
A Data-Driven Approach to Automatically 
 Assessing Concept-Level CS Competencies  

Based on Student Programs 

ABSTRACT 
The rapid increase in demand for CS education has given rise to 
increased efforts to develop data-driven tools to support adaptive 
CS education. Automated assessment and personalized feedback 
are among the most important tools for facilitating effective 
learning experiences for novice students. An important first step in 
providing effective feedback tailored to individual students is 
assessing their areas of strength and weaknesses with regard to core 
CS concepts such as loops and conditionals. In this work, we 
propose a hypothesis-driven analytics approach to assessing 
students’ competencies of core CS concepts at a fine-grained level. 
We first label programs obtained from middle grades students’ 
interactions with a game-based CS learning environment featuring 
block-based programming, based on a rubric that was designed to 
assess students' competency in core CS concepts from their 
submitted programs. Then, we train a variety of regression models 
including linear, ridge, lasso, and support vector regression models, 
as well as Gaussian process regression models to infer students’ 
scores for each of the identified CS concepts. The evaluation results 
suggest that Gaussian process regression models often outperform 
other baseline models for predicting student competencies of core 
CS concepts with respect to mean squared error and adjusted 
coefficient of determination. Our approach shows significant 
potential to provide students with detailed, personalized feedback 
based on their inferred CS competency levels.   
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1. INTRODUCTION 
As programming has become a fundamental skill in the digital 
economy, the interest in learning how to program at early ages is 

rapidly growing [15,37]. However, the complexity of syntax in 
text-based programming has been found to be a barrier for novice 
learners [13,14]. To address this challenge, block-based 
programming environments have replaced textual syntax with 
visual and elaborative blocks that utilize descriptive text, color, and 
shape to facilitate programming for novice learners  [13,25]. This 
is particularly beneficial for traditionally underrepresented groups 
in computer science [6]. Despite the syntax barrier elimination, 
effective and tailored scaffolding and feedback is still required to 
support students’ mastery of computer science (CS) concepts that 
are essential for programming. Providing students with effective 
scaffolding and feedback would significantly benefit from reliable 
assessments that can evaluate student competencies with respect to 
core CS concepts [12,20]. Effective assessment can inform 
adaptive pedagogical strategies such as offering hints and feedback 
and performing tailored problem selection. Automated assessments 
can bridge the gap between the growth in demand for CS education 
and the limited supply of qualified teachers. 

While research on conducting automated assessment of student-
generated programs is gaining momentum, limited previous work 
has yielded methods to infer students’ mastery of fine-grained CS 
concepts exercised in a particular computational problem. Previous 
work has focused on predicting an overall score to represent 
students’ general level of mastery in programming [17,19]. 
However, identifying students’ strength and weakness on specific 
CS concepts could enable instructors to provide students with 
adaptive scaffolding and tailored practices needed to master the 
those concepts. In addition, fine-grained assessment of CS 
competencies can inform intervention strategies for intelligent 
learning environments to perform student-adaptive hint and 
feedback generation as well as problem selection. Furthermore, 
using this information in an open learner model could enable 
students to focus on areas in which they need more practices by 
monitoring mastery in CS concepts [7, 35]. 

We follow a hypothesis-driven learning analytic approach [14] 
based on Evidence-Centered Design (ECD) [22] to identify core CS 
concepts highlighted in a learning environment and to assess 
students’ competencies in relation to each of the target concepts. 
We explore this in the context of a bubble-sort challenge within the 
ENGAGE game-based learning environment (Figure 1) that requires  
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implementing a program using a block-based programming 
interface. Based on the hypothesis-driven learning analytic  

approach, we first identify the CS concepts that are targeted by this 
activity. We also collect students’ submitted solutions to this 
challenge in the form of snapshots of their submitted programs. 
Content area experts then use this information to devise a rubric 
that can identify students’ mastery of targeted CS concepts based 
on evidence captured from their program artifacts. Examples of CS 
concepts and practices for the bubble sort challenge are developing 
appropriate algorithms and programs, and appropriate use of 
computer science constructs, such as loops and conditionals. 

