A PROLOG-based Approach to Representing and
Querying Software Engineering Models

Harald Storrle *
mgm technology partners GmbH
Munich, Germany

Abstract

Striving toward the vision of Model Driven development (MDD), we face
many open questions connected to the elementary tasks involved in working with
models. Probably the most basic task is querying models for properties, elements,
and submodels. Current tools and interfaces for model querying are either re-
stricted in their expressiveness or require a high level of expertise in the underlying
metamodels and/or query languages. As the application of MDD is gaining more
widespread acceptance and more and more developers are involved with MDD ef-
forts, this state is becoming a bottleneck. In this paper, we propose a Prolog-based
model representation and query interface for models to overcome this bottleneck.

Keywords: Model Driven Development (MDD), Query-View- Transformation (QVT),
Knowledge Based Software Engineering (KBSE), Industrial Applications

1 Introduction

The MoMaT approach has been developed over the last years, partially in an academic
setting, and partially in two very large scale industrial projects with German federal and
state agencies. In these projects, very large models have been created and demand for
advanced model operations soon became pressing. We have thus turned to MDD/MDA
technology.

Model Driven Development/Architecture (MDD/MDA, [6, 17]) has been proposed
as a measure to raise the level of abstraction in software development, and thus to
increase developer productivity. In a MDA setting, models are programs, thus mod-
eling languages are programming languages (cf. [20]). Today, there are many dif-
ferent practically relevant modeling languages, most of which are predominantly vi-
sual modeling languages. Examples are the Unified Modeling Language (UML, [16]),
Entity-Relationship-Diagrams (ERD, [4]), Event Process Chains (EPCs, [5]), Integra-
tion Definition for Function Modeling (IDEF, [13]), or Use Case Maps (UCM, [3]).
In principle, such models may be used for a multitude of purposes, such as reporting,
model transformations, model consistency checking, formal analysis, code generation,
pattern detection, versioning, size measurement and so on. See Figure 1 for a synopsis
of model operations.

However, one of the basic tasks in an MDD setting is querying models for proper-
ties, elements, and submodels. This task is executed, on the one hand, by developers

*Harald.Stoerrle@mgm-tp.com

71

&
L S, 2
o)
S o e &
%, % % & &
% %, %, \ & °
RS 2 O N \
%, S, %, N N O
%(. S, <\ \& ,f)\OQ
%% B, %, &
a 2 /2 & (2 <
Model Verification ™\ Model Manipulation
o
O X
& & N
(o) & &
9 %, &£ Q\\Q &
2. S+ N \
& 5. 2 IS
" s,b) V\\ e\ ,{,@’
%, @, N & & <
7 % % & <& &

Model
Repository

Compilation & Generation

Model Validation Model Probing

Figure 1: Classes of model operations (potentially) relevant to industrial modeling

working on the models. It is, on the other hand, also a basic building block under-
lying most other more complex functionalities like model transformations and model
measurements. However, current tools and interfaces for model querying are either
restricted in their expressiveness or require a high level of expertise in the underly-
ing metamodels and/or query languages, both of which reduce their versatility. As the
application of MDD is gaining more widespread acceptance and more and more devel-
opers are involved with MDD efforts, accessing models in an effective way is becoming
a bottleneck.

Over the last years, we have created a system called the Model Manipulation
Toolkit (MoMaT) which allows us to experiment with models in general. In MoMaT,
models are imported into a Prolog-based model repository by a set of transformers
for several modeling languages like UML, ARIS/EPC, and Use Case Maps (in this
paper, we will only focus on UML models, though). Figure 2 provides an overview
of MoMaT. In other papers, we have reported on using MoMaT for model version
management operations (see [23, 24]).

modeling specific generic
tools converters converter

1§ 1§
Original . 7 . 7 .
(concept, system) : : Model Repository
) N N)
14 » (Prolog Facts)
specific file
format

Adonis / EPC
ADL
Adonis / UML ——

..

