
Comparing Feature Engineering Approaches to Predict
Complex Programming Behaviors

Wengran Wang, Yudong Rao, Yang Shi, Alexandra Milliken, Chris Martens,
Tiffany Barnes, Thomas W. Price

North Carolina State University
{wwang33, yrao3, yshi26, aamilllik, crmartens, tmbarnes, twprice}@ncsu.edu

ABSTRACT
Using machine learning to classify student code has many
applications in computer science education, such as auto-
grading, identifying struggling students from their code, and
propagating feedback to address particular misconceptions.
However, a fundamental challenge of using machine learning
for code classification is how to represent program code as
a vector to be processed by modern learning algorithms. A
piece of programming code is structurally represented by an
abstract syntax tree (AST), and a variety of approaches have
been proposed to extract features from these ASTs to use
in learning algorithms, but no work has directly compared
their effectiveness. In this paper, we do so by comparing
three different feature engineering approaches for classifying
the behavior of novices’ open-ended programming projects
according to expert labels. In order to evaluate the effec-
tiveness of these feature engineering approaches, we hand-
labeled a dataset of novice programs from the Scratch repos-
itory to indicate the presence of five complex, game-related
programming behaviors. We compared these feature engi-
neering approaches by evaluating their classification effec-
tiveness. Our results show that the three approaches per-
form similarly across different target labels. However, we
also find evidence that all approaches led to overfitting, sug-
gesting the need for future research to select and reduce code
features, which may reveal advantages in more complex fea-
ture engineering approaches.

1. INTRODUCTION
Automatically classifying student code using machine learn-
ing has many applications in computer science education,
such as to automatically grade students’ code [8], to predict
when students are unlikely to succeed at a task and may
benefit from feedback [13], and to propagate feedback on
particular misconceptions to students who need it [10]. How-
ever, a fundamental challenge in applying machine learn-
ing to source code is how to represent that code in a way
the learner can understand. The structure of programming
code is traditionally represented as an abstract syntax tree

Copyright c© 2020 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0).

(AST), where nodes and their children correspond to spe-
cific code elements (e.g., an if statement), and the tree can
be arbitrarily large. However, the vast majority of machine
learning models take fixed-length vectors as input.

In many domains, researchers have addressed this challenge
of code representation by extracting a set of features from
source code, which can then represent the code in the model.
For example, a simple Bag-of-Words (BoW) approach repre-
sents code as a binary vector, where each element indicates
the presence or absence of a specific AST node anywhere in
the code (e.g., [6, 18, 11]). However, simple feature extrac-
tion approaches like BoW do not capture the complex struc-
tural relationships among AST nodes in student code, which
may be important for many classification tasks. A number
of other feature extraction approaches have been proposed
(e.g., [2, 28, 4]), but no work has directly compared their
effectiveness for classifying student code. Further, feature
extraction can be especially difficult in the domain of com-
puter science education, where students’ code may cover a
large and sparse solution space, with little overlap among
solutions paths [21, 27, 13]. This suggests the need to de-
velop new feature extraction approaches that address this
challenge.

In this paper, we compared the effectiveness of three code
feature extraction approaches, on a challenging and gener-
alizable classification task. This task classifies programming
game design projects to identify the presence and absence of
complex game behaviors. We found that the three code fea-
ture extraction approaches had similar performance across
all behaviors, and the performance of specific feature extrac-
tion approaches is dependent on factors such as the proper-
ties of the target label, the size of training data, and the
prevalence of positive labels. Our work contributes to ed-
ucational data mining for CS education by comparing the
affordance of different feature engineering approaches and
evaluating their effectiveness in predicting the presence of
complex game behaviors.

2. RELATED WORK
In this section, first, we discuss the relevance and importance
of automatic code classification for improving computing ed-
ucation through personalization and scalability. We then
summarize state-of-the-art feature engineering approaches
that related work has used for various code analysis pur-
poses.

