
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Analyzing Parsons Puzzle Solutions using Modified
Levenshtein's Algorithm

Salil Maharjan
Ramapo College of New Jersey

smaharj3@ramapo.edu

Amruth Kumar
Ramapo College of New Jersey

amruth@ramapo.edu

ABSTRACT
We adapted Levenshtein's algorithm to compute edit distance of
student solution from the correct solution in Parsons puzzles with
the intention of using edit distance as an estimate of the degree of
correctness of a student’s solution. We modified the algorithm to
eliminate substitution operation, which is not allowed in Parsons
puzzles, and include reordering operation which is allowed. We
used the solution log data from the tutor to reconstruct each step
that the student took to solve the puzzle and applied the modified
algorithm to compute the edit distance for each step to generate
edit distance trails of student solutions. We used these edit
distance trails to represent student solutions and applied k-means
clustering to find patterns. The analysis was conducted on the data
collected by a tutor on selection statements over four
years. We found interpretable patterns among complete solutions,
of optimal versus sub-optimal solutions, based on the inclusion of
optional lines of code. Among incomplete solutions, we found
patterns of known puzzle-solving behaviors. Edit distance trails
helped identify student patterns regardless of the sequence of
individual statements manipulated. However, by being puzzle-
independent, they lose the ability to identify puzzle-specific
information.

Keywords

Edit-Distance, Modified Levenshtein’s Algorithm, K-means
clustering, Patterns in puzzle solutions

1. INTRODUCTION
Edit distance is a widely used string similarity measure to quantify
how dissimilar two strings are based on the number of operations
required to convert one string to another. It can be used to
compute the degree of correctness of a student’s answer in
Parsons Puzzle.

In a Parsons puzzle, the lines of a correct program are scrambled
and presented to a student, who is tasked with reassembling the
code in its correct order. In this scenario, edit distance is the
largest when the student starts solving the puzzle, and reduces to 0
when the solution is complete and correct. So, edit distance is an
indicator of how close a student’s solution is to the correct

solution. The series of edit distances computed after each puzzle-
solving step taken by the student provides a progress report of the
student solving the puzzle.

Since edit distance is computed in terms of the number of
operations needed to covert one string to another, our interest was
in finding an edit distance algorithm that would consider the
operations (and only the operations) allowed when solving a
Parsons puzzle: insertion (when a student inserts another line of
scrambled code into the solution), deletion (when the student
deletes a line of code from the solution) and reordering (when a
student reorders lines of code within the solution). We wanted to
use this algorithm to generate edit distance trails of student
solutions in order to find interpretable patterns from student log
data from the tutor by using clustering techniques.

2. MODIFYING LEVENSHTEIN’S
ALGORITHM
The edit operations allowed in a Parsons puzzle are 1) insertion of
a statement into the solution 2) deletion of a statement from the
solution and 3) reordering of a statement within the solution. The
edit distance of a student’s solution from the correct solution is
the number of these actions necessary to reach the correct solution
from the student solution.

In order to calculate edit distances, we modified Levenshtein’s
algorithm [9]. Levenshtein’s algorithm calculates edit distance
based on three operations: insertion, deletion and substitution. We
modified the algorithm to eliminate substitution and incorporate
reordering operation as substitution is not an operation permitted
in the Parsons puzzle tutor, but reordering is.

Levenshtein’s algorithm starts with a m x n matrix, where m and n
are the sizes of the two strings being compared. It initializes the
matrix by filling the first row and column by row/column number
and filling the cells row by row using the minimum of the
following three states [9], given (i, j) is the matrix index:

1. Insertion:

2. Deletion:

3. Substitution: , when ()

If the characters being compared are not the same, a unit cost is
added. If they are the same, matrix(i, j) = matrix(i-1, j-1). For
example, in Table 1, the edit distance to convert character ‘B’ to
‘A’ is at matrix (1, 1). It is computed as the minimum of three
operations: insertion – cost at matrix (1, 0), deletion – cost at
matrix (0, 1), and substitution – cost at matrix(0, 0). The
minimum of these three costs is at matrix(0, 0). Therefore, matrix

(1, 1) is set to 0 + 1 = 1 after adding unit cost for substitution
operation since ‘B’ ≠ ‘A’.