Rose / UML 1.3 MbDL
XMI 1.x
Fujaba / UML 1.5 XMI 1.x'
Sparx EA / UML 2 XMI 2
MagicDraw / UML 2 XMmi 2

Figure 2: Schematic overview of MoMaT.

72

Our approach is derived from our experiences in two very large scale industrial
projects with the German federal Tax Authority and the German Public Pension Au-
thority. In these projects, very large models have been created and it soon turned out
that without adequate query facilities they turn into “black holes” swallowing informa-
tion but not giving it away again.

1.1 Related work

The related work may be subdivided into textual and visual query languages, and ap-
proaches that are specific to certain languages and/or tools or generally applicable (see
the following schema).

textual query language visual query language
schema specific query interfaces/ APIs, | QVT [19] Implementations like ATL, UMT [14],
OCL [15] MOLA [9]), Porres’ toolkit [18]
general SQL, QBE, XPATH, | Visual OCL [2], Constraint Diagrams [10],
SHORE [12] Query Models [22]

Most CASE tools provide APIs or predefined queries to allow users access to the
models. Valuable as such facilities may be for the working software engineer, they
are restricted to the specific settings in which they are implemented; application to
other languages, tools, or data structures is difficult if not impossible. The OCL [15]
is somewhat more general in that, theoretically, it should fit to any UML model/tool
combination. In practical settings, this is not true, however. Also, OCL is extremely
difficult to read and write' and there is very scarce tool support.

The OMG’s Query-View-Transformations standard (QVT, [19]) has been created
with similar goals as MOMaT. There are several implementations of QVT like the Atlas
Transformation Language (ATL, http://www.eclipse.org/m2m/atl/), the
UML Model Transformation Tool (UMT, see http://umt—-gvt.sourceforge.
net/ and [14]), and the Model Transformation Language and tool MOLA, see [9]).
All QVT implementations are based on the UML metamodel as their underlying data
structure, which effectively excludes their application to non-UML languages. It also
ties the respective tools to a particular version of the UML. The framework proposed in
[18]) is anon-QVT system based on Tcl which the authors themselves deem applicable
only for small and medium sized systems. None of these approaches are implemented
in and using the facilities of Prolog. Also, to the best of our knowledge, none of them
has been used successfully over a longer term in industrial applications.

When models are stored in a relational database, traditional relational query lan-
guages like SQL or QBE may be use to access them.? For XML data structures or
databases, XPATH and similar approaches provide APIs with query facilities. The
SHORE system (see [12]) is an approach to storing software design documents in a
XML database using Prolog as the query language.

Visual OCL [2], Constraint Diagrams [10], and Query Models [22] each use a
modeling language to specify queries for this language. By analogy, these approaches
may thus used for other modeling languages. It is not clear, however, how such queries
might be executed, much less, if used for a different language. While this paper does
not yet fill this gap, it outlines a path toward this goal.

Besides this comparison scheme, Gruhn and Laue [7] present an approach where
Prolog is used to access and query software engineering models, but also to represent
them: they encode EPCs (in a rather ad hoc way) into Prolog facts which they then use

' A more detailed comparison between SQL, OCL, and MoMaT has to be deferred until we have intro-
duced MoMaT.

73

to check some consistency conditions. This approach is limited to EPCs, unfortunately.
There are also several approaches to encode programming language code in Prolog, e.
g. for the Java language (cf. [21]), then define particular properties as Prolog rules and
then check these properties by evaluating respective goals.

2 Model Representation
In MoMaT, models are represented as Prolog facts. More or less, every individual

model element is represented as a single fact. The encoding into this representation is
done in two steps (see Figure 2).

m MoMaT Meta-Metamodel (M3) /
1 {ordered}

- 1 N
Model E— ModelElement |[tag: string |_ Value Zﬁunique)

3

’ T
ModelProperties BasicValue Set
L Int List

View

Char
Reference

Bool id: int

Figure 3: A Meta-metamodel as a normal form for arbitrary modeling languages.