2.1 Applications of Classifying Student Code
Manual labeling of student code is a frequent practice in
computing education. It is often done by instructors and
researchers, for example, to grade student program sub-
missions, identify misconceptions [15, 23], or to profile a
programming dataset to identify when particular code fea-
tures are used [12]. However, labeling tasks are quite time-
consuming and hard to scale, leading many researchers to
investigate methods for automatically labeling code.

Researchers have used different approaches to automatically
classify and analyze students’ code, such as using correct
program submissions to generate rubric-based auto-graders
[8], or using programming homework grades to infer stu-
dents’ knowledge [2]. Elmadami et al., for example, built a
data-driven misconception classifier in EER-Tutor, an Intel-
ligent Tutoring System that provides tutorials for database
design. Using association rule mining, EER-Tutor catego-
rizes frequent failing patterns as indicators of misconceptions
[9]. Similarly, Mao et al. developed a classifier that predicts
a student’s success in completing a programming task based
on their programming code trajectory with just one minute
of data from a student [13]. This classifier, if implemented in
programming education, could help instructors or learning
systems to prompt students with suggestions or feedback
when they most need it. In addition, our prior work has
shown the efficacy of adding an automatic code classifier to a
learning system. We developed an unsupervised classifier to
identify completions of 11 sub-goals in a Snap! block-based
programming task [27]. We then integrated this classifier in
a programming environment to detect sub-goal completions
and provide timely positive feedback to students, which sig-
nificantly increased the time students spent engaged with
the programming task [14]. These results suggest that, in
programming learning environments, automatic code classi-
fication can help provide adaptive and scalable feedback to
support students.

2.2 AST Structural Feature Extraction
Researchers have used various approaches to extract a fixed
set of features from code to use in machine learning models.
Structural feature extraction looks for patterns in an AST
and creates a binary input vector, indicating the presence
or absence of these patterns, or counts of the frequency of
their occurrence. For example, Bag-of-Words (BoW) is a
common feature extraction approach, adapted from natu-
ral language processing, where each possible type of AST
node becomes a binary feature. Figure 1 shows how BoW
features transform a piece of code into an input vector by
indicating the presence or absence of each feature in the pro-
gramming code AST. The BoW approach has been used in
various code classification tasks, such as to predict students’
success in completing a program, or to summarize functions
of code snippets [6, 18, 11]. For example, Azcona et al. used
BoW to represent students’ code, and found that after using
BoW feature extraction to convert program code into vec-
tors, a simple Naive Bayes model predicted correctness of
short pieces of Python code submissions with 59.4% accu-
racy [6]. This suggests that even a relatively simple feature
extraction approach, such as BoW, extracts useful informa-
tion that can predict meaningful labels for student code with
some success.

BoW features represent a single AST node, regardless of
its neighbors. However, meaningful programming patterns
usually include nodes that are structurally connected with
each other in the AST. For example, in Figure 2(b), the
piece of programming code completes a behavior that, when
a sprite 1 touches a bullet, the game ends. In order to ac-
complish this behavior, the “Stop” block must be inside of
the “if” block - otherwise, the behavior would be different.
In order to extract structural information - such as the re-
quirement that the “stop” block be inside the “if” for the
behavior (shown in Figure 2), more complex features can be
extracted. For example, researchers have extracted features
corresponding to paths within the AST. For example, the
root path for a given node consists of the path from that
node to the root node [21], and this has been used for data-
driven hint generation [21]. The Code2Vec algorithm [4]
also decomposes the AST into a collection of paths for use
in a deep neural network (discussed further in Section 2.3),
which was used to predict method names of code from Java
GitHub repositories (not student code). Others have used
n-Grams, which are n-length sequences of nodes extracted
from a flattened representation of the AST. For example, a
vertical n-Gram is created by a depth-first iteration of its
nodes, and a horizontal n-Gram is created by a breadth-
first iteration of all children in an AST subtree (shown in
Figure 2(c)). Akram et al. used code n-Grams as features
to predict the rubric-based grades of students’ block-based
programs with a Gaussian Process model that achieved an
R-squared of 0.94, higher than the 0.88 achieved by the base-
line BoW approach [2].

