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Abstract. The most effective Artificial Intelligence (AI) systems exploit
complex machine learning models to fulfill their tasks due to their high
performance. Unfortunately, the most effective machine learning models
use for their decision processes a logic not understandable from humans
that makes them real black-box models. The lack of transparency on
how AI systems make decisions is a clear limitation in their adoption in
safety-critical and socially sensitive contexts. Consequently, since the ap-
plications in which AI are employed are various, research in eXplainable
AI (XAI) has recently caught much attention, with specific distinct re-
quirements for different types of explanations for different users. In this
paper, we briefly present the existing explanation problems, the main
strategies adopted to solve them, and the desiderata for XAI methods.
Finally, the most common types of explanations are illustrated with ref-
erences to state-of-the-art explanation methods able to retrieve them.

1 Introduction

Nowadays, Artificial Intelligence is one of the most important scientific and tech-
nological areas, with a huge socio-economic impact and a pervasive adoption in
every field of the modern society. High-profile applications such as autonomous
vehicles, medical diagnosis, spam filtering, image recognition, and voice assis-
tants are based on Artificial Intelligence (AI) systems. Modern AI is mainly
based on Machine Learning models that allow AI systems to reach impressive
performance in emulating human behavior. The most effective ML models are
black-box models [18], i.e., obscure decision-making or predictive methods that
“hide” the logic of their internal decision processes to humans, either because not
human-understandable or because not directly accessible. Examples of black-box
models include Neural Networks and Deep Neural Networks, SVMs, Ensemble
classifiers such as Random Forest, but also compositions of expert systems, data
mining, and hard-coded software. The choice for the adoption of these obscure
models is driven by the high performance in terms of accuracy [36]. As a conse-
quence, the last decade has witnessed the rise of a black-box society [27].

The lack of explanations of how these black-box models make decisions is
a restriction for their adoption in safety-critical contexts and socially sensitive

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0). BIRDS 2020, 30 July
2020, Xi’an, China (online).

6



domains such as healthcare or law. Moreover, the problem is not only for lack of
transparency but also for possible biases inherited by black-box models from ar-
tifacts and preconceptions hidden in the training data of the ML algorithms. Pre-
dictive ML models learned on biased datasets may inherit such biases, possibly
leading to unfair and wrong decisions. Consequences of biased misclassifications
can damage decision-makers and put certain societal groups at risk [9, 28, 39]
For instance, the AI software used by Amazon to determine the areas of the US
to which Amazon would offer free same-day delivery, unintentionally restricted
minority neighborhoods from participating in the program (often when every
surrounding neighborhood was allowed)1. Another example is relative to prop-
ublica.org. Their journalists have shown that the COMPAS score, a predictive
model for the “risk of crime recidivism” (proprietary secret of Northpointe),
has a strong ethnic bias. Indeed, according to this score, a black who did not
re-offend was classified as “high risk” twice as much as whites who did not re-
offend. On the other hand, white repeat offenders were classified as “low risk”
twice as much as black repeat offenders2. In [9] is shown that the neural network
used to train the English language words was encoding biases towards gender
and stereotypes. The authors show that for the analogy “Man is to computer
programmer as woman is to X”, the variable X was replaced by “homemaker”
by the neural network. Consequently, the research in eXplainable AI (XAI) and
on the study of explanation methods for obscure ML models has recently caught
much attention [1, 5, 18,26,40].

In addition, an innovative aspect of the General Data Protection Regulation
(GDPR) promulgated by the European Parliament, which has become law in
May 2018, are the clauses on automated decision-making. The GDPR, for the
first time, introduces, to some extent, a right of explanation for all individuals to
obtain “meaningful explanations of the logic involved” when automated decision
making takes place. Despite conflicting opinions among legal scholars regarding
the real scope of these clauses [15,24,37], there is a joint agreement on the need
for the implementation of such a principle is imperative and that it represents
today a huge open scientific challenge. However, without technology capable of
explaining the logic of black boxes, the right to explanation will remain a “dead
letter”. How can companies trust their AI services without understanding and
validating the underlying rationale of their ML components? Furthermore, in
turn, how can users trust AI services? It will be impossible to increase the trust
of people in AI without explaining the rationale followed by these models. These
are the reasons why explanation is now at the heart of responsible, open data
science across multiple industry sectors and scientific disciplines.