First, specific formats are converted into a common format in order to accommodate
different tools, languages, and formats. For instance, many modeling tools are capable
of creating models in different languages, or of exporting models in different file format
versions. Also, most tools will interpret standards in significantly different ways, will
contain different specific bugs and so on, such that providing specific converters is
inevitable for different tools. The common format is described in terms of a minimal,
unifying meta-metamodel called the MoMaT meta-metamodel, or M3 for short (see
Figure 3). It can be seen as a least common denominator for a wide range of modeling
languages.

For UML, the mapping into M3 is simple indeed, since UML comes with a meta-
model. All UML metaclasses are mapped to ModelElement. All meta-attributes and
meta-associations a are mapped to tags, their types are mapped to the corresponding
subclasses of Value (Reference for object types). The top level package of a UML
model is mapped to Model.

The second step now simply interprets models in M3 format as Prolog facts (see
Figure 4). In MoMaT, each model element—that is, each instance of the class Mod-
elElement of M3—is represented as a Prolog clause of the form

me (type-id, [tag-value, ...]).

where t ype is the metaclass in the source language (such as “Feature” or “Class” in the

74

Type and name of the element together are The element properties are
used as the (typed) element identifier. _____, .____ described as a list of tag-value pairs.
Each model element !

isrepresentedby;[me(classr42, [name-'A', ...]).

a Prolog fact me.

an arbitrary Prolog atom or term: type Do : ! value: an arbitrary Prolog atom or term

an uninterpreted binary infix functor: separator : i separator: an uninterpreted binary infix functor
an arbitrary Prolog atom: unique id tag: an arbitrary Prolog atom

Figure 4: Representing model elements in Prolog

UML metamodel), id is an arbitrary unique identifier, tag is any atom representing
a property of the model element, and value is the value for this tag. For instance, an

Gy, 9

abstract class with object identifier 42 and name “x” would be represented as
me (class-42, [name-x, isAbstract-true]).

This encoding is visualised in Figure 4. The value of an attribute may be an arbitrary
Prolog-term.

A model is then simply a named container for a set of model elements. We use
Prolog’s built in module mechanism to represent models. In Prolog, modules may be
defined just as well at compile time or at run time. Additional information pertaining
to the model as such may be represented by a model/2 clause. Similarly, views may
be defined inside models with view/2 clauses. The arguments of view and model
are similar to those of me.

Figure 5 shows an example. Here, a model m1 is defined. It is an analysis level
model authored by user stoerrle and has reached the quality assurance status approved.
It contains ten model elements and one view named m1. The view presents all model
elements of the model.

By using the Prolog module mechanism for representing models, all features of
modules may be used for models as well, including nesting models, importing and
exporting models, dynamic and static (i. e. compile time and run time) definition of
models and so on.

3 Model queries

Simple queries select one or more model elements or their attributes based on basic
selection criteria like identifier, name, or a complex combination of features. Based
on the representation defined above, this may be achieved by Prolog queries like the
following.”

1 ?- ml:me (METACLASS-0, VAL).
METACLASS = class
VAL = [name-'Person’, attributes-ids([1,2,3]), operations-id(4)]

2This is actually a transcript of the SWI-Prolog top level slightly edited for readability. It is executed on
the model described in Fig. 5. Recall that in Prolog, identifiers starting with an upper case letter are variables.
The underscore is the don’t-care-variable. Lists are enclosed in square brackets, In SWI-Prolog, 2~ is the
top-level prompt. The Prolog idiom me /3 declares that the predicate me is binary (and of course similar for
all other attributes and arities).