Many of these structural features can be represented more
generally as a type of pq-Grams. A pq-Gram is a subtree
that includes a target node, along with its (p − 1) ancestor
nodes, as well as q of its child nodes. For example, Fig-
ure 2(b) shows how a pq-Gram can be extracted for the
target node “script (2)”, with p ancestor nodes and q child
nodes. If a node has fewer than (p− 1) ancestors or q chil-
dren, the pq-Gram includes this information by noting these
missing nodes as “null”. pq-Grams were introduced as part
of a method to calculate differences between tree-structured
data [5], such as between a student’s AST and a correct
solution’s AST, in order to provide automated hints [28].
Using this notation, we can also consider the features ex-
tracted by the BoW and root path approaches to be pq-
Grams: p(1)q(0)-Grams and p(∞)q(0)-Grams, respectively.
Most horizontal n-Grams can be represented as p(0)q(n)-
Grams, and vertical n-Gram can be viewed as sub-arrays
of root paths, and can be represented as p(n)q(0)-Grams.
These AST structural feature extractions have been shown
to be effective for representing and analyzing student code
[27]. Despite the variety of feature extraction approaches,
no work has compared the efficacy of these approaches, espe-
cially pq-Gram feature extraction, which has not been used
previously for code classification tasks. This comparison is
important, since having features with too little expressivity
(e.g., BoW) will not capture important AST structural infor-
mation (causing the resulting model to underfit), but having
features with too much expressivity (e.g., treating an entire
AST as a feature) will lead to overly-specific features that

1A sprite in Scratch is similar to an object-oriented class.
In Scratch game design projects, an actor of the game is
usually represented by a sprite.

Figure 1: Using features selected from a set of programming code, such as the Bag-of-Words features in this
figure, we can convert a piece of code into an input vector by indicating the count or presence of selected
features.

Figure 2: A piece of Scratch code can be represented as an AST. A pq-Gram centered on a node n includes
n’s p− 1 ancestor nodes and up to q of n’s child nodes, while an n-Gram includes a sequence of nodes inside
an AST subtree, with length n, either horizontally or vertically.

do not generalize to new, unseen instances, causing the re-
sulting model to overfit. Empirical evaluation is needed to
find an appropriate balance.

Researchers have also explored clustering these simple fea-
tures to represent more complex structural relationships.
For example, Zhi et al. automatically clustered pq-Grams
into what they called“features”[27], which clusters pq-Grams
that performs a meaningful programming sub-goal. How-
ever, this clustering method was not applied to feature en-
gineering for supervised classification. Mao et al. used Re-
cent Temporal Patterns (RTPs) to transform a highly con-
densed feature set into a Multivariate State Sequence, in-
cluding information such as feature co-occurrence and prece-
dence. They used this feature engineering approach to pre-
dict whether a student is unlikely to succeed in a given
task. Using RTPs, their model performs better than sim-
ple feature extraction approaches, with an 18.8% increase in
classification accuracy, showing that creating feature combi-
nations offers more information on students’ programming
status [13]. However, these existing approaches were only
applied in short programming tasks with specific goals.

2.3 Distributed Code Embeddings
So far, we have discussed ways to represent code as one-
hot or count vector. Neural Network models, in addition,
commonly contain an embedding layer that learns a multi-
dimensional representation on top of the feature extraction
approaches we have discussed. In addition, many embedded
approaches use sequential models, so that the embedding
is trained based on relative locations of each code element
[11, 18]. These embeddings can be learned in an unsuper-
vised manner [11], similar to how word embeddings such as
Word2Vec [16] are learned. They can also be learned in a
supervised manner through back-propagation during model
training [4, 18]. Depending on the architecture of Neural
Network, these embedded approaches also vary in ways to

represent code as vectors to feed into the models. For ex-
ample, Alon et al. used a leaf-to-leaf approach, connecting
the shortest path from each two leaf nodes [4, 3]. Iyer et al.
used embedded Bag-of-Words code representations to feed
into an LSTM model for conducting code retrieval tasks,
and have shown that their model can answer programming
questions by finding highly-relevant code snippets [11].