Omitting substitution operation: We modified the algorithm to
remove substitution operation and compute the minimum from
only two operations - insertion (matrix (i, j-1)) and deletion
(matrix (i-1, j)). To convert character ‘B’ to ‘A’ without
substitution, we require two operations: deletion followed by
insertion, giving us an edit distance of 2. We compute this as the
minimum of matrix (0, 1) and matrix (1, 0), and add a unit cost
since ‘B’ ≠ ‘A’, yielding an edit distance of 2 for cell (1, 1). The
algorithm repeats this process for all the cells in row-major order.

Table 1. Levenshtein distance matrix with substitution

 Col.(j) 0 1 2 3

Row(i) - - A B C

0 - 0 1 2 3

1 B 1 1 1 2

2 E 2 2 2 2

3 A 3 2 3 3

Table 2. Levenshtein distance matrix without substitution

(with trace back)
 Col.(j) 0 1 2 3

Row(i) - - A B C

0 - 0 1 2 3

1 B 1 2 1 2

2 E 2 3 2 3

3 A 3 2 3 4

Adding reordering operation using trace back: A reordering
operation in Parsons puzzle can be broken down into two
consecutive operations – insertion and deletion:

• Insertion followed by a deletion of the same character later in
the string is a moving operation towards the front of the
string.

• Deletion followed by an insertion of the same character later
in the string is a moving operation towards the end of the
string.

To identify reordering operations, we traced back from the end of
the matrix (m, n), to the initial position (0, 0) and used a hash map
to determine that the insertion and deletion operations had been
applied back to back to the same line. If they were, we counted
the insertion and deletion operations as one reordering operation.

For insertion operation, the character from the target string (row
character) at the current position is used as the key in the hash
map and its value is incremented. For a deletion operation, the
character from the source string (column character) of which edit
distance is to be calculated is used as the key in the hash map and
its value is decremented. A constant unit cost is used for each
operation.

Table 2 shows the trace back from (m, n) to (0, 0), where the
length of both strings is 3. At (3, 3), the minimum value among
matrix (3,2) and matrix (2, 3) is 3. Since both cells have the
minimum value, either cell can be chosen to visit next. In this
example, assume that the cell to the left, i.e., matrix (3, 2) is
visited next. This highlights an insertion operation of character
‘C’. The hash map is updated with key C and value ‘1’, followed
by another insertion of ‘B’. At index (3, 1), the character is ‘A’ in
both (row and column) strings. Therefore, the algorithm moves
diagonally without any cost. Next, consecutive deletion operations
are carried out to trace back to (0, 0). The resulting hash map has
the following values:

Table 3. Hash map record of trace back of (Table 2.)

Key C B E B
Value 1 1 -1 (-1)

Upon reaching matrix (1, 0) (Table 2), a deletion operation of
character ‘B’ is recorded to reach position matrix (0, 0). Since the
hash map already has an entry for ‘B’, and the value for it is
positive corresponding to insertion of ‘B’, the subsequent deletion
of ‘B’ implies a reordering operation of ‘B’. Since insertion is
followed by deletion, character ‘B’ is reordered to a later index in
the string. The string transformation can be summarized as:

Table 4. Transformation of string “BEA” to “ABC”

Operation String
(Source string) BEA
Insertion of C BEAC
Insertion of B BEABC
Deletion of E BABC
Deletion of B (Target string) ABC

In every case where the entry is positive for a particular key in the
hash map and a deletion operation is performed or where the entry
is negative and an insertion operation is performed, a reordering
operation is identified and the edit distance is decremented by
one. As seen in Table 3, operations do not have to be back-to-
back. When the operations on a character are back-to-back, it
signifies a transposition of the character, i.e., reordering by a
single position.

The algorithm has two boundary conditions, when either ‘i’ or ‘j’
reaches 0. When j reduces to 0, we have a left column boundary
condition: since no insertion operations are possible, the hash map
is updated with deletion operation based on the character from the
source (row) string. Table 2 exemplifies a column boundary
condition. Similarly, when i reduces to 0, we have an upper row
boundary condition: since no deletion operations are possible, the
hash map is updated by recording insertion operation using the
characters in the target (column) string as the key.