75

co [y

| Organisation

T

| Department

i

| SmallDepartment |

1171 Person * s Occupation

14 13 8
1| name: string 7| required_education: string
2| age:int

get_job(Occupation) : void

model properties

5
author: stoerrle
ga: approved
level: analysis

:-module (ml,

[me/2,
model (ml,
view(cd-1,

me (class-0,

me (feature-1,

me (feature-2,

me (feature-3,

me (operation-4,

me (parameter-5,

me (class-6,

me (feature-7,

me (feature-8,

me (association-9,

me (class-10,

me (class-11,

me (class-12,

me (feature-13,

me (feature-14,

me (generalization-15,
me (generalization-16,
me (association-17,

[level-analysis,
[type-class_
version-'2.

view/2, model/2]).

author-stoerrle, ga-approved]).

diagram, name-'Sample model', language-'UML 2',
1.1',elements-ids([0,1,2,3,4,5,6,7,8,91)1).
[name-'Person',attributes-ids([1,2,3,14]),
operations-id(4)]).

[name-name, type-stringl).

[name-age, type-int]).
[multiplicity-1, type-id(6)1).
[name-'get job', parameters-ids([5]),
[type-id(6)]1) .

[name-'Occupation', attributes-ids([7, 81)1).
[name-'required education', type-string, default-""]).
[type-id (0) ,multiplicity-'*']).

[ends-ids ([3, 81)]).
[name-'Organisation’',
[name- 'Department']) .
[name-'SmallDepartment']) .
[multiplicity-1, type-id(0)1).
[multiplicity-1, type-id(10)]).
[from-id(11), to-id(10)1).
[from-id(12), to-id(11)]1).
[ends-ids ([14, 15]1)1).

result-void]) .

attributes-ids([13]1)]).

Figure 5: A sample transformation from a model containing a UML class diagram
(top) into a Prolog module with clauses for each model element (bottom). The extra
numbers in the class diagram refer to the identifiers of the Prolog code.

76

2 ?- findall (ID, ml:me(class-ID,_), IDS).
IDs = [0,6,10,11,12]

3 ?- findall (ID-VAL, ml:me(class-ID,VAL), RES).
RES = [0-[name-'Person’, attributes-ids([1,2,3]), operations-id(4)],
6—[name-'Occupation’, attributes-ids([7,8]1)]]

The first query identifies the type and property set of element 0 inside model m0. The
second query identifies all elements of type c1ass using Prolog’s built-in findall/3
to obtain all solutions to the second argument with a single call. The third query selects
all classes of model m1.

For the remaining examples, we need to introduce the predicates get _me /4,
part_of/4, and get_neighbours/4, which are typical examples for predicates
of the query-API of MoMaT.?

get_me (Model, Tag-Val, METACLASS-ID, VAL):- % matches all elements of
Model :me (METACLASS-ID, VAL), model containing the
memberchk (Tag-Val, VAL) . Tag-Val pair

o

o

Using these predicates, the fourth query identifies the class named Occupation in
ml. The fifth query identifies all features of type string inml.

4 ?- get_me(ml, name-’Occupation’, METACLASS-ID, _).
METACLASS = class
ID = 6

5 ?- findall (ID, get_me (ml,type-string, feature-ID,VAL), RES).
RES = [1,7] ;

Query no. six identifies all elements related directly to element 6 by relationships of
type association. There are very similar predicates for other relationships like
containment, association, or generalization.

6 ?- get_neighbours(ml, association, 6, N).
N = [0]

The predicate get _neighbours/4 computes all neighbours of a given element that
are related to this element by a particular kind of relationship as follows.
part_of (Model, Kind, SUPER, SUB):- % gets ids of Kind-parts
get_me (Model, Kind-ids (Parts), _-SUPER, _), % of SUPER as SUB
member (SUB, Parts).

get_neighbours (Model, Kind, Element, Neighbours) :-

get_me (Model, ends-ids (Features), Kind-_, _),
get_me (Model, attributes-ids (ATTRS), class—-Element, _),
intersection (ATTRS, Features, [_I|_1),!,

maplist (part_of (ml,attributes),Containers,Features),
select (Element, Containers, Neighbours).

