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Abstract. Explainable AI has recently paved the way to justify decisions
made by black-box models in various areas. However, a mature body
of work in the field of affect detection is still limited. In this work, we
evaluate a black-box outcome explanation for understanding humans’
affective states. We employ two concepts of Contextual Importance (CI)
and Contextual Utility (CU), emphasizing on a context-aware decision
explanation of a non-linear model, mainly a neural network. The neural
model is designed to detect the individual mental states measured by
wearable sensors to monitor the human user’s well-being. We conduct
our experiments and outcome explanation on WESAD and MAHNOB-
HCI, as multimodal affect computing datasets. The results reveal that
in the first experiment the electrodermal activity, respiration as well as
accelorometer and in the second experiment the electrocardiogram and
respiration signals contribute significantly in the classification task of
mental states for a specific participant. To the best of our knowledge,
this is the first study leveraging the CI and CU concepts in outcome
explanation of an affect detection model.

Keywords: Explainable AI· Affect detection · Black-Box decision ·
Contextual Importance and Utility.

1 Introduction4

Due to the exponential growth in producing wearable sensors and also the success
of machine learning methods in providing accurate analysis of such sensors’ out-
puts, monitoring patients and in general humans’ well-being have been facilitated
to a considerable degree [2]. However, since advanced artificial intelligence (AI)
methods such as deep learning models lack transparency, solely relying on such
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methods in critical decision-making processes is not recommended [14]. Health
practitioners finalize their decisions more confidently if they are also provided
with a concrete outcome explanation of such AI models. Explainable AI (XAI)
can furthermore enable end-users to follow their own health track. XAI has
recently attracted a great attention among research communities as well as
industries [4, 9]. Some scholars have theoretically scrutinized the XAI potentiality
[14, 23], while others made efforts to unveil the practical aspects [5, 10]. The main
concern in both aspects lies on the ground of intelligent systems transparency and
thereby appealing the experts or end-users trust. The role of XAI in addressing
the aforementioned issues has justified its applicability in a vast body of works
such as tutoring [18], fault diagnosis [3] and healthcare [16].

Despite some research efforts in associating deep learning models with XAI
techniques, the intersection of XAI and affective computing (e.g., affect detection)
is still immature and there are open rooms for researchers of this area. In this paper,
we study the outcome explanation of a neural network model designed to classify
humans’ state-of-mind. We employ two datasets including WESAD [20], and
MAHNOB-HCI [22], as publicly and academically available datasets respectively,
in the domain of multi-modal affective computing (see Section 4). Our main
focus is on signal-level explanation relying on the two concepts of Contextual
Importance (CI) and Contextual Utility (CU) proposed by Främling [8]. By
involving the two aforementioned concepts, we represent how important and
favorable different criteria (features) are. Both CI and CU represent numerical
values applicable in textual and visual representations and thereby understandable
to professionals and end-users.

The rest of the paper is organized as follows: a brief review of the recent corpus
of black-box outcome explanation in health-related works is given in Section 2.
We investigate the CI and CU concepts in Section 3. After introducing the
datasets and their specification in Section 4, we present the results in Section 5
which is followed by the conclusion and discussion about the future work.

2 Background

Contribution of AI in healthcare is mainly about certain practices including
diagnosis upon medical imaging or tabular data samples. These diagnosis are
expected to be transparent and explainable to its users such as physicians, other
medical practitioners and ideally the patients. Singh et al. [21] have categorized
different methods addressing the explainability upon medical image analysis
process, into attribution and non-attribution based methods.

Attribution-based methods are able to determine the contribution of an input
feature to a target output neuron (of the correct class) in a classification process
accomplished by a convolutional neural network (CNN). Due to their ease of
use, such methods are employed upon brain imaging in Alzheimer classification
task [6], retinal imaging to assist diabetic retinopathy [19] and also breast imaging
in estrogen receptor classification task [17].



Unlike the attribution-based methods, in non-attribution based or post-model,
another methodology than the original model is utilized on the given problem,
mainly independent of the latter model attributes [21]. As some examples of
non-attribution based methods used for the purpose of output explanation, we
can refer to concept vectors and also textual justification [21]. Testing Concept
Activation Vectors (TCAV) [24] is a concept vector method, capable of explaining
the features learned by different layers to the domain experts by taking the
directional derivative of the network in the concept space. In the context of text
justification, these models generate linguistic outputs that justify the classifier’s
output in an understanding way for both the expert users and patients. Lee. et
al. [12] applied a justification model to generate textual explanation associated
with a heat-map for breast classification task.