Several other extensions of Levenshtein’s algorithm have been
attempted before. Damerau-Levenshtein algorithm [4] extends
Levenshtein’s algorithm by considering adjacent character
transpositions as another operation. Transposition is a special case
of reordering, where the reordering is done by just one character.
We needed an algorithm that treated reordering by any number of
characters as a single-cost operation.

Several modifications have dealt with the general case of
reordering an entire substring. Shapira et al. provide a polynomial
time greedy algorithm to move substrings [3]. They identify this
problem as NP-complete. Since it uses a greedy strategy to handle
move operations, the algorithm is unable identify all move cases;
it rather gives an approximation.

Comrode and Muthukrishnan provide a general approach that is
subquadratic and deterministic called edit-sensitive-parsing (ESP)
[5]. The algorithm approximates the edit distance with moves in
O(n logn). Takabatake et al. [8] further optimize the index
structure used in the ESP technique to make the algorithm near
linear time.

These modifications to accommodate reordering of substrings are
more general than what we need in Parsons puzzles, where, only
one character is reordered at a time. Because of the NP-complete
nature of the problem of reordering substrings, these algorithms
approximate edit distance calculations. For our problem, we were
interested in exact calculation of edit distance, while restricting
the moved substring to a single character, i.e., line of code.

So we simply looked at ways to identify move operations using
the dynamically filled matrix generated by Levenshtein algorithm.
We incorporate backtracking to the algorithm to effectively track
reordering operations in a Parsons’s puzzle. Dynamic
programming and backtracking are more expensive in terms of
time and memory than the approaches mentioned above but we
were able to correctly identify reordering operations as single-cost
operations in the scope of our problem.

3. COMPUTING EDIT DISTANCE TRAILS
A student’s solution of a Parsons puzzle is logged as a sequence
of actions such as:

1. Moved from problem to solution at line 7:
 short firstNum

2. Moved from problem to solution at line 9:
 short secondValue;

3. Moved from problem to solution at line 10:
 cout << "Enter the first value";

4. Reordered from line 10 to 12:
 cout << "Enter the first value";
The tutor logs the sequence of actions taken by students to solve
each puzzle. Student are tasked with solving Parsons puzzles
using drag-and-drop actions. We wrote a program to reconstruct
the partial solution of the student after each action, the partial
solution being the program the student had assembled so far for
the puzzle. Next, we computed the edit distance of each partial
solution from the correct solution for the puzzle. If a puzzle had
multiple correct solutions, we computed the distance of each
partial solution from the specific correct solution eventually
reached by the student. The resulting edit distance trail of a
student for a puzzle with 6 lines of code might look like this:

[6, 5, 5, 4, 5, 4, 3, 2, 3, 2, 1, 0]
Since not everyone solved each puzzle with the same number of
actions, the length of the edit distance trail varied from student to
student. But, the minimum length of the trail was n + 1 where n
was the number of lines in the correct solution of the puzzle.
Figure 1 shows a graphical representation of two edit distance
trails. These trails show the progress report of two different
students who attempted the 2005 template problem on if-else
statements. The 2005 template problem asks the student to read

two numbers and print the smaller value among them. The student
is expected to arrange the scrambled lines of code that contains if-
else statements in the correct order.

	

Figure	1.	Edit	distance	trail	graphical	representation.	

The edit distance trail of student “Anon 25” is [14, 13, 12, 11, 10,
10, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] which has a length of 17.
Similarly, student “Anon 8” has a longer trail of length 26 that
does not converge to an edit distance of value 0. This shows that
student Anon25 was able to solve the puzzle in 17 steps whereas
student Anon8 took a total of 26 steps but was unable to solve the
puzzle.
Using this edit distance trail, we are able to identify the
correctness of each action taken by the student. By doing so, we
are able to plot the problem solving strategy of various students
for different types of problems.