Query no. 7 counts the number of dynamic and static features in a model, providing an
example of how complex queries may be defined ad hoc on the command line.

7 ?- findall (OP, get_me (ml,operations-ids (OP),class-_,_), _OPs),
findall (AT, get_me (ml,attributes-ids (AT),class-_,_), _ATs),
count ([_OPs, _ATs], Number_of_ Features).

Number_of_Features = 6

3The remaining MoMaT predicates are defined in the appendix. All other predicates are standard Prolog
library predicates.

77

Of course, the queries presented so far have been rather straightforward. How-
ever, using Prolog we may execute also much more complex queries like “Identify all
superclasses of a given class (transitively)” (see query 8 below).

8 ?- pre_closure(rels(ml,generalization), [12],[],C).
cC = [10, 11]

Similar queries may be used to identify all elements (transitively) related to a given
element by a certain kind of relationships such as associations (query 9) and depen-
dencies, e. g. in order to determine change impacts. A different query using similar
techniques may select the shortest path of associations in a set of of classes, or the
shortest path of DataFlowEdges between actions in an activity diagram. For lack of
space, we cannot present the latter two queries in detail here.

9 ?- pre_closure (get_neighbours (ml, association), [6], [], N).
N = [0, 10]

An interesting class of complex query are queries concerning more than one model.
Our first example is the detection of design patterns, which can be implemented simply
by a sub-model operation (query 10): all detectable patterns must be described struc-
turally, in exactly the same way as our example is described. In this case, there is no
occurrence of the composite pattern. Another frequent query is to determine all ref-
erences from (elements of) one model to (elements of) another model (query 11), in
order to trace change impacts across model boundaries.

10 ?- submodel (ml, patterns:composite, Mapping).

Mapping = []
11 ?- findall(ID, Model:me (ID-_,_), IDS), references (ml, REFS),
subtract (REFS, IDS, EXT).
REFS =[]
s = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]
EXT = []

As our last example, consider query 12, where a sequence of models is scanned for the
first model in which a given element is defined. Such a query might be used to track
the introduction of errors related to some model element.

12 ?- sublist (exists(M_ID, 14), [m0O, ml, m2], Exists),
head (Exists,First) .
Exists = [ml, m2]
First = ml

The predefined predicate sublist /3 returns in its third parameter the sublist of the
second parameter such that all the sublist’s elements satisfy the predicate provided as
the first parameter. Since the ordering of the original list is maintained, the first element
of the resulting list is the first model in which model element 14 appears. exists/2
is defined as exists (ME_ID, M_ID):-M_ID:me(_-ME_ID,_)..

4 SQL and OCL as alternative query languages

One may argue that the Prolog code necessary for implementing the queries proposed
above is not very readable, and, in fact, Prolog as a language is too uncommon to

78

be considered for practical applications. There are mainly three alternatives for query
languages: tool-specific predefined queries, APIs, SQL, and OCL.

Many commercial tools provide selections of predefined queries (e. g. Telelogic
Tau, BOC Adonis). While sufficient in many situations, this approach is not (easily)
extensible. Query APIs, on the other hand, are proprietary and may thus not be used in
other tools.

SQL [4] is much more popular and widespread than Prolog. In fact, it is the
paradigmatic query language. Thus, many tools storing models in (object-) relational
database tables provide SQL-like facilities for querying (e. g. Aonix StP, BOC Ado-
nis). Most of the queries we have presented above may be expressed in SQL3 (cf. [11]),
but many database products do not implement this standard completely and faithfully.
So, the following SQL-query is equivalent to query 8 above, but will not terminate on
IBMs DB/2 or Oracle 11.