Although distributed code representation is a powerful way
to interpret programs, they typically require a large amount
of training data - Code2Vec, for example, was trained on
more than 14M pieces of programming code. This require-
ment on the number of training samples is not suitable for
our task.

3. EXPERIMENT AND RESULTS
Our goal in this study was to compare the effectiveness of the
existing code feature extraction approaches outlined in Sec-
tion 2.2. To do so, we compared the effectiveness of BoW,
n-Gram, and pq-Gram approaches in classifying game be-
haviors.

3.1 Dataset and Classification Task: Labeling
Open-Ended Scratch Projects

The student code used in our evaluation comes from the
Scratch community [22], an online, novice-friendly, block-
based programming website, where users create and remix
interactive programming projects, such as games and an-
imations. We chose the Scratch repository because it in-
cludes diverse, open-ended programs from learners around
the world, which are not constrained to a single assignment
or goal. This might be analogous to submissions to an open-
ended final programming course project. On Feb 18th, 2020,
we scraped the 6247 most trendy projects, from the Game
genre in the Scratch community. Among them, we selected
the first 457 projects based on the creation date. Among
the 457 projects, we excluded 44 projects that had over 50%

broken or unused code 2. Our dataset for the classification
task includes 413 projects, with an average of 1201 AST
nodes in each project 3.

An important classification task for Scratch game projects is
to identify whether a given project includes a specific game
behavior (i.e., a game mechanic), for example, whether the
player can jump (like in the classic Mario game). Algo-
rithm 1 shows one pseudocode example of how a platformer
jump can be implemented in Scratch 4. In this example, this
behavior is implemented by two threads, to ensure that the
actor jumps using gravity, and stops when landing on the top
of a platform. Based on our observations of students’ code,
PlatformerJump is the most complex behavior in the five
behaviors, usually including a large amount of code, spread
across different sprites and scripts. However, even with a
relatively less complex behavior (e.g., CollisionChangeVar),
students can still implement the behavior in a wide variety
of ways.

The ability to detect these game behaviors automatically
would allow researchers to better understand novice pro-
gramming behavior by profiling the whole Scratch repos-
itory, including millions of projects, to find popular com-
binations of behaviors (e.g., in [1]). It would also enable
researchers to instantly identify what type of game a stu-
dent is currently working on, in order to offer them highly
customized feedback or examples. This task also represents
a difficult challenge for code classification, since these game
behaviors are comprised of many code elements, which may
be dispersed throughout a student’s code (e.g., the jump
behavior, shown in Algorithm 1), and which may be im-
plemented in diverse ways, creating a large and sparse pro-
gramming state-space [27]. These challenging properties are
shared by many other programming code classification tasks,
such as identifying misconceptions [9] and predicting learner
performance [13].

In order to create meaningful categories of game behaviors,
the first author investigated 13 student game design project
submissions, from an undergraduate programming course in
a large, public research university. After thoroughly examin-
ing the submissions, the first author decomposed each game
into a set of discrete game behaviors, under the criteria that
these behaviors are general enough to be reused in other
games. We identified 24 game behaviors. From these, we
selected five that represented a diverse range of complexity
and frequency of use. One author developed a definition for
each behavior label (see Table 1) and trained another author
on how to label projects, during which they jointly labeled
20 projects with the presence or absence of these five game
behaviors. The two authors then individually labeled the

2Many Scratch game design projects come from remixing
and reusing existing projects [24], and novices do not always
have the ability to effectively modify these projects [19, 20],
leading to abandoned or broken designs [20].
3In block-based languages such as Scratch, an AST node
generally has a corresponding block that matches the node.
So this also means that we have an average of about 1201
blocks in each project.
4Algorithm 1 is an example implementation of the Plat-
formerJump behavior. The exact game logic is not im-
portant, but it illustrates the complexity of Scratch game
behaviors.

rest of the game design projects.

