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Abstract. Sequence-to-sequence neural networks are redesigning dialog man-
agers for Conversational Al in industries. However, industrial applications im-
pose two important constraints: training data are often scarce and the behavior of
dialog managers should be strictly controlled and certified. In this paper, we pro-
pose the Conversational Logic Injected Neural Network (CLINN). This novel net-
work merges dialog managers “programmed” using logical rules and a Sequence-
to-Sequence Neural Network. We experimented with the Restaurant topic of the
MultiWOZ dataset. Results show that injected rules are effective when training
data set are scarce as well as when more data are available.?

1 Introduction

Sequence-to-sequence neural networks are giving an unprecedented boost to dialog sys-
tems and to the adoption of Conversational Al in industries. Sequence-to-sequence dia-
log systems based on Recurrent Neural Networks (RNNs) have been used to train open
domain [9,7] as well as task-oriented [12] dialog systems. These RNN-based dialog
systems have reached interesting results given a sufficiently big set of training data.
Transformer-based systems, instead, are less demanding as these can be pre-trained on
large datasets and, then, adapted to carry out specific task-oriented dialogs [4, 10, 2].
Due to its interesting performance, Conversational Al is becoming an integral part of
business practice across industries*. More and more companies are adopting the advan-
tages dialog systems or chatbots bring to customer service, sales as well as workplace
assistant.

However, the adoption of conversational Al in industries impose two important con-
straints on the design of dialog systems: (1) the scarcity of training data and (2) the
need for an extreme control on the behavior of dialog systems. In fact, in industrial
applications, the scarcity and, sometimes, the complete absence of pre-existing conver-
sation data is the norm. Generally, the Wizard-of-Oz approach for data collecting [11]
is adopted to generate training data. This is an expensive process and it is generally

3 Copyright (c) 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).
* https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers/
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not able to provide high quality datasets [8]. On the other hand, the need for an ex-
treme control of dialog systems is generally solved by using dialog systems that can be
“programmed” with explicit rules. Undoubtedly, these dialog systems offer extremely
precise dialog control in business scenario need and, at the same time, guarantying a
satisfying experience for users in covered cases. In this context, design conversational
experience is done by defining rules depending on the dialog context and on inter-
pretations of user inputs [6]. Hand-crafted rules ensure generally more control in the
conversation flow but do not guarantee scalabily and the generalization given by learn-
ing approaches. If dialog interactions are not explicitly modeled, the interaction may
miserably fail.

In this paper, we propose to empowering Seq-to-Seq Neural Networks with Conver-
sational Logic Instructions, to satisfy the two industrial constraints on these sequence-
to-sequence dialog systems. We adopt a neural dialog manager, based on the Domain
Aware Multi-Decoder network [14], adding to it explicit conversational logic instruc-
tions to keep human-in-the-loop [13]. The Conversational Logical Injection in Neural
Network (CLINN) system combines the generalized power of neural architectures with
the control on specific conversational patterns defined by the designers. We experi-
mented with the Restaurant topic of the MultiWOZ dataset [1]. We used two different
sets of dialogs to allow conversational designers to generate explicit rules. Results show
that rules injected are effective in the situation when training data are scarce and, more-
over, the defined behaviors on specific conversational patterns are preserved.

2 Method and System

2.1 Domain Aware Multi-Decoder (DAMD) network
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Fig. 1. Architecture of the Domain Aware Multi-Decoder (DAMD) network

In this study, we use an end-to-end dialog architecture that includes the concept of
belief span [5]. The belief span is a sequence of symbols that expresses the belief state
at each turn of the dialog. In particular, we rely on the pipeline realized by Zhang et
al. [14] that consists of four seq-to-seq modules plus the access to an external database
(Fig. 1). The pipeline is applied for each turn of the dialog. It, globally, takes four inputs
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(Ug, Ri—1, Bi—1, A;—1) and produces three outputs (R, By, A;) where ¢ is the actual
turn, U; is the user utterance, R;_; and R; are the previous and the current system
responses, B;_1 and B; are the previous and the current belief state spans, A;_; and A,
are the previous and the produced system actions. The four modules behave as follows.
The context encoder encodes the context of the turn (U, R;—1) in a context vector c¢;.
The belief span decoder decodes the previous belief span B;_; and, along with the
context vector ¢; produces the belief span B; of current turn. This B; is used to query
the database DB and the answer DB; is concatenated with B; to form the internal
state .Sy of the turn. Then, the action span decoder produces the current action Agl) by
taking into consideration the current state .S; and the previous action A;_; . Finally, the
response decoder emits the final response R! taking into consideration the current state
S; and the corresponding action Ail). In [14], multiple actions and multiple responses
are produced to increase variability in dialogues and, for this reason, the framework is
called multi-action data augmentation.