WITH RECURSIVE CLOSURE (ClassId, GeneralClassId) AS

(SELECT
FROM CLASSES
WHERE ClassId = "1’
UNION ALL

SELECT cla.GeneralClassId, clos.ClassId
FROM CLOSURE clos, CLASSES cla
WHERE clos.GeneralClassId = cla.ClassId)
SELECT DISTINCT ClassId
FROM CLOSURE;

Another obvious alternative model query language is Object Constraint Language
(OCL, [15]). However, even simple OCL queries tend to be even more convoluted and
less readable than Prolog code. See the following OCL equivalents of queries 2, 7, and
8.

2) package uml context Package
def: getAllClasses() : Set(Class) =
self.packagedElement->asSet () -—>select (t |t.oclIsKindOf (Class)
.oclAsType (Class) —>asSet ()
endpackage

7) package uml context Package

def: getAllGeneralizations() : Set (Element) =
self.getAllClasses () .ownedElement.oclAsType (Element)
->asSet () —-—- Property (Association, Attribute), Generalization
endpackage

8) package uml context Class
def: DITantiCycle(list:Set (Class)) : Set (Class) =
if self.hasGeneralization()
then
if list->includes (self)
then list
else self.generalization.general.oclAsType (Class).
DITantiCycle(list->union(Set{self}))
—>asSet () —>asOrderedSet () —>at (1))
endif
else Set{}
endif
endpackage

The most compelling advantage Prolog has over OCL is of course the much better tool
support available for Prolog, including a range of IDEs, debuggers, visualisation tools,
efficient compilers and so on. For OCL, there are just a few tools like [8, 1].

79

5 Evaluation

5.1 Applicability and usability

While the roots of MoMaT lie in academia, it has been applied successfully in indus-
trial settings (though only by expert modelers in touch with the author). The main
benefit of our approach is in its technical simplicity and the high-level declarative style
of programming in an interactive environment that supports an explorative mode of
work.

We have applied MoMaT in a number of different settings concerning languages,
formats, and tools:

e a large UML 2 subset (class, object, activity, assembly, and use case models)
using ADONIS with proprietary ADL and XML formats;

e class and use case models using Fujaba and MagicDraw with different XMI for-
mats;

e EPCs using ADONIS with the proprietary ADL format.

Models from all these sources may be processed using MoMaT, and we are very con-
fident that we will have no problems processing any other type or format of models
similarly. In fact, our approach seems to be unique in that it is applicable also to visual
languages other than UML.

MoMarT is targeted at expert modelers and has been used by such people in indus-
trial contexts successfully. First feedback by said users indicated that OCL would have
been too complicated to be used. Of course, such subjective reports by people person-
ally acquainted to the author are not representative. Proper evaluations comparing the
usability of MoMaT with competing approaches are an open issue.

5.2 Performance comparison

Although we can not provide a complete evaluation of our approach im comparison
to all other approaches mentioned in section 1.1, we have some inital measurements.
A competing research group from our department is implementing an Eclipse/EMF-
based OCL interpreter. In a model query shootout with them, we agreed on a set
of eight simple queries®, created a range of synthetic class models, and executed the
queries on the models in both tools.

Classes 10 100 1,000 10,000
Model Elements 325 | 3,431 | 29,250 | 312,584
XMI file size of model [Mbyte] 0.06 0.61 5.42 56.5

The class models contained between 10 and 10,000 classes, each of which had a
number of attributes (ranging randomly from one to nine). Over the whole range of
models and queries, MOMaT had a consistent performance advantage of about factor
ten. A detailed study into this rather unexpected finding has not yet been conducted.
In particular, we have not yet evaluated memory consumption in detail. However,
it seems that current OCL tools and Java’s XML-libraries generally require significant

4The queries were: determine number of model elements, depth of inheritance tree, ratio of abstract
classes, set of classes participating in exactly two associations, existence of a class with a specified name,
number of instances of a given class, number of associations a given class participaates in, and number of
neighbours associated to a given class.

80

resources. We have not yet compared MoMaT with with other OCL tools on the market
but would be surprised to find significantly different results.

