

[7] L. Chen, B. Di Eugenio, D. Fossati, S. Ohlsson, and
D. Cosejo. Exploring effective dialogue act sequences
in one-on-one computer science tutoring dialogues. In
Proceedings of the 6th Workshop on Innovative Use of
NLP for Building Educational Applications, pages

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

65—75. Association for Computational Linguistics,
2011.

A. Corbett and J. R. Anderson. Locus of Feedback
Control in Computer-Based Tutoring: Impact on
Learning Rate, Achievement and Attitudes. In
Proceedings of the SIGCHI Conference on Human
Computer Interaction, pages 245-252, 2001.

B. Di Eugenio, D. Fossati, S. Haller, D. Yu, and

M. Glass. Be brief, and they shall learn: Generating
concise language feedback for a computer tutor.
International Journal of Artificial Intelligence in
Education, 18(4):317-345, 2008.

B. Di Eugenio, D. Fossati, S. Ohlsson, and D. Cosejo.
Towards explaining effective tutorial dialogues. In
Annual Meeting of the Cognitive Science Society,
pages 1430-1435, 2009.

Y. Dong, S. Marwan, V. Catete, T. Price, and

T. Barnes. Defining tinkering behavior in open-ended
block-based programming assignments. In Proceedings
of the 50th ACM Technical Symposium on Computer
Science Education, pages 1204-1210. ACM, 2019.

D. Fossati, B. Di Eugenio, S. Ohlsson, C. Brown, and
L. Chen. Data driven automatic feedback generation
in the ilist intelligent tutoring system. Technology,
Instruction, Cognition and Learning, 10(1):5-26, 2015.
D. Fossati, B. Di Eugenio, S. Ohlsson, C. W. Brown,
L. Chen, D. G. Cosejo, et al. I learn from you, you
learn from me: How to make ilist learn from students.
In AIED, pages 491-498, 2009.

D. E. Johnson. Itch: Individual testing of computer
homework for scratch assignments. In Proceedings of
the 47th ACM Technical Symposium on Computing
Science Education, pages 223—-227. ACM, 2016.

M. J. Lee and A. J. Ko. Personifying programming
tool feedback improves novice programmers’ learning.
In Proceedings of the seventh international workshop
on Computing education research, pages 109-116.
ACM, 2011.

M. R. Lepper, M. Woolverton, D. L. Mumme, and

J. Gurtner. Motivational techniques of expert human
tutors: Lessons for the design of computer-based
tutors. Computers as cognitive tools, 1993:75-105,
1993.

S. Marwan, G. Gao, S. Fisk, T. W. Price, and

T. Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to
persist in computer science. In Proceedings of the
International Computing Education Research
Conference (forthcoming), 2020.

A. Mitrovic, S. Ohlsson, and D. K. Barrow. The effect
of positive feedback in a constraint-based intelligent
tutoring system. Computers € Education,
60(1):264-272, 2013.

R. Moreno and R. E. Mayer. Personalized messages
that promote science learning in virtual environments.
Journal of educational Psychology, 96(1):165, 2004.
T. W. Price, Y. Dong, and D. Lipovac. iSnap:
Towards Intelligent Tutoring in Novice Programming
Environments. In Proceedings of the ACM Technical
Symposium on Computer Science Fducation, 2017.

T. W. Price, Z. Liu, V. Catete, and T. Barnes. Factors
Influencing Students’ Help-Seeking Behavior while

Programming with Human and Computer Tutors. In
Proceedings of the International Computing Education
Research Conference, 2017.

P. C. Rigby and S. Thompson. Study of novice
programmers using eclipse and gild. In Proceedings of
the 2005 OOPSLA workshop on Eclipse technology
eXchange, pages 105-109. ACM, 2005.

K. Rivers and K. R. Koedinger. Data-Driven Hint
Generation in Vast Solution Spaces: a Self-Improving
Python Programming Tutor. International Journal of
Artificial Intelligence in Education, 27(1):37-64, 2017.
P. Shabrina, S. Marwan, T. W. Price, M. Chi, and

T. Barnes. The impact of data-driven positive
programming feedback: When it helps, what happens
when it goes wrong, and how students respond. In
Educational Data Mining in Computer Science
Education (CSEDM) Workshop @ EDM’20, 2020.

D. Sleeman, A. E. Kelly, R. Martinak, R. D. Ward,
and J. L. Moore. Studies of diagnosis and remediation
with high school algebra students. Cognitive Science,
13(4):551-568, 1989.

K. Vanlehn. The behavior of tutoring systems.
International Journal of Artificial Intelligence in
Education, 16:227-265, 08 2006.

K. VanLehn. The relative effectiveness of human
tutoring, intelligent tutoring systems, and other
tutoring systems. Educational Psychologist,
46(4):197-221, 2011.

W. Wang, R. Zhi, A. Milliken, N. Lytle, and T. W.
Price. Crescendo : Engaging Students to Self-Paced
Programming Practices. In Proceedings of the ACM
Technical Symposium on Computer Science Education,
2020.

R. Zhi, T. W. Price, N. Lytle, and T. Barnes.
Reducing the State Space of Programming Problems
through Data-Driven Feature Detection. In
Educational Data Mining in Computer Science
Education (CSEDM) Workshop @ EDM’18, 2018.