2.2 Injecting Hand-Crafted Knowledge in DAMD

DAMD network offers a tremendous opportunity to inject external knowledge. In fact,
the belief span decoder transforms the internal context vector ¢; and an explicit sym-
bolic previous belief span B;_; in an explicit belief span B;. In the same way, the action
span decoder takes in input an explicit, symbolic previous action A; 1. As B;_; and
Ay are explicit, these can be easily controlled by an external, symbolic module.
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Fig. 2. Injecting External Knowledge in DAMD with CLINN

We then propose an external knowledge injector module, that is, our Conversational
Logical Injection in Neural Network (CLINN), that allows conversational designers to
control the dialog flow with symbolic rules. CLINN acts in between turns, that is, it
takes the output and the input of the DAMD network at a given turn ¢ and gives an input
to the next step (Fig. 2). CLINN aims to control the next belief state B; and the action
Ay given the previous belief state B;_1, the previous action A;_; and the current user
utterance Uj;.

We integrated the CLINN approach into a rule based dialog management system [3].
The rules are derived from the state machine diagram designed by the conversational
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designers when they defined the interaction experience in term of tasks and behaviors
of the conversational agent. Within the diagram the conversation is defined in term
of system actions (i.e. the states) and user input and belief span (in the edges), i.e.
the preconditions for changing the state. These are a convenient way for designers to
express the conversation behavior they want to mould>. In our setting, these diagrams
become logical rules that fire when preconditions are matched in the conversation turn.
Designing the behaviors for all the possible interactions is very hard and unfruitful.
Then, training a neural network can be the solution. However, training a neural network
requires a lot of data. Writing symbolic rules is way to inject knowledge in CLINN to
boost neural network learning.

3 Experiments

3.1 Experimental Set-Up

We evaluated CLINN on the MultiWOZ dataset [1] as in Zhang et al. [14]. This dataset
is widely used and it has been designed as a human-human task-oriented dialog dataset
collected via the Wizard-of-Oz framework. One participant plays the role of the system.
The dataset contains conversations on several domains in the area of touristic informa-
tion (hotel, train, restaurant, taxi,...). Each domain has a set of dialog acts in addition
to some general acts such as greeting or goodbye. Users’ and system’s interactions are
described in term of these dialog acts.

We focused on the restaurant domain of the MultiWOZ dataset that consists of 1200
dialogs for the training set, 61 dialogs for the testing set and 50 dialogs for the validation
set. We used two different settings for the training set: (1) a small set of 150 randomly
selected dialogs; (2) the full set of 1200 dialogs. These two settings are relevant to study
the behavior of our system with few training examples.

In order to simulate the delivering in production environment of a conversational
agent, we modeled a state transition diagram, which describes the expected conver-
sational behavior of the agent. The diagram is defined observing some conversational
examples in the training set. For the evaluation we have two different models designed
using two set of dialogs: the small model is designed using 5 training conversations
and the medium model has been designed adding other 10 conversation examples to the
small. From the diagram model we obtained two sets of rules: bs_rules for the produc-
tion of the belief state B; and action_rules for the production of the system action A;.
We also used bs_rules in two different configurations, that is, with or without the use
of constraint on the previous action A;_; and we used action_rules in two different
configurations, that is, with or without the constraint on the belief B;.