4. AN APPLICATION OF EDIT DISTANCE
TRAILS
For this study, we used data collected by a Parsons puzzle tutor on
if-else statements from a suite of such tutors available online
called epplets (epplets.org) [1]. In the tutor, the student was tasked
with solving Parsons puzzles using drag-and-drop actions. The
student was required to solve each puzzle completely and
correctly before going on to the next puzzle. If the student took a
lot of redundant actions to solve a puzzle, the tutor scheduled
additional similar puzzles for the student to solve. If the student
took more than twice as many actions as necessary to solve a
puzzle, the tutor offered the student the option to bail out. If a
student bailed out, the solution was marked as incomplete and the
student was presented additional similar puzzles.
The first 3 puzzles presented by the tutor were on the following
programs, listed here along with a unique puzzle id associated
with each puzzle:
1. A program to read two numbers and print the smaller value

among them (puzzle id 2005).
2. A program to read numerical grade, convert it to letter grade

- A (90 and up), B (80-89), C (70-79), D (55-69) and F
otherwise - and print it (puzzle id 2105).

3. A program to read a number and print whether it is odd or
even (puzzle id 2000).

The first and third puzzle was on if-else statement and the second
puzzle was on nested if-else statements. If a student solved the
first puzzle with too many redundant actions, the tutor presented

additional puzzles, the first of which was the third puzzle – it was
similar to the first puzzle. Each puzzle had two distracters – lines
of code that did not belong in the solution.
The tutor was used by our introductory programming students as
after-class assignments. For this study, we used the data collected
by the tutor over eight semesters: Fall 2015 – Spring 2019. We
included data from only the students who gave permission for
their data to be used for research purposes. Students could use the
tutor as often as they wished. Students used the tutor in four
different languages: C, C++, Java and C#. We combined the data
from all four languages in our analysis. When a student used the
tutor multiple times, data from all the sessions was included in the
study. In all, 1068 students used the tutor during those eight
semesters. 275 students withheld permission for use of their data
during at least one session (but, may have given permission
during other sessions).
In order to find patterns among edit distance trails, we used k-
means clustering in scikit-learn Python package. Since edit
distance trails were not all of the same length, we padded trails at
the end with -1 so that all the trails were of the length of the
longest trail for the puzzle. We used elbow method to determine
the optimum number of clusters k. k-means algorithm clustered
the trails in n-dimensional hyperspace, wherein n was the uniform
length of all the edit distance trails. So, the algorithm clustered
edit distance trails, not individual edit distances in the trails. After
grouping edit distance trails into clusters, we computed centroid
curve of each cluster, which represents the pattern or archetype
trail of the cluster. For the calculation of centroid curve, we
ignored the -1 values used to right-pad the trails so that they
would not affect the shape of the curve.
We analyzed the edit distance trails of each puzzle separately.
Within each puzzle, we analyzed edit distance trails of complete
and incomplete solutions separately. The number of edit distance
trails available for each puzzle and the optimal number of clusters
found for each puzzle are listed in Table 5. We did not apply
clustering algorithm if the number of trails was less than 50.

Table 5: Number of Edit Distance Trails Available and

Optimal Number of Clusters Found for each Puzzle
Puzzle

No. (Id)
Complete Solutions Incomplete Solutions

Trails Clusters Trails Clusters

1 (2005) 785 4 371 4

2 (2105) 376 4 356 3

3 (2000) 358 4 26 N/A

4.1 Puzzle 1
The clusters found for complete solutions of the first puzzle are
shown in Figure 2 along with their centroids, which are
themselves trails. We found that clustering separated edit
distance trails of completed solutions by how optimally students
solved the puzzle, i.e., by the slope of edit distance trails. Table 6
lists the four clusters, number of solutions in each cluster, and the
minimum, maximum and mean number of actions taken in those
solutions to solve the puzzle. The puzzle contained 14 lines of
code and 2 distracters. The 14 lines included two pairs of braces

around if-clause and else-clause. Both the pairs of braces were
optional since both the clauses contained a single statement. So,
the puzzle could have been solved with 14 (both pairs included),
12 (only one pair included) or 10 (neither pair included) lines - All
three versions were accepted as correct. Therefore, all the trails
start at a value between 10 and 14 in Figure 2. Since a puzzle with
n lines can be optimally solved with n actions, cluster 1 (leftmost
centroid in Figure 2) with a mean of 17.26 actions included all the
optimal solutions.
In the figure, data points at 15 or 16 correspond to the start of
trails in which students inserted one or both distracters into the
solution before inserting any lines of code that actually belonged
in the solution. Each data point is part of one of more trails –
when a data point is shared among trails of different clusters, the
colors of the different clusters have blended. Since our interest
was in finding patterns in the trails, i.e., centroid curves, and not
distribution of data, we used a regular graph rather than a bubble
chart.