We use the rubric to label our training dataset. We further extract 
structural and semantic information from program snapshots by 
encoding them as structural n-grams following the approach in [1]. 
A variety of regression models including lasso, ridge, support 
vector regression and Gaussian process regression (GPR) models 
are applied on the generated feature set to infer students’ 
competencies for their overall grade and for each of the identified 
target CS concepts. We hypothesize that GPR models are 
particularly suitable for this type of inference task as they are 
capable of handling the noise resulting from the subjective process 
of grading programs. The results demonstrate the effectiveness of 
these models for predicting students’ CS competencies. 

2. RELATED WORK 
Two approaches to automatic program assessment can be 
distinguished: dynamic assessment and static assessment [5, 16]. 
Dynamic assessment is used to assess the correctness of completed 
programs using pre-defined test data  [16, 18, 31]. Static 
assessments on the other hand, can assess partial programs for 
partial correctness. To perform this latter form of assessment an 
important step is transforming the program into an intermediate 
representation such as abstract syntax trees, control flow graphs, 
and program dependence graphs. The intermediate representation 

is then evaluated to determine its degree of correctness, efficiency 
and quality. Since all programming languages, including block-

based programming languages can be represented using the same 
intermediate representations, static assessment techniques are 
syntax-free and can be adapted to assess any programming 
language. 

In static assessments, correctness is usually assessed through 
character analysis, string analysis, syntax analysis, and semantic 
analysis. Quality is assessed by software metrics such as the 
number of lines of code, the number of variable statements, and the 
number of expressions. For example, work by Wang and colleagues 
presented a semantic similarity-based approach to assess the 
correctness of a C program by comparing it against a correct 
program model [34]. In this work, they first reduced the state space 
of programs by conducting a set of program standardizations 
including expression, control structure, and function invocation 
standardization. Then, they calculated a similarity factor based on 
size, structure and statement similarity subfactors weighted by 
grading criteria.  

Most work on static assessment utilizes a variety of similarity 
measurements to calculate the relative correctness of a program in 
reference to other scored programs [30, 33]. However, the 
approaches described above typically yield an overall score rather 
than a fined-grained analysis of student competencies on specific 
CS concepts, skills, and knowledge. In an educational context, this 
detailed diagnostic information is essential for providing students 
with the targeted scaffolding and support they need. In this paper, 
we propose an automated assessment framework that can provide 
students and their instructors with an automated assessment tool 
that is both detailed and interpretable.    

3. Learning Environment and Dataset 
In this study, we collect data from middle-grade students’ 
interactions with the ENGAGE game-based learning environment 

Figure 1. ENGAGE game-based learning environment: students write a program to filter a data set and loop over it. 



 

that is a computational thinking (CT) focused education game for 
middle school students (ages 11-13) [2]. The CS content of the 
ENGAGE game is based on the AP CS Principles curriculum [9]. 
Students learned CS competencies ranging from abstraction and 
algorithmic thinking to computational problem solving and 
programming. The computational challenges within the game were 
designed to prepare students for computer science work in high 
school, and to promote positive attitudes toward computer science. 
This game features an underwater research station that has lost 
connection with the outside world and students are sent as computer 
science specialist to investigate the issue (Figure 1, Left) [21]. To 
successfully complete the game, students need to move around the 
station and solve different computational thinking problems with 
block-based programming. 

The focus of this work is on a particular CT challenge where 
students need to implement a bubble sort algorithm using block-
based programming (Figure 1, Right) to escape a room. Students 
implement an algorithm to sort six randomly positioned containers 
within a containment device. Once the containers are sorted student 
can open the door and escape the room. To write the bubble-sort 
algorithm students have access to a limited number of necessary 
blocks including: a repeat block that repeats every nested block for 
a certain amount of time specified by students; a conditional block 
that checks whether the right container is smaller than the left 
container; a conditional block that checks whether the cart has hit 
the right wall; a swap containers block that swaps a container with 
its adjacent right container; a move block that moves the cart one 
position toward the right; and a reset block that brings the cart to 
the left most position.  

On average, students played the game over the course of two weeks. 
As students interacted with the game, all of their interactions with 
the game were logged, such as dragging programming blocks to 
write a program and programs being executed. For this study, we 
collected data from middle grade students’ interactions with the 
bubble sort algorithm. Data was collected from five classrooms in 
three schools in the United States. The data used for this study is 
from 69 consented students.  