We evaluated CLINN and the DAMD architecture [14] to determine their ability
to recreate the inner states: the action span A; and the belief span B; as we aim to
verify that our model can control the flow in the dialog states. To evaluate the ability to
replicate A;, we used the F1-measure that is the harmonic mean of recall and precision
of produced actions with respect to gold actions. For what concerns the belief span we
used the Joint Goal Accuracy that is the percentage of turns in a dialogue where the

> For an exhaustive description of the dialogue modeling please refer to [3]
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user’s informed joint goals are identified correctly. Joint goals are accumulated turn
goals up to the current dialog turn.

Injection Type Action Span|Belief Span

System Rule Set Belief  Action Action/Belief Train Set Test Set F1 Jjoint goal
DAMD gold 150 full 36.5 69.4
CLINN  small no belief gold 150 full 39.8 71.9
CLINN  small use belief gold 150 full 39.5 62.6
CLINN small no action gold 150 full 37.9 66.2
CLINN small use action gold 150 full 44.1 66.9
DAMD gold 1200 full 422 75.9
CLINN  small no belief gold 1200 full 37.2 78.1
CLINN medium no belief gold 1200 full 47.2 824
DAMD gen 150 full 37.3 40.6
CLINN  small no belief gen 150 full 39.6 54.3
CLINN  small use belief gen 150 full 394 42.1
CLINN small no action gen 150 full 37.7 48.6
CLINN small use action gen 150 full 45.3 48.9
DAMD gen 1200 full 429 64
CLINN  small no belief gen 1200 full 36.8 64.7
CLINN medium no belief gen 1200 full 48.8 69.4
DAMD gen 150 reduced 44.4 71.8
DAMD gen 1200  reduced 41.4 71.1
CLINN medium no belief gen 150 reduced 48.7 74.6
CLINN medium no belief gen 1200  reduced 534 84.5

Table 1. Comparison of the performances of DAMD and the CLINN system with different con-
figurations. The type gold or gen in Action/Belief denotes if previous Action/Belief are taken
from the ground truth (gold) or are generated by the system (gen).

3.2 Results and discussion

The first set of the experimental results (Table 1 - Test Set "Full”) shows that CLINN
positively inject symbolic rules in sequence-to-sequence neural networks when training
data are scarce. CLINN outperforms DAMD in nearly all the configurations when com-
pared on the Action Span F1 and in some configuration when compared on the joint
goal on the Belief Span. More importantly, CLINN seems to obtain interesting results
in situations with data scarcity. With a small training set with 150 dialogs, one config-
uration of CLINN outperforms DAMD of more than 7.5% on the Action Span F1 both
in the gold setting (44.1 vs. 36.5) and in the gen setting (45.3 vs. 37.5). The increase
in the joint goal for the Belief Span is less impressive in the gold setting where only
one configuration — with rule injection type Action without using belief constraints —
outperforms DAMD (71.9 vs. 69.4). Instead, the performance increase of CLINN in the
joint goal is more stable in the gen setting. Moreover, the difference between DAMD
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and the best system is more than 13% (54.3 vs. 40.6). Moreover, CLINN is an effec-
tive model to include hand-crafted rules when the training set is relatively large. We
selected the best configuration selected with the training set of 150 dialogs (Injection
Type Action with no belief) and we experimented with 1,200 dialogs as training. By
using a larger rule set, that is, the medium rule set, CLINN outperforms DAMD for the
action spans and for the joint goal of the belief span in the gold and in gen setting.

The second set of experimental results (Table 1 - Test Set “reduced”) gives the im-
portant indication that CLINN can help in controlling the behavior of dialog systems in
specific and critical situations. The reduced test set is composed only with the conver-
sations used for building the medium rule set (15 conversations). Although the DAMD
model contains these conversations in the training set, its performance drops when in-
creasing the training set. CLINN instead improves its performance of both metrics when
the training set increases. Hence, CLINN offer a better stability for critical dialogs that
are used to design rules.

The two sets of experiments demonstrates the applicability of CLINN on industrial
real cases.

4 Conclusions

Critical industrial applications such as banking or medical applications impose impor-
tant constraints on Conversational Al systems: data scarcity and need for certified di-
alogs. We proposed Conversational Logic Injected Neural Network that allow to posi-
tively include logical rules to control a sequence-to-sequence dialog manager. Our sys-
tem shows a possible approach towards a more effective integration of neural network
conversational Al in industrial applications.
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