2 Explanation Methods

A black-box predictor is a ML obscure model, whose internals are unknown to
the observer, or they are known but uninterpretable by humans [18]. Therefore,

1
http://www.techinsider.io/how-algorithms-can-be-racist-2016-4

2
http://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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in ML to interpret means to give or provide the meaning or to explain in un-
derstandable terms the predictive process of a model to a human [5, 13]. It is
assumed that the concepts composing an explanation are self-contained and do
not need further explanations [18]. The most widely used approach to explain
black-box models and return interpretations is a sort of reverse engineering : the
explanation is learned by observing the changes in the black-box output by vary-
ing the input. A set of dimensions are identified to analyze ML interpretability,
and explanation methods and, in turn, reflect on existing types of explanations.

Explanation Problems. In the literature, we recognize two types of prob-
lems: black box explanation and explanation by design [18]. The black-box ex-
planation idea is to couple a ML black-box model with an explanation method
able to interpret the black-box decisions. The underlying strategy is to maintain
the high performance of the obscure model and to use an explanation method to
retrieve the explanations [12, 23, 29]. The explanation methods generally try to
approximate the black-box behavior with an interpretable predictor, also named
surrogate model. This kind of approach is the one more addressed nowadays in
the XAI research field. On the other hand, the explanation by design consists of
directly designing a transparent model that is interpretable by design and aims
at replacing the obscure ML model with the new transparent one [32,33].

In the literature, there are various models recognized to be interpretable.
Examples are decision tree, decision rules, and linear models [14]. These models
are considered easily understandable and interpretable for humans. They sacri-
fice performance for interpretability. Besides, most of them cannot be applied to
data types such as images or text, but only on tabular data.

Explanation Targets and Strategy. We recognize global and local expla-
nation methods depending on the target of the explanation. A global explanation
consists in providing an explanation that allows understanding the whole logic
of a black-box model and interpreting any possible decision. Global explanations
are difficult to achieve, and in the literature are provided only for tabular data.
On the other hand, a local explanation consists in retrieving the reasons for the
prediction returned by a black-box model for a specific case. While for a global
explanation, the interpretable surrogate approximates the whole black-box, for a
local explanation, the interpretable surrogate model is used to approximate the
black-box behavior only in a “neighborhood” of the instance analyzed. The idea
is that, in such a neighborhood, it is easier to explain the decision boundary [29].

In addition, we distinguish between model-specific and model-agnostic ex-
planation method depending on the strategy adopted. An explanation method
is model-specific, or not generalizable [25], if it can be used to interpret only
particular types of black-box models. If an explanation method is designed to
interpret a Random Forest [36] and internally use a distance between trees, such
a method cannot be used to explain the predictions of a Neural Network. On the
other hand, a generalizable or model-agnostic explanation method can be used
independently from the black-box model being explained because the internal
characteristics of the black-box are not exploited to retrieve the explanation [29].
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Desiderata of Explainable Methods. A set of desiderata should be con-
sidered when designing and using explanation methods [14]. The interpretability
aspect should measure to what extent a given explanation is human-understanda-
ble. Interpretability is generally evaluated with the complexity of the inter-
pretable surrogate model. For example, the complexity of a rule can be measured
with the number of clauses in the condition, for linear models with the number
of non-zero weights, while for decision trees with the depth of the tree. The
performance of the interpretable surrogate model form which explanations are
extracted is generally called fidelity and measures to which extent it accurately
imitates the black-box prediction. The fidelity is practically measured in terms
of Accuracy score, F1-score, etc. [36] with respect to the prediction of the black-
box model. Moreover, an interpretable model should satisfy guarantee fairness
by protecting minorities against discrimination [31], and privacy by not revealing
sensitive information [2]. Also, an explanation methods must return robust and
stable explanations: similar instances should have similar explanation for a given
black-box model [19]. In addition, since the meaningfulness of an explanation de-
pends on the stakeholder [7], the explanation returned must consider the user
background : common users require simple clarifications, while domain experts
can be able to understand complex explanations. Finally, the time that a user
is allowed to spend on understanding an explanation is another crucial aspect.
In contexts where the decision time is not a constraint, one might prefer a more
exhaustive explanation, while when the user needs to quickly make a decision, it
is preferable to have an explanation “easy to read”. Thus an explanation method
must consider time limitations.

Types of Explanations. Research on XAI is producing various alternatives.
Explanation methods differ one from another depending on the type of explana-
tion returned. In the following, we illustrate the most used types of explanations
and highlights how explanation methods build them.