4. METHOD 
A supervised learning approach is utilized to infer students’ 
competency for each of the CS concepts identified for the bubble-
sort algorithm task. To infer students’ grades, we first label their 
program snapshots utilizing the rubric presented in Table 1. We 

then transform students’ program snapshots to a feature set utilizing 
a novel n-gram encoding approach following [1]. Finally, we infer 
students’ scores by applying regression models on the structural n-
gram-based feature set.  

In comparison to [1], our work focuses on assessing students’ 
mastery of identified, individual CS concepts underlying the bubble 
sort challenge. By utilizing this assessment framework, we can 
train separate regression models utilizing the n-gram feature set to 
assess student programs based on each individual CS concept. In 
this study, we utilize a variety of regression models including 
linear, lasso, ridge, support vector regression (SVR), and Gaussian 
process (GP) regression models to predict algorithmic quality of 
students’ programs.  

 4.1 Rubric Design 
Students’ programs are labeled utilizing a rubric that is devised 
following and evidence-centered assessment design (ECD) 
approach [27]. An important first step in ECD is domain modeling 
where relevant CS concepts are identified through the collaborative 
work of domain experts and teachers [11, 22]. The CS concepts are 
then used to develop the specifications of an assessment of the CS 
concepts. The conceptual assessment framework consists of the 
following: 1) the student model, which represents what students 
know or can do; 2) the evidence model, which contains evidence 
that drives the student model; and 3) the task model, which contains 
tasks, interactions with which can generate evidence [22, 29].  

Evidence is derived from students’ actions during the learning tasks 
to predict their mastery of CS concepts. An important requirement 
is to match evidence derived from student programs to proficiency 
in each CS concept covered in the assessment. In this work, the 
student model represents students’ knowledge of particular CS 
concepts, the evidence model is based on evidence rules that extract 
the program structures from their programs representing their 
knowledge of each identified CS concept, and the task model is the 
bubble sort challenge in the ENGAGE game-based learning 
environment. Following this approach, we design evidence rules 
specific to the task at hand to provide assessment arguments for the 
proficiency of the CS concepts in our student model. Table 1 shows 
the rubric for assessing the CS concepts identified through the 
domain modeling phase [3, 4]. 

4.2 Data Annotation 

Figure 2. ENGAGE game-based learning environment. (Left) The bubble sort task in the game-based learning environment. 
(Right) Program for the bubble sort task: the read-only code for opening the door and an example of a correct implementation 

of the bubble sort written by a student. 



 

Our training dataset contains 1,570 programs submitted by 69 
students when solving the bubble sort challenge. The algorithmic 
“Effectiveness” and “Conciseness” scores are two mutually 
exclusive metrics designed to capture core qualities of programs. 
For example, a program that contains all the necessary coding 
constructs to receive full points for “appropriate use of conditional 
statements” might contain redundant copies of the same coding 
constructs that interfere with the correctness of the algorithm. This 
deficiency is captured in the “Conciseness” score. A similar 
program might have the wrong ordering of the coding constructs 
that negatively affects the correctness of the algorithm. This is 
captured through by the “Effectiveness” score. In this rubric, the 
range of possible scores for the “design and implementation of 
effective and generalizable algorithm” is between 0-10. Similarly, 
this range is between 0 to 3 for “Appropriate use of loop 
statements,” between 0 to 6 for “Appropriate us of conditional 
statements,” and between 0 to 3 for “Appropriate combination of 
loops and conditional statements.” The overall score (overall 
algorithmic quality score) range is between 0 to 22.  

Two annotators with CS background annotated 20% of the 
submissions for algorithmic effectiveness and conciseness scores. 
Using Cohen’s kappa [8], an inter-rater agreement of 0.848 for 
“effectiveness” and 0.865 for “conciseness” was achieved. The two 
annotators discussed their disagreements and one annotator tagged 
the remainder 80% of the dataset. These annotations are served as 
the ground-truth for our data corpus. It is important to note that the 
annotation process introduces noise into the training dataset [23]. 
This is because different scorers may have different perceptions of 
a program’s algorithmic “Effectiveness” and “Conciseness.” As a 
result, the dataset is inherently noisy, which must be taken into 
account when designing the models for the automated assessment 
framework. To handle this uncertainty, we adopt a Gaussian 
process regression model that returns a distribution for the 
inference values including an average with standard deviation.  