Algorithm 1: PlatformerJump Example Pseudocode

1 begin
2 run in parallel
3 initialize position
4 velocity ← 0
5 forever
6 change y position by velocity
7 end

8 run in parallel
9 forever

10 while touching platform color do
11 velocity ← 1

12 velocity ← −1
13 if up arrow key is pressed then
14 velocity ← 3
15 while not touching platform color do
16 velocity ← velocity − 0.1

17 velocity ← 0

18 end

Table 1 shows the description and the commonness of the
behaviors in the 413 Scratch game projects. These behaviors
have the following characteristics:

1. These behaviors are implemented by a variety of blocks,
sometimes more than 30 blocks across different sprites
(i.e., similar to object-oriented classes) or code scripts
(i.e., threads).

2. Students implemented these behaviors in a variety of
different ways, using varying types and numbers of
blocks. This makes expert-authored rule-based static
analysis (e.g., [25, 7]) ineffective at detecting the pres-
ence of these behaviors.

3. Although the selected game behaviors are typical within
certain game genres, the prevalence of individual be-
haviors is often quite infrequent, as is shown by the
counts of projects in Table 1, with a range of 5.3% to
46%. This creates imbalanced datasets, which pose a
challenge in training classifiers that can lead a model
to be biased towards the majority class.

While the above characteristics make our classification task
challenging, they are also common characteristics in many
important code classification tasks. Code indicating mis-
conceptions, low performers, or notable strategies may also
be complex, diverse, or rare. The results of our evaluation,
therefore, may be able to generalize to these tasks as well.

3.2 Experiment Setup
In order to understand how well these feature extraction
approaches capture meaningful information for predicting
the presence of complex game behaviors, we compared the
BoW, n-Gram, and pq-Gram approaches. Here we present
our experiment setup.

Table 1: Target Labels of Game Behaviors
Label Name Abbreviation Label description # of projects

with this label
of blocks
(estimate)

KeyboardMove An actor 5 moves in the direction indicated by the
player on the keyboard

197/413 3 - 10

CollisionChangeVar When one actor touches another, a variable
changes (e.g. score)

146 /413 4 - 6

PlatformerJump An actor can jump and then falls down with grav-
ity

81/413 20 - 50

MoveWithMouse An actor moves when the user moves or clicks the
mouse

49/413 2 - 4

CollisionStopGame The game ends when an actor touches another 25/413 3 - 4

Feature extraction. We first extracted BoW, n-Gram,
and pq-Gram features from the training dataset. To reduce
the number of irrelevant features, we extracted features that
have more than 5% support (i.e., the percentage of projects
where this feature exists). When extracting n-Grams of a
specific n value, we consider both horizontal and vertical
ones, as introduced in Section 2.2, for they each extract dif-
ferent AST structural information. We extracted n-Grams
with n ∈ {1, 2, . . . , 10}, and also extracted pq-Grams, with
p ∈ {1, 2, 3}, and q ∈ {1, 2, 3, 4}. The exact subset of these
n-grams or pq-Grams used was determined by hyperparam-
eters, as discussed below. At each increase of n in n-Grams,
we kept features that were extracted by smaller ns, but re-
moved duplicated smaller features based on the rule that
when two features always co-appear, and one is a subset of
another. We extracted pq-Grams using the same approach.