6 Conclusions

MoMaT provides a powerfull textual query facility for models expressed in arbitrary
languages, provided there is a mapping from the languages conceptual design to the
M3. While MoMaT is textual in nature, it opens up a path to defining visual queries
as well: as soon as there are is a facility of transforming a (incomplete) model from
any given modeling tool into the MoMaT format, such model fragments may be used
to find matching submodels using MoMaT. Thus, models may be used as queries in
MoMaT, so if there is a tool to create models, there is also a tool to create queries. Of
course, for practical appications we would need an integrated work bench, but that is
just an implementation task.

References

[1] Dresden OCL toolkit. http://dresden-ocl.sourceforge.net.

[2] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer.
A Visualisation of OCL using Collaborations. In Martin Gogolla and Chris
Kobryn, editors, Proc. 4™ Intl. Conf on the Unified Modeling Language
(<<UML>>"01), number 2185 in LNCS. Springer Verlag, 2001. available at
tfs.cs.tu-berlin.de/vocl.

[3] Ray J. A. Buhr. Practical Visual Techniques in System Design. With Applications
to Ada. Prentice Hall, 1990.

[4] Chris J. Date. An Introduction to Database Systems. Addison-Wesley, 6" edition,
1995.

[5] Rob Davis. Business Process Modelling with ARIS: A Practical Guide. Springer
Verlag, 2001.

[6] David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Com-
puting. OMG Press, 2003.

[7] Volker Gruhn and Ralf Laue. Validierung syntaktischer und anderer EPK-
Eigenschaften mit PROLOG. In Markus Niittgens, Frank J. Rump, and Jan
Mendling, editors, Proc. 5. GI Ws. Geschdftsprozessmanagement mit Ereignis-
gesteuerten Prozessketten (EPK 2006), volume 224 of CEUR Workshop Proceed-
ings, pages 69-85, Bonn, December 2006. Gesellschaft fiir Informatik.

[8] Christian Hein, Tom Ritter, and Michael Wagner. Open source Library for OCL
(OSLO). http://oslo-project.berlios.de/.

[9] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model Transformation Lan-
guage MOLA. In Uwe ABmann, editor, Proc. 2" Working Conf. Model Driven
Architecture: Foundations and Applications (MDAFA 2004), pages 12-26, 2004.
available at www.ida.liu.se/~henla/mdafa2004.

81

[10] Stuart Kent. Constraint Diagrams: Visualizing Invariants in Object-Oriented
Models. In Proc. Intl. Conf. Object-Oriented Programming Object Oriented Pro-
gramming, Systems, and Languages 1997 (OOPSLA’97), pages 327-341. ACM
Press, 1997.

[11] Jim Melton. Advanced SQL 1999: Understanding Object-Relational, and Other
Advanced Features. Elsevier Science Inc., New York, NY, USA, 2002.

[12] Michael Meyer and Helge Schulz. SHORE: Ein Werkzeug fiir iibergreifende Ver-
netzung und Auswertung von Dokumenten. In Franz Ebert, Jiirgen und Lehner,
editor, Proc. Ws. Software-Reengineering. Gesellschaft fiir Informatik e.V. May
1999.

[13] National Institute of Standards and Technologies (NIST). Integration Defini-
tion for Function Modeling. Technical report, Computer Systems Laboratory,
National Institute of Standards and Technologies (NIST), 1993. available at
www.omg.org/techprocess/sigs.html, see also www. idef.com.

[14] Jon Oldevik. UML Model Transformation Tool (UMT). Overview and user guide,
v0.8. Technical report, SINTEF, 2004.

[15] OMG. UML 2.0 OCL Specification (OMG Final Adopted Specification,
ptc/2003-10-14). Technical report, Object Management Group, October 2003.
available at www . omg . org, downloaded at December 2th 2004.