4.3 Feature Engineering 
We use abstract syntax trees (ASTs) as the intermediate 
representation for our automated assessment task. After 
transforming students’ program snapshots to their corresponding 
ASTs [28], we encode them as structural n-grams to extract features 
that are representative of the semantic information in students’ 
programs following the previous work [1]. Hierarchical and 
ordinal n-grams are two important structures in an AST. The parent 
child relationship between different blocks are encoded in 
hierarchical structures and the placement order of blocks are 
encoded in ordinal structures. To enable the proposed automated 
assessment to assign partial scores to incomplete solutions, we need 
to extract n-grams with varying lengths of n to capture the most 
fine-grained structural information present in an AST.  

An AST generated from a sample program is demonstrated in 
Figure 3. A partial hierarchical (left) and ordinal (right) n-gram 
encoding is also demonstrated in this Figure. In Figure 3, each 
colored circle shows the n-gram encoding of a specific n. In this 
example, encoding of n-grams of size one is represented with green 
ovals, n-grams of size two with blue ovals and n-grams of size three 
with purple ovals. The frequency values for each n-gram encoded 
feature are shown beside the AST. All of the other n-gram feature 
values are zero since they are not in this AST. We then merge the 
two feature sets together to build the final feature set containing 
both hierarchical and ordinal n-gram encodings corresponding to 

each program. Note that unigrams are repeated in both hierarchical 
and ordinal n-gram encoding of the ASTs, and thus, only one copy 
of unigram features is used in the final feature set. The occurrence  

Table 1. Assessment items, and detailed rubrics for each item. 

CS Concepts and 
Practices Detailed Rubric 

Design and 
implementation of 
effective and 
generalizable 
algorithms 

• The program contains all necessary 
code elements. 

• The code elements have the correct 
order, and hierarchy 
(Effectiveness). 

• The program does not contain 
redundant code elements that falsify 
the logic of the algorithm 
(Conciseness). 

Appropriate use of 
loop statements 

• The repeat block is present. 
• The iteration value is set to a 

positive number. 
• It encompasses at least one block. 

Appropriate use of 
conditional 
statements 

• Both necessary conditional 
• statements are used. 
• A conditional statement checks the 

size of two adjacent containers and 
swaps them if they are not ordered 
properly. 

• A conditional statement checks if 
the arm has reached the right wall 
and reset it to the left wall. 

Appropriate 
combination of 
loops and 
conditional 
statements  

• There is at least one instance of each 
conditional nested under a repeat 
statement. 

• There is at least one instance of two 
conditionals at the same level. 

 

of similar n-grams for n values more than one (unigrams) in both 
hierarchical and vertical encodings demonstrate presence of 
different structures in in the AST and thus, both will be preserved. 

Preliminary explorations revealed that including sequences of 
lengths larger than 4 for hierarchical n-grams and 3 for ordinal n-
grams exponentially increases the sparsity of the dataset. To 
address the sparsity issue, we capped the n-gram size at 4 for the 
hierarchical n-gram encoding and at 3 for the ordinal n-gram 
encoding. The final feature set consists of sequences of length one 
(i.e., unigrams) to sequences of length four for hierarchical (i.e., 4-
grams) and three for ordinal (i.e., 3-grams) that are repeated at least 
three times (again to address the data sparsity issue) throughout the 
dataset, resulting in 184 distinct features. 

4.4 Inferring Program Scores 
We infer students’ overall program scores in addition to their scores 
for each of the essential CS concept by training a variety of 
regression models on the structural n-gram-encoded feature set. As 



 