Training and evaluation. To train our model, we used a
Support Vector Machine (SVM) model with a linear kernel,
and used the regularization parameter as a hyperparame-
ter, with values in {0.01, 0.1, 1, 10, 100}. We employed
five-fold cross-validation to evaluate our feature set. Within
each round of cross-validation, we used 1

4
of the training set

as the validation set to tune the hyper-parameters. When
we extracted features for n-Grams, we used the maximum
n as a hyperparameter, with n ∈ {1, 2, . . . , 10}. Similarly,
we also used the maximum ps and qs as hyperparameters
when extracting pq-Grams, with p ∈ {1, 2, 3}, and q ∈
{1, 2, 3, 4}. The values of the hyperparameters were de-
termined by their F1 scores on the validation set at each
round of cross-validation. Since many of our target labels
are highly imbalanced, the accuracy score offers little infor-
mation on how well our model performs in predicting target
labels. We therefore use F1 scores to tune hyperparameters.

3.3 Results
Figure 3 shows how the feature sets perform across the five
target game behaviors. We present the F1 scores of predic-
tion in each target behavior, with its precision (P) and re-
call (R), shown in the brackets. In this first experiment, our
results show that all classifiers perform similarly. One ex-
ception to this is the PlatformerJump behavior, where BoW
(F1 = 0.58) does notably worse than n-Gram (F1 = 0.72),
or pq−Gram (F1 = 0.68). We note that PlatformerJump is
easily the most complex behavior (shown in Algorithm 1),
which can be completed in many ways. This suggests that
there may be some advantage to more expressive feature
representations for identifying more complex program prop-

Figure 3: Comparing BoW, n-Gram, and pq-Gram
approaches, our results show that these approaches
alone achieve relatively similar predictive outcomes,
and that F1 scores are lower when the prevalence of
positive samples is relatively small.

Figure 4: Near perfect training F1 scores suggest
that the model may be overfitting with all three
feature extraction approaches, especially among n-
Gram and pq-Grams.

erties.

Figure 3 also shows that F1 scores of all approaches de-
crease as the prevalence of positive samples decreases (i.e.,
with more class imbalance). For example, on the y-axis of
Figure 3, we have marked each label with the prevalence of
its positive samples. As the prevalence of features decreases
from 197/413 (48%) in KeyboardMove to 25/413 (6%) in
CollisionStopGame, The feature extraction methods per-
form increasingly worse. For more common behaviors such
as KeyboardMove, all approaches had sufficient data to ac-
curately identify the behavior (F1 = 0.83-0.87), and even
simpler approaches such as BoW were expressive enough
to find discriminating features, e.g., the “WhenKeyPressed”
block. However, when less positive training data are avail-
able, none of the approaches perform well, suggesting the
possibility that the models are overfitting.

We therefore investigated the training F1 scores for each
model, shown in Figure 4. The results confirm that the
models are likely overfitting with all three feature extrac-
tion approaches, especially when the prevalence of positive
samples is small, such as in MoveWithMouse and Collision-
StopGame. This is unsurprising, given that all feature ex-
traction approaches produced hundreds (BoW) to over a
thousand (pq-Gram) features, and the training data never
exceeded 200 positive instances. Because even our simplest
feature extraction approach (BoW) was clearly overfitting,
it is unclear whether more expressive feature representations
(n-Grams, pq-Grams) would hold an advantage under other
circumstances (e.g., more training data, with additional fea-
ture selection6).

4. DISCUSSION AND CONCLUSION
We have compared different approaches for extracting pre-
dictive features from the program code. We have also pre-
sented the first step towards automated classification of open-
ended block-based program behaviors, going beyond existing
rule-based analysis [17, 1]. Here we discuss the insights we
have derived from our results, and we discuss our future task
to improve our current classification approach and address
underlying challenges.