Figure 2. Clusters of Complete Solutions of the First Puzzle

Table 6: Complete Solution Clusters of the First Puzzle:
Number of trails, minimum, maximum and mean actions

taken to solve the puzzle
Cluster
Number

N Actions to Solve the Puzzle
Minimum Maximum Mean

1 533 16 38 17.26
2 157 18 44 24.66
3 77 28 58 38.81
4 18 42 94 63.88

The clusters found for incomplete solutions of the first puzzle are
shown in Figure 3. Table 7 lists the number of incomplete
solutions in each of the four clusters, the minimum, maximum and
mean number of actions taken in the solutions of the clusters and
the mean of the final edit distance of all the solutions in the
cluster. The final edit distance shows how many more actions
would have been necessary to complete the solution.
The first cluster corresponded to students bailing out after just two
actions. Since this was the first puzzle presented by the tutor, it is
likely that students were familiarizing themselves with the user
interface of the puzzle and planned to return to use it in
seriousness later. Cluster 3 (leftmost centroid line) comprised of

students who made steady progress (mean of 11.94 actions), but
reached a plateau at the end before bailing out. Cluster 2 (second
centroid curve from the left) comprised of students who made
gradual progress towards the solution (mean of 24.44 actions)
before bailing out. Both the clusters bailed out about 8 actions
away from solving the puzzle, i.e., they bailed out about halfway
through the solution to the puzzle that contained 14 lines. Cluster
4 was comprised of students who were lost from the beginning.
Note that the slopes of the centroid curves of incomplete solution
clusters provide qualitative information about incomplete
solutions in the cluster: solutions that were informed (steep slope)
versus those that were not informed and included a lot of
redundant actions (shallow slope), and the point at which a
solution hit a dead-end (plateau).

Figure 3. Clusters of Incomplete Solutions of the First Puzzle

Table 7: Incomplete Solution Clusters of the First Puzzle:
Number of trails, minimum, maximum and mean actions

taken to solve the puzzle and mean final edit distance
Cluster
Number

N Actions to Solve the Puzzle Mean final
distance Min Max Mean

1 171 0 2 0.43 13.98
2 92 12 48 24.44 8.29
3 99 3 51 11.94 8.12
4 9 50 87 67.11 4.66

4.2 Puzzle 2
Figure 4 and Table 8 show the clusters found among complete
solutions of the second puzzle, which contained 34 lines of code
and 2 distracters. 16 of the 34 lines were open or close braces
which were optional as explained earlier. So, complete solution
edit distance trails started with a value in the range 18-34 and
ended with 0.
The main difference between the four clusters was the number of
optional braces that were included in the final solution: cluster 1
(third centroid from the left in Figure 4) included all the braces,
cluster 2 (leftmost centroid), none of the braces, and cluster 3 and
4 (second and right-most centroid from the left), some of the
braces. In this case, clustering separated edit distance trails of
completed solutions by the number of optional lines that were

included in the final solution (i.e., the y intercept of edit distance
trails at x = 0). Cluster 4 comprised of students who took a lot
more actions to solve the puzzle than necessary.

Table 8: Complete Solution Clusters of the Second Puzzle:
Number of trails, minimum, maximum and mean actions

taken to solve the puzzle
Cluster
Number

N Actions to Solve the Puzzle
Minimum Maximum Mean

1 130 36 67 40.75
2 44 36 57 41.45
3 171 36 74 40.67
4 31 50 123 71.48

Figure 4. Clusters of Complete Solutions of the Second Puzzle

The clusters found among incomplete solutions of the second
puzzle are shown in Figure 5 and Table 9. Cluster 2 comprised of
students who bailed out early. Cluster 1 students made rapid
progress (leftmost centroid curve in Figure 5), but abandoned the
solution about 9 actions short. Cluster 3 students struggled to
solve the puzzle (right-most centroid curve in the figure) and
bailed out 14 actions short. Once again, we see steep versus
shallow slope and plateau – features of the centroid curves that
provide qualitative information about the solutions in the clusters.
The analysis so far supports our hypothesis that patterns could be
found in student solutions of Parsons puzzles that were
interpretable.