our baseline model, we use linear regression. We use four 
additional regression models including lasso regression [32], ridge 
regression, support vector regression (SVR) [10], and Gaussian 
process (GP) regression [26]. Lasso and Ridge regression are 
utilized since they can reduce overfitting and variance issues in 
comparison with linear regression. SVR and GP regression on the 
other hand are used since kernel methods can do well with datasets 
with proportionally large number of features. More importantly, GP 
regression can handle the noise resulting from the subjective nature 
of human grading [6, 36]. To infer students’ overall program scores 
as well as their scores for “Design and implementation of effective 
and generalizable algorithms,”, “Appropriate use of loop 
statements,” “Appropriate use of conditional statements,” and 
“Appropriate combination of loops and conditional statements,” we 
train each regression model utilizing the n-gram encoded feature 
set mentioned above, while predicting the scores of each core 
concept. 
To infer students’ grades using the n-gram encoded feature set, we 
use the Python scikit-learn library [24] to perform linear, lasso 
regression, ridge regression, SVR, and GP regression. We first split 
our dataset to 80% training and 20% held-out test sets. We the use 
a 5-fold cross-validation approach to tune the hyperparameters of 
lasso, ridge, and SVR regression based on the training set. We also 
use the 5-fold cross-validation approach to identify the appropriate 
kernel for the GP regression model. Gaussian process regression 
model uses an internal limited-memory BFGS approach to tune its 
other hyperparameters such as length scale and noise level. After 
tuning the hyperparameters of each regression model, we train the 
models on the training set and evaluate it on the held-out test set. 
This process is repeated to infer each CS concept score separately. 
The results of applying each of the regression models to infer each 
of the CS concept scores is presented in Table 2. 

4.4.1 Ridge Regression 
We used the set [0.05, 0.1, 0.5, 1.0, 10] to tune the value for l, the 
penalty coefficient, and found l=10 to be the best value for 
inferring the “Overall grade” and the “Design and implementation 
of effective and generalizable algorithm” scores based on cross-
validation. Furthermore, we found l=0.5 the best value for 

“Appropriate use of loop statements” score, and l=1 the best value 
for “Appropriate use of conditional statements” and “Appropriate 
combination of loops and conditional statements” scores. 

4.4.2 Lasso Regression 
We used the set [0.05, 0.1, 0.5, 1.0, 10] as in ridge regression to 
tune the value for l and found l=0.05 to be the best value for all 
the inferred scores.  

4.4.3 Support Vector Regression 
For our regression task, we explored with linear, polynomial, and 
radial basis function (RBF) kernels. For each kernel, we tuned the 
hyperparameters of penalty parameter (C), epsilon, and kernel 
coefficient (gamma). For polynomial kernels, we also tuned the 
parameter of the kernel projection (coef0) and degree 
hyperparameters. Utilizing cross-validation, we found the 
polynomial kernel with a degree of four to be the best kernel for 

our dataset when inferring the “Overall Score”, “Appropriate use 
of of loop statements,” and “Appropriate combination of loops and 
conditional statements” scores. Also, the grid search returned C=1, 
coef0=10, epsilon=0.2, gamma= 0.0001 as the best parameters for  
this kernel. For inferring the “Appropriate use of conditional 
statements” score we found the radial basis function kernel with 
C=100, epsilon=0.1, and gamma= 0.001 to be the  best parameter 
values. Finally, we found the radial basis function kernel with 
C=100, epsilon=0.2, and gamma= 0.001 to be the best parameter 
values when inferring the “Design and implementation of effective 
and generalizable algorithm” score. 

4.4.4 Gaussian Process Regression 
We expect the GP regression to outperform other regression 
techniques due to its capability of handling noise and its propriety 
for our dataset. After conducting a hyper-parameter tuning for the 
kernels such as radial basis functions (RBF), rational quadratic, and 
Matern kernels, we found RBF to perform the best on our dataset 
for all the inferred scores. Utilizing a limited-memory BFGS 
optimization technique the GP regression model tuned other 
hyperparameters including the length vector and noise level during 
the training process.

Figure 3: AST generated from a sample program submitted for the bubble sort challenge and its hierarchical and ordinal n-gram 
encoding. (Left) An AST and its partial hierarchical unigrams, bigrams, and 3-grams marked by green, blue and purple ovals 
respectively on the left and the partial feature set generated from hierarchical n-gram encoding of the AST along with feature-

level frequencies on the right. (Right) An AST and its ordinal unigrams, bigrams, and 3-grams marked by green, blue and purple 
ovals respectively on the left and the partial feature set generated from partial ordinal n-gram encoding of the AST along with 

feature-level frequencies on the right. 



Table 2. Average predictive performance of regression models trained with the structural n-gram feature set.

 

5. DISCUSSION 
Effective automated assessment of students’ programming efforts 
has become increasingly important. This work investigates an n-
gram encoding approach to encode students’ programs into their 
essential structural and semantic features. Utilizing the n-gram 
encoding approach, we can extract structural information with 
varying levels of granularity.  Utilizing this feature set labeled by 
the ECD-based designed rubric enables our models to learn 
evidence from programs that are representative of students’ 
mastery of identified CS.  