Overall, we found no evidence that different feature extrac-
tion approaches led to better or worse code classification
results. However, we note that in all cases, this was due to
overfitting, due to a large number of features and a relatively
small amount of training data. This is supported by the fact
that all approaches did worse for behaviors with more class
imbalance. We are therefore unable to conclude whether
our results would generalize to a larger dataset, where the
richer feature of n-Gram or pq-Grams may be better lever-
aged. However, we also note that in the domain of computer
science education, courses often only have a relatively small
number of students, causing the size of training data to be
also small. This means that in programming code feature ex-
traction approaches, we should explore ways to reduce the
number of features, through feature selection and dimen-

6We did attempt basic feature selection approaches, reduc-
ing the number of features to less than 100, but this ei-
ther failed to improve or worsened performance, suggesting
a need for future work exploring how to address the overfit-
ting.

sionality reduction. It may also be helpful to develop ways
to more efficiently label data - which serves as the building
block for many intelligent algorithms.

Our classification performance also varied considerably across
tasks, in some cases quite well (e.g. KeyboardMove), but in
others quite poorly (e.g. CollisionStopGame). To under-
stand why, we note that, unlike prior work, our code classi-
fication task used a relatively small dataset (n = 413), con-
sisting of large programming projects. The Scratch projects
we analyzed had an average of 1201 AST nodes. By con-
trast, code classification tasks in prior work have gener-
ally been applied to smaller code input, with a much larger
amount of training data. For example, Code2Vec is imple-
mented in a code classification task for predicting method
names from programs with an average length of 7 lines [4],
although the training sample is of size 14M. Iyer et al. im-
plemented an LSTM-based code summarization model, but
only on programming code with an average of 38 tokens
(i.e., the number of elements in the program). Specifically,
in the computer science education domain, many program-
ming code analysis approaches are evaluated on short pro-
gramming tasks, such as drawing a geometric shape using
nested loops [26, 13, 27], or implementing a short algorithm
(e.g., a bubble sort algorithm [2]). Mou et al. evaluated
their LSTM-based code classifier’s performance on classify-
ing function methods, and concluded that longer programs
(i.e., with longer length of code) had relatively lower classifi-
cation performance compared to shorter programming tasks
[18]. This may explain why our results were not as strong,
and more prone to overfitting.

In conclusion, in this work, we compared features with dif-
ferent levels of expressivity (i.e., Bag-of-Words, n-Grams,
and pq-Grams), in a challenging task to classify meaningful
game design behaviors in open-ended Scratch projects. Our
results show that our model may be overfitting with all three
different feature extraction approaches, and that we need to
explore ways to reduce feature dimensions and increase data
size to improve performance.

5. ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 1917885.

6. REFERENCES
[1] E. Aivaloglou and F. Hermans. How kids code and

how we know: An exploratory study on the scratch
repository. In Proceedings of the 2016 ACM
Conference on International Computing Education
Research, pages 53–61, 2016.

[2] B. Akram et al. Assessment of students’ computer
science focal knowledge, skills, and abilities in
game-based learning environments. 2019.

[3] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. A
general path-based representation for predicting
program properties. In ACM SIGPLAN Notices,
volume 53, pages 404–419. ACM, 2018.

[4] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. Proceedings of the ACM on Programming
Languages, 3(POPL):40, 2019.

[5] N. Augsten, M. H. Böhlen, and J. Gamper.
Approximate matching of hierarchical data using
pq-grams. In VLDB, volume 5, pages 301–312, 2005.

[6] D. Azcona, P. Arora, I.-H. Hsiao, and A. Smeaton.
user2code2vec: Embeddings for profiling students
based on distributional representations of source code.
In Proceedings of the 9th International Conference on
Learning Analytics & Knowledge, pages 86–95. ACM,
2019.

[7] M. Ball. Lambda: An autograder for snap. Technical
report, Technical Report. Electrical Engineering and
Computer Sciences University of California at
Berkeley, 2018.

[8] N. Diana, M. Eagle, J. Stamper, S. Grover,
M. Bienkowski, and S. Basu. Data-driven generation
of rubric criteria from an educational programming
environment. In Proceedings of the 8th International
Conference on Learning Analytics and Knowledge,
LAK ’18, page 16–20, New York, NY, USA, 2018.
Association for Computing Machinery.