[16] OMG. UML 2.1.1 Superstructure Specification (formal/ 2007-02-03). Technical
report, Object Management Group, February 2007. available at www . omg. org,
downloaded at May 25", 2007.

[17] MDA Guide Version 1.0.1. Technical report, Object Management Group, June
2003. available at www . omg . org/mda, document number omg/2003-06-01.

[18] Ivan Porres. A Toolkit for Model Manipulation. [Intl. J. Software and Systems
Modeling, 2(4), 2003.

[19] QVT-Partners. Revised submission for MOF 2.0 Query/ Views/ Transformations
RFP (version 1.1, 2003-08-18). Technical report, August 2003. available at
www . omg . org/mda, download at November 15¢, 2004, see also umt—qgvt .
sourceforge.net and gvtp.org.

[20] Bran Selic. The pragmatics of Model-Driven Development. IEEE Software,
20(5):19-25, September/October 2003.

[21] Daniel Speicher, Robias Rho, and Giinther Kniesel. JTransformer — eine logik-
basierte Infrastruktur zur Codeanalyse. In Rainer Gimnich, Volker Riediger, and
Andreas Winter, editors, Proc. 9. Ws. Software-Reengineering (WSR 2007) , vol-
ume 27, pages 21-22, May 2007.

[22] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Query Models. In Thomas
Baar, Alfred Strohmeier, Ana Moreira, and Stephen J. Mellor, editors, Proc.
7% Intl. Conf. Unified Modeling Language (<<UML>>’04), number 3273 in
LNCS, pages 98—112. Springer Verlag, 2004.

82

[23] Harald Storrle. A approach to cross-language model versioning. In Udo Kelter,
editor, Proc. Ws. Versionierung und Vergleich von UML Modellen (VVUU’07).
Gesellschaft fiir Informatik, May 2007. appeared in Softwaretechnik-Trends
2(27)2007.

[24] Harald Storrle. A formal approach to the cross-language version management
of models. In Ludwik Kuzniarz, Miroslaw Staron, and Tarja Systa, editors,
Proc. Nordic Ws. Models Driven Engineering (NW-MODE’07). IT University of
Goteborg, August 2007. to appear.

A Selection of MoMaT library predicates

closure (P, X, Closure) :—
pre_closure (P, [X], [], Closurel),!,
union([X], Closurel, Closure2),
sort (Closure2,Closure) .

pre_closure(_, [], SoFar, SoFar):-!.

pre_closure (P, Args, SoFar, Closure):-!,
maplist (P, Args, P_of_Argsl),
flatten(P_of_Argsl, P_of_Args),
subtract (P_of_Args, SoFar, New),
append (New, SoFar, Next),
pre_closure (P, New, Next, Closure).

external_references (Model, EXTERNALS) :-
findall (ID, Model:me (ID-_,_), IDS),
references (ml, REFS),
subtract (REFS, IDS, EXTERNALS).

references (Model, EID, REFS) :-—
Model :me (_-EID,VAL),
maplist (collect_ids, VAL, REFSO),
flatten (REFSO, REFS1),
list_to_set (REFS1, REFS).
references (Model, REFS) :—
findall (REF, refs(Model, REF), REF_LIST),
flatten (REF_LIST,REFS) .
refs (Model, REF) :-
Model :me (_—-_,VAL),

—

maplist (collect_ids, VAL, REF).

collect_ids ([],[]):-!'.

collect_ids ([_-id(ID) |Rest], [ID|RID]) :—
collect_ids (Rest, RID).

collect_ids ([_-ids (IDS) |Rest], ALL_IDS) :-

collect_ids (Rest, RID),
append (IDS, RID, ALL_IDS).

rel (Model, Kind, From, To):-—
get_me (Model, from-id(From), Kind-_, VAL),
memberchk (to-id (To), VAL).

rels (Model, Kind, From, Targets):-—
findall (To, rel(Model, Kind, From, To), Targets).

83