Table 9: Incomplete Solution Clusters of the Second Puzzle:
Number of trails, minimum, maximum and mean actions

taken to solve the puzzle and mean final edit distance
Cluster
Number

N Actions to Solve the Puzzle Mean final
distance Min Max Mean

1 130 9 78 43.53 8.89
2 156 0 9 1.05 27.33
3 70 32 138 61.22 14.28

Figure 5. Clusters of Incomplete Solutions of the Second

Puzzle

4.3 Puzzle 3
Figure 6 show the clusters found among complete solutions of the
third puzzle. Table 10 lists the minimum, maximum and mean
number of actions taken to solve the third puzzle for each
complete solution cluster.
The puzzle contained 11 lines of code and 2 distracters. Similar to
the first puzzle, puzzle 3 also includes two optional pairs of braces
around the if-clause and else-clause. All centroid curves start at a
value between 7 and 13 in Figure 6 because of the four optional
code lines and two additional distractors. The puzzle could be
optimally solved with 11 actions.
In puzzle three, we found that clustering separated edit distance
trails of completed solutions by how optimally students solved the
puzzle and also by the number of optional lines that were included
in the final solution. Cluster 3 (left-most centroid curve) grouped
students that did not use any optional braces. Figure 6 showed that
this centroid curve starts at an edit distance value of 7. Clusters 1
and 2 (second and third centroid from the left) grouped students
who use both pairs of optional braces to solve the puzzle. The
centroid curve for both these clusters starts at an edit distance
value of 11. Furthermore, cluster 1 grouped students who solved
the puzzle more optimally with an average of 13.75 actions and
cluster 2 grouped students who took more moves, an average of
17.51 actions, to complete the puzzle. Cluster 4 (right most
centroid curve) grouped students who used only a single pair of
optional braces since their centroid curve starts at a value of 10.
Figure 6 showed that this group of students took the most actions
to complete the puzzle.

Table 10: Complete Solution Clusters of the Third Puzzle:
Number of trails, minimum, maximum and mean actions

taken to solve the puzzle
Cluster
Number

N Actions to Solve the Puzzle
Minimum Maximum Mean

1 202 13 18 13.75
2 87 14 26 17.51
3 52 13 19 14.69
4 17 21 36 28.64

Figure 6. Clusters of Complete Solutions of the Third Puzzle

The incomplete solutions of the third puzzle contained only 26
trails. So, clustering was not performed on incomplete trails.

5. DISCUSSION
In order to be able to objectively contrast the clusters of a puzzle
as well as compare the clusters of different puzzles, we computed
the degree of optimality of the solutions included in each cluster.
A puzzle with n lines needs no more than n actions to solve
completely and correctly. So, an optimal solution of the puzzle
has the same number of actions as the number of lines in the
puzzle. The degree of optimality (O) of the solutions in a cluster is
calculated as μ / n, wherein, μ is the mean of the number of
puzzle- solving actions taken by all the solutions in the cluster and
n is the number of lines in the puzzle.
Table 11 lists the degree of optimality of all complete solution
clusters of all three puzzles. Different puzzles may have different
number of lines of code. The degree of optimality abstracts away
this difference, thereby enabling us to compare clusters of
different puzzles. Note that on the first puzzle, the first cluster
comprised of the most optimal solutions (Table 6). In Table 10,
the first cluster had the lowest degree of optimality for puzzle 3.
Clusters 1, 2 and 3 were all optimal for puzzle 2 (Table 8),
differing only in the number of optional statements that were
included in the final solution. All three clusters of puzzle 2 have
similar degrees of optimality in Table 11.