[9] M. Elmadani, M. Mathews, and A. Mitrovic.
Data-driven misconception discovery in
constraint-based intelligent tutoring systems. 2012.

[10] L. Gusukuma, A. C. Bart, D. Kafura, and J. Ernst.
Misconception-driven feedback: Results from an
experimental study. In Proceedings of the 2018 ACM
Conference on International Computing Education
Research, pages 160–168. ACM, 2018.

[11] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer.
Summarizing source code using a neural attention
model. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2073–2083, 2016.

[12] C. M. Lewis. The importance of students’ attention to
program state: a case study of debugging behavior. In
Proceedings of the ninth annual international
conference on International computing education
research, pages 127–134, 2012.

[13] Y. Mao, R. Zhi, F. Khoshnevisan, T. W. Price,
T. Barnes, and M. Chi. One minute is enough: Early
prediction of student success and event-level difficulty
during novice programming tasks. In EDM, 2019.

[14] S. Marwan, T. W. Price, M. Chi, and T. Barnes.
Immediate data-driven positive feedback increases
engagement on programming homework for novices.
2020.

[15] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Habits of programming in scratch. ITiCSE’11 -
Proceedings of the 16th Annual Conference on
Innovation and Technology in Computer Science,
pages 168–172, 2011.

[16] T. Mikolov, K. Chen, G. Corrado, J. Dean,
L. Sutskever, and G. Zweig. word2vec. URL
https://code. google. com/p/word2vec, 2013.

[17] J. Moreno-León, G. Robles, and M. Román-González.
Dr. scratch: Automatic analysis of scratch projects to
assess and foster computational thinking. RED.
Revista de Educación a Distancia, (46):1–23, 2015.

[18] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin.
Convolutional neural networks over tree structures for
programming language processing. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[19] G. L. Nelson, B. Xie, and A. J. Ko. Comprehension
first: evaluating a novel pedagogy and tutoring system
for program tracing in cs1. In Proceedings of the 2017
ACM Conference on International Computing
Education Research, pages 2–11. ACM, 2017.

[20] S. Papert. Children, computers and powerful ideas,
1990.

[21] T. W. Price, Y. Dong, and T. Barnes. Generating
data-driven hints for open-ended programming.
International Educational Data Mining Society, 2016.

[22] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:
programming for all. Communications of the ACM,
52(11):60–67, 2009.

[23] T. Sirkiä and J. Sorva. Exploring programming
misconceptions: an analysis of student mistakes in
visual program simulation exercises. In Proceedings of
the 12th Koli Calling International Conference on
Computing Education Research, pages 19–28, 2012.

[24] V. Vasudevan, Y. Kafai, and L. Yang. Make, wear,
play: remix designs of wearable controllers for scratch
games by middle school youth. In Proceedings of the
14th international conference on interaction design
and children, pages 339–342, 2015.

[25] W. Wang, R. Zhi, A. Milliken, N. Lytle, and T. Price.
Crescendo: Engaging students to self-paced
programming practices. In To be published in the 51st
ACM Technical Symposium on Computer Science
Education (SIGCSE ’20), 2020.

[26] M. Wu, M. Mosse, N. Goodman, and C. Piech. Zero
shot learning for code education: Rubric sampling
with deep learning inference. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 33, pages 782–790, 2019.

[27] R. Zhi, T. W. Price, N. Lytle, Y. Dong, and
T. Barnes. Reducing the state space of programming
problems through data-driven feature detection. In
Educational Data Mining in Computer Science
Education (CSEDM) Workshop@ EDM, 2018.

[28] K. Zimmerman and C. R. Rupakheti. An automated
framework for recommending program elements to
novices (n). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering
(ASE), pages 283–288. IEEE, 2015.