– List of Rules. An explanation returned in the form of a list of rules implies
that rules are read one after the other, and the first rule for which the
conditions are verified is used for prediction. Rules are in form of if-then rule:
if conditions, then consequent the consequent corresponds to the prediction,
while the conditions explain the factual reasons for the consequent. The
CORELS method [3] is a transparent by design method able to build a list
of rules with the aim of globally replacing the black-box model. A compact
set of rules is returned by the transparent predictive method proposed in [21].

– Single Tree Approximation. The black-box predictor is approximated
with a decision tree that represents all the possible decisions. The TREPAN
explanation method [12] allows to globally explore a Neural Network through
a tree structure that, starting from a root, shows for every path the condi-
tions driving the decision process. TREPAN retrieves the decision tree by
maximizing a gain ratio [36] calculated on the fidelity with respect to the
predictions of an obscure Neural Network.

– Rule-based Explanation. A single if-then rule is used for local explana-
tions. The conditions of the rule explain the factual reasons for the pre-
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diction. The LORE explanation method [17] builds a local decision tree in
the neighborhood of the instance analyzed, and then extracts from the tree a
single rule revealing the reasons for the decision on the specific instance. The
ANCHOR method [30] returns if then rules called anchors. An anchor con-
tains a set of attributes with the values which are fundamental for obtaining
a certain prediction.

– Features Importance. A feature importance-based local explanation con-
sists of attributes equipped with positive and negative values. The explana-
tion consists of both the sign and the magnitude of the contribution of the
attributes for a specific prediction. If the value is positive, then it contributes
by increasing the model’s output, if the sign is negative, it decreases the out-
put of the model. LIME [29] adopts a linear model as the interpretable local
surrogate and returns the importance of the features as an explanation ex-
ploiting the regression’s coefficients. SHAP [23] provides the local unique
additive feature importance for a specific record exploiting shapely values.

– Saliency Maps. In image processing, typical explanations consist of saliency
maps, i.e., images that show the positive (or negative) contribution of each
pixel to the black-box prediction. Saliency maps are built for locally explain-
ing DNN models by gradient [34, 35] and perturbation-based [6] attribution
methods. These explanation methods assign a score to each pixel such that it
is maximized the probability of returning the same answer without consider-
ing irrelevant pixels. Under appropriate image transformations that exploit
the concept of “superpixels” also methods such as LORE and LIME can be
employed to explain black-box working on images.

– Prototype-based Explanations. An explanation based on prototypes re-
turns specimens similar to the instance analyzed, which makes clear the rea-
sons for the prediction. Prototype-based explanations can refer to any type of
data. In [11,22], image prototypes are used as the foundation of the concept
for interpretability [8]. In [20] is discussed the concept of counter-prototypes
called criticisms for tabular data, i.e., prototype showing what should be dif-
ferent to obtain another decision. Exemplar and counter-exemplars synthetic
images are generated by the ABELE explanation method [16] to augment
the interpretability of local saliency maps.

– Counterfactual Explanations. A counterfactual explanation shows what
should have been different to change the prediction of the black-box model.
Counterfactuals help people in reasoning on the cause-effect relations be-
tween observed features and classification outcomes [4, 10] and reveal what
should change in a given instance to obtain a different prediction [37]. The ex-
planation method proposed in [38] returns counterfactual explanations that
describe the smallest change that can be made to a given instance to obtain
a certain outcome by solving an optimization problem. The aforementioned
LORE [17], besides a factual explanation rule, also provides a set of coun-
terfactual rules extracted from the local decision tree, while ABELE [16]
returns synthetically generated counter-exemplar images.
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3 Conclusion

AI systems based on obscure ML models cannot be the long term solution for any
real application, especially those involving humans with the final predictions. Re-
search on XAI has strong ethical motivations aimed at empowering users against
undesired, possibly illegal, effects of black-box automated decision-making sys-
tems. Different types of explanations, and different explanation methods, permits
to retrieve the logic of machines, which can be completely different from the logic
of humans and resolve unexpected bugs and issues.

However, despite recent developments on XAI some questions remain open.
Are the existing explanation methods useful for the realization of the right of
explanation declared in the GDPR? Can the actual explanation methods ef-
fectively be exploited by business companies for the industrial development of
explainable AI services and products? Are explanation methods able to reveal
forms of discrimination towards vulnerable social groups, and are their immune
from other algorithmic bias and artifacts in the data? Only when these ques-
tions will have a positive answer, the research on explanation methods would
have reached a satisfactory level.
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