Table 11: The Number of Solutions (N) and Degree of
Optimality (O) in each Cluster of each Puzzle

No Complete Solution Cluster Number
1 2 3 4
N O N O N O N O

1 533 1.14 157 1.6 77 2.48 18 4.05
2 130 1.15 44 1.17 171 1.15 31 2.01
3 202 1.13 87 1.42 52 1.2 17 2.28

The complete solutions of all three puzzles yielded four clusters.
These clusters corresponded to either various levels of optimality
or the number of optional lines that were included in the final
solution. The first puzzle required students to assemble a single

block of if-else statement and was the first puzzle that was
presented to students. Figure 2 showed that the majority of the
trails start at an edit distance value of 14 as all the centroid curves
start at the same value. The first puzzle had twice the number of
complete solution trails compared to the second and third puzzles
(785 vs 376 and 358 respectively). We do not see major variations
in the use of optional braces in the first puzzle even though the
sample size is much larger. This highlights how most students in
the first puzzle used all the optional braces to assemble the
solution. Beginner programmers might not be aware that clauses
enclosing single statements do not necessarily require braces.
Students might be including the optional braces as it is a good
practice, or they might just be unaware that the tutor considers
braces as optional. This is why the first puzzle is clustered solely
based on various levels of optimality.
The third puzzle, which is a follow-up puzzle for students who
struggled with the first puzzle showed more variety with the use
of optional braces. In the third puzzle, students who used all the
optional braces are clustered in clusters 1 and 2, students who
used none of the optional braces are clustered in cluster 3, and
students who used one of the two optional pairs are clustered in
cluster 4. This variety in the use of optional braces might be
accounted for by the student’s experience in programming or
using the tutor. Interestingly, Table 10 showed that a majority of
students who used only one of the two pairs of optional braces
take the greatest number of actions to solve the puzzle. These
students are clustered in cluster 4 and used an average of 28.64
actions to solve the puzzle. Table 11 showed that this cluster had
the most non-optimal solutions with a degree of optimality of
2.28.
The second puzzle covered nested if-else statements and is more
complex than both the first and third puzzles. This puzzle
contained eight pairs of optional braces. Table 11 showed that the
most non-optimal solutions were clustered in cluster 4 with a
degree of optimality of 2.01. Similar to the third puzzle, cluster 4
in the second puzzle corresponded to students who used some of
the optional braces. This observation asserts that students who do
not follow one of the two practices (i.e., either including all
optional braces or eliminating all optional braces) struggle the
most with assembling if-else statements.

Furthermore, in the second puzzle, the cluster with the second
most non-optimal solutions was cluster 2 with a degree of
optimality of 1.17. This cluster grouped students who did not use
any of the optional braces to construct the final solution. As this
puzzle used nested if-else statements, students might had confused
some of the lines of the problem since they did not use any of the
optional braces. Optional braces are not necessary, but it improves
the readability of the code. This might be the reason why students
who did not use any braces took more actions to assemble the
puzzle than students who used optional braces. This shows that
the use of optional braces helped in solving more complex tasks.
Cluster 1 grouped students who used all the optional braces and it
had a degree of optimality of 1.15. Even though they assemble a
larger puzzle (34 lines vs 18 lines), the solutions were more
optimal compared to students who did not use optional braces.
We expect that we may find more clusters if we gather more data
for the second puzzle. This might also show optimal and sub-
optimal solutions for various types of solutions: 1) solutions with
no optional lines included, 2) solutions with all optional lines
included, and 3) solutions with some optional lines included.
From a visual inspection of complete clusters of the three puzzles,
we find that the centroids in the second puzzle had a longer tail