Apart from explanations in medical imaging, some studies in the literature
have focused on the explainability of AI methods prediction upon tabular physi-
ological and clinical data. The work in [15] examined three interpretable models,
mainly Generalized Linear Model, Decision Tree and Random Forest, on elec-
trocardiogram data (ECG) for the purpose of heart beat classification. Under
the magnitude of early clinical prediction, Lauritsen et al. [11] utilized a post-
model explanation module, decomposing the outputs of a temporal convolutional
network into clinical parameters. Deep Taylor Decomposition (DTD) was the
main tool of this module, providing the relevance explanation of prediction in a
Layer-wise Relevance Propagation (LRP) manner. Among few works addressing
the output explanation of human affect detection with tabular physiological
data, the authors in [13] suggested two explanation components in signal- and
sensor-level. The signal-level explanation was achieved by removing one of the
signals iteratively from the prediction process while the sensor-level explanation
was provided by applying entropy criterion to calculate the feature importance
of two chest- and wrist-worn sensors. Similar to our work, the applied dataset
was relied on WESAD. However, different from ours, this work could not provide
the importance extent of the chest-worn signals in a specific context.

3 Contextual Importance and Contextual Utility

One of the earliest work in the realm of black-box outcome explanation was
proposed by Främling [8] in 1996. He argued that expert systems had the main
contribution to explain any decisions. He added, however these systems were
mainly rule-based and any changes in the input values result in firing a set of
rules in a discrete manner. The gap of representing the outcomes of continuous
real-valued functions was the reason to go beyond symbolic reasoning models.

The notions of Contextual Importance (CI) and Contextual Utility (CU) were
proposed to explain the neural networks output in the context of Multiple Criteria
Decision Making (MCDM). In MCDM, decisions are established on a consensus
between different stakeholders preferences [7]. The stakeholders often consist of a
group of people and/or an abstract entity (e.g. economy), whose preferences are
highly subjective and more likely form a non-linear and continuous function. To



provide a convenient explanation of these functions in MCDM, it was reasonable
to explore how important each criterion was and to what extent it was favorable
in a specific context. These were the main reasons pushing the two concepts of
CI and CU forward. The concepts are formulated as following:

CI =
Cmaxx(Ci) − Cminx(Ci)

absmax − absmin
(1)

CU =
yij − Cminx(Ci)

Cmaxx(Ci) − Cminx(Ci)
(2)

Where Ci is the ith context (specific input of black-box referring as ‘Case’
in Section 5), yij is the value of jth output (class probability) with respect to
the context Ci, Cmaxx(Ci) and Cminx(Ci) are the maximum and minimum
values indicating the range of output values observed by varying each attribute
x of context Ci, absmax=1 and absmin=0 are also the maximum and minimum
values indicating the range of jth output (the class probability value).

We highlight that CI and CU return numerical values which allow us to
represent the explanations to the end-users in the form of visual (e.g., in the
form of graphs) or textual outputs.

4 Dataset Description and Preprocessing

We have tried two different datasets in order to evaluate our results. The first data
set is WESAD which is publicly available and applicable for the purpose of multi-
modal sensory analysis as well as detecting multiple affective states [20]. According
to the dataset’s protocol, there are three main affective states in addition to the
baseline state, including stress, amusement and meditation. These states have
been examined on 15 different subjects, wearing RespiBAN Professional device
on the chest and Empatica E4 device on the wrist. The former encompasses
of data collected from eight different signals, namely electrocardiogram (ECG),
electromyogram (EMG), electrodermal activity (EDA), temperature (TEMP),
respiration (RESP) and three-axes accelerometer (ACC0, ACC1, ACC2), while
the latter fetches blood volume pulse (BVP), EDA, TEMP, and accelerometer
signals data. All RespiBAN data are sampled under 700HZ, however the sampling
rates are different among Empatica E4 signals. BVP, EDA and TEMP data
have been recorded in 64Hz, 4Hz, and 32Hz respectively. Validating the study
protocols, a supplementary of five self-reports in terms of questionnaire were also
provided for each subject.