After extracting an n-gram encoded feature set from students’ 
programs, we apply a variety of regression models to infer their 
scores for each of the targeted CS concepts. We conduct an 80-20 
split on our dataset to generate training and held-out test sets. We 
train our models on the training set and evaluate the trained models 
on the held-out test. This process is repeated for each CS concept. 
The results of our prediction demonstrate the effectiveness of the 
n-gram encoded feature set in capturing important semantic and 
structural information in students’ programs, as all regression 
models outperformed the linear regression model. As expected, GP 
regression also outperformed other baseline models in terms of 
both mean squared error and R-squared across all prediction tasks. 
This is expected, since GP regression is well-equipped to handle 
noise in the data set and is particularly appropriate for datasets with 
a large number of features relative to the number of data points.  

We utilized an evidence-centered assessment design (ECD) 
approach to label the training dataset. ECD holds significant 
promise for guiding educators in designing mindful assignments for 
learners by focusing on key conceptual ideas rather than surface-
level features of the program. This means that an ECD-derived 
rubric can provide granular information structured around core CS 
concepts, which guides development of robust automated 
assessment models, but also provide immediate formative data to 
instructors. Thus, as new problems and activities are introduced 
into a course, the first-pass human scoring with the rubric provides 

 

immediate actionable formative information while also training 
automated assessment tools that can provide ongoing, future 
adaptive support.   

Though we show the application of this automated assessment 
framework on one particular task, it can be generalized to assess 
any well-structured programs as the feature representations are 
readily scalable to other programming tasks. Furthermore, our 
rubric design approach can be used as a guideline for rubric design 
and assessment for non-expert CS teachers. A teacher dashboard 
incorporating the automated assessment framework can further be 
utilized to analyze and aggregate the results and inform teachers 
about students’ learning and the quality of their instruction. 

6. CONCLUSION AND FUTURE WORK 
Effective scaffolding of programming efforts for novice 
programmers require accurate automated assessment of their 
competency in each core CS concept. In this paper, we presented 
an automated assessment framework for assessing programs’ 
algorithmic quality following a hypothesis-driven learning analytic 
approach. We investigate a hierarchical, ordinal feature 
representation method based on n-gram-encoded hierarchical and 
ordinal coding constructs that extract two-dimensional structural 
information from students’ programs, and investigated Gaussian 
process regression to induce models that can accurately predict 
students’ grades for individual CS concepts based on their 
submitted programs. Evaluation results suggest that Gaussian 
process regression models utilizing n-gram-encoded features that 
extract salient semantic and structural information from programs 
achieved the highest predictive performance with respect to mean 
squared error and R squared. These results suggest that Gaussian 
process regression models are robust in dealing with noise that 
underlies our human-annotated dataset. 

In the future it will be important to investigate the potential for 
utilizing a data-driven approach for devising a rubric based on 
identified correct solutions. Furthermore, the effectiveness of the n-
gram encoded feature set can be further evaluated by performing 

Grade Overall Grade 

Design and 
implementation of 
effective and 
generalizable algorithm 

Appropriate use of 
loop statements 

Appropriate use of 
conditional 
statements 

Appropriate 
combination of loops 
and conditional 
statements 

Regression MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 

Linear 7.88E+10 -2.58E+9 1.8E+10 -3.9E+9 2.8E+9 -2.1E+9 2.43E+9 -4.9E+8 2.0E+9 -1.6E+9 

Ridge 4.84 0.84 1.62 0.64 0.36 0.74 0.59 0.88 0.09 0.93 

Lasso 5.67 0.81 2.38 0.49 0.88 0.35 0.73 0.85 0.48 0.62 

SVR 3.74 0.88 1.56 0.66 0.57 0.57 0.49 0.9 0.08 0.93 

Gaussian Process 1.67 0.94 1.02 0.78 0.18 0.86 0.28 0.94 0.02 0.98 



 

an automatic feature-selection process and compare the results with 
expert selected features. Finally, it will be instructive to explore the 
potential of the n-gram encoded feature for creating an 
unsupervised learning approach to accurately inferring students’ 
program scores without requiring labeled training data.  
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