than the centroids in the first puzzle. This showed that the students
in all the clusters of the second puzzle faced more difficulty
completing the last few steps in the puzzle compared to the
students who solved the first puzzle. All three puzzles cover if-
else statements, but the second puzzle is more difficult than the
first and third puzzles because it involves the concept of nesting,
which is harder for novice programmers. We have found similar
tails in edit distance trails of harder puzzles during the analysis of
other concepts [7].
Additionally, Table 11 showed that the second puzzle had a
maximum optimality 2.01. This means that the students took at
most twice the optimal number of moves to try and solve the
second puzzle. The first puzzle included a group of students who
took about four times the required moves to solve the puzzle
(cluster 4 with a degree of optimality of 4.05). This highlights that
students were more motivated to solve the first puzzle. Students
most likely gave up more quickly on the second puzzle because of
the added nesting complexity.
Among the incomplete solutions, the first cluster in the first
puzzle and the second cluster in the second puzzle, shown in
Table 7 and Table 9, identifies “lurkers” [6]. Lurkers are students
who take a couple of actions and bail out quickly. Hosseini in her
literature identifies lurkers as “stoppers”, who do not take any
actions after encountering a problem. We use the term “lurkers”
because we believe that these students were probably just testing
the interface to gain familiarity with the tutor. “Movers” identified
in the literature [6] corresponded to all the students grouped in the
complete clusters. These students were gradually able to solve the
puzzle by taking steps towards the correct solution. “Tinkerers”
[6] were students who took several actions to solve the puzzle by
making small changes but were ultimately unable to solve the
puzzle. All the other clusters in the incomplete solutions
excluding the “lurkers” identify as “tinkerers”. Edit distance trails
in this case helped identify the known problem-solving behaviors
of students.
Edit distance space has been used to generate hints in code-
writing tasks [2]. We use edit distance to track progress of
students, not provide hints; we addressed Parsons puzzle solutions
which have a finite search space and a single correct solution
compared to code-writing exercises which must accommodate any
code written by the student and can have multiple possible
solutions; and we computed edit distance from the final and only
solution to the puzzle, not a weighted average of all possible
nearby paths to the solution.
Edit distance trails helped to identify patterns by clustering
student solutions regardless of the sequence of individual
statements manipulated by them. One shortcoming of using edit
distance trails is that since they abstract away puzzle-specific
information, they cannot be used to determine the specific lines of
code that most students might have problems assembling
correctly.
In the future, we plan to analyze data from Parsons puzzle tutors
on other topics to see if we can generalize the results of this study
across topics.

6. ACKNOWLEDGEMENTS
Partial support for this work was provided by the National Science
Foundation under grant DUE-1432190.

7. REFERENCES
[1] Amruth N. Kumar. 2018. Epplets: A Tool for Solving

Parsons Puzzles. In Proceedings of the 49th ACM Technical

Symposium on Computer Science Education (SIGCSE '18).
ACM, New York, NY, USA, 527-532. DOI:
https://doi.org/10.1145/3159450.3159576.

[2] B. Paaßen, T.W. Price, S. Gross, B. Hammer, T. Barnes, N.
Pinkwart. 2018. The Continuous Hint Factory – Providing
Hints in Vast and Sparsely Populated Edit Distance Spaces.
Journal of Educational Data Mining, Volume 10, No 1.

[3] D. Shapira and J. A. Storer. 2007. Edit distance with move
operations. Journal of Discrete Algorithms, 5, 2, 380–392.

[4] F.J. Damerau. 1964. A technique for computer detection and
correction of spelling errors. Communications of the ACM, 7,
3, 171-176.

[5] G. Cormode and S. Muthukrishnan. 2007. The String Edit
Distance Matching Problem with Moves. ACM Trans. Algor.
3, 1, Article 2 (Feb. 2007), 19 pages. DOI=
http://doi.acm.org/10.1145/1186810.1186812.

[6] Hosseini, Roya & Hellas, Arto & Brusilovsky, Peter. (2014).
Exploring Problem Solving Paths in a Java Programming
Course.

[7] S. Maharjan and A.N. Kumar. 2020. Using Edit Distance
Trails to Analyze Path Solutions of Parsons Puzzles. 13th
International Conference on Educational Data Mining
(EDM) 2020 (forthcoming).

[8] Takabatake, Yoshimasa & Nakashima, Kenta & Kuboyama,
Tetsuji & Tabei, Yasuo & Sakamoto, Hiroshi. 2016. siEDM:
An Efficient String Index and Search Algorithm for Edit
Distance with Moves. Algorithms. 9. 26. 10.3390/a9020026.

[9] V.I. Levenshtein. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics doklady,
10, 8, 707-710.