The WESAD dataset consists of around 4 million instances for each subject
and in total 60 million samples for all the 15 subjects. Due to the time complexity
of processing such a large dataset, we only extract the chest-worn signals of
one participant to detect the four aforementioned affective states. After down-
sampling the signals into 10HZ we end up with 29350 data instances for the
selected participant. One of the major properties of WESAD is that it is highly
imbalanced. The highest number of samples belongs to the baseline state while
the lowest amount refers to the amusement state. More specifically, the data
includes the following ranges: [0−11400] labeled as baseline state, [11400−17800]



labeled as stress state, [17800− 21550] labeled as amusement state and the rest
refers to the meditation state of our selected participant.

The second dataset is MAHNOB-HCI [22], only available to academia com-
munity with the aim of emotion recognition and multimedia tagging studies. The
dataset consists of two trials collecting multimodal physiological sensor data as
well as facial expression, audio signals and eye gaze data of 27 participants. The
physiological signals refer to 32 electroencephalogram (EEG) channels, two ECG
electrodes attached to the chest upper right (ECG1) and left (ECG2) corners
below the clavicle bones as well as one ECG electrode placed at abdomn below
the last rib (ECG3), two galvanic skin response (GSR) positioning on the distal
phalanges of the middle (GSR1) and index fingers (GSR2), a RESP belt around
the abdomen and a skin temperature (TEMP) placed at little finger. All signals
except EEG are accessible to the end-user in 256HZ sampling rate. To gather
this data, 20 video clips were used to stimulate the participants’ emotions in the
first trial while 28 images and 14 video fragments were shown to participants,
tagged by either correct or incorrect words in the second trial. Moreover, the
participants feedback were collected after each stimuli to provide the videos
annotations as well as agreement or disagreements of tags. In the first trial, 9
emotional labels such as amusement, happiness and surprised were under focus
while in the second trial only two modes of tag correctness or incorrectness were
under consideration. Due to the large size of the dataset, we only extracted ECG1,
ECG2, ECG3, GSR1, GSR2, RESP and TEMP data of one participant. Moreover,
we focused only on the first trial of this dataset with three emotional states,
mainly amusement, happiness and surprised for the purpose of classification task.
The accordant data accounts for 1920 instances after downsampling the signals
to 10HZ sampling rate.

5 Outcome Explanation

The data-driven method employed to classify data into four affective states is
a neural network consisting of one hidden layer with 100 units. The basic idea
behind these neural based networks is their capability of approximating non-linear
but differentiable variations. This capability makes local gradients meaningful
and thereby the importance of each feature explainable. Suppose we consider
the following data as an input instance of first dataset (henceforth is referred
to as the ‘Case’): 0.898 (ACC0), -0.003(ACC1), -0.179 (ACC2), -0.003 (ECG),
7.078 (EDA), 0.001 (EMG), 32.97 (TEMP), -0.865 (RESP). Given the ‘Case’,
the trained neural model results in ‘‘meditation’’ state (class) as the classification
output with the following probability: meditation class 97%, baseline class 0.4%,
stress class 0.1% and amusement class 2%. The same procedure could verify the
state of ‘Case’ in the second dataset. We examine: -849000 (ECG1), -544000
(ECG2), -777000 (ECG3), 2900000 (GSR1), 90 (GSR2), -1560000 (RESP), 26078
(TEMP) as the ‘Case’ of MAHNOB-HCI dataset. The classification output of
our network on this specific instance yields to ‘‘surprised’’ state with the highest



probability (100%) and to amusement and happiness states with the lowest
probability (0%).

According to the CI and CU formulas, the values of Cmaxx and Cminx are
required to examine the explanation. However, estimating Cmaxx and Cminx

is not a trivial process. To simplify the process, we have applied Monte-Carlo
simulation and generated 100 random samples for each feature. This process
provides varying in each feature of context (‘Case’) every time and allows to find
out how considerable the output has been changed. The samples are uniformly
distributed within the range of minimum and maximum values of signals in the
training set. To calculate the numerical values of Cminx and Cmaxx and later
CI and CU , we follow an iterative process. Each time, we modify the values of
one signal by one of the 100 generated samples while keeping the data of other
signals unchanged. Later, we calculate the class probability of each sample by
our neural network model. This provides the knowledge about minimum and
maximum class probability, implying for Cminx and Cmaxx in the context of
our specific instance. Accordingly, the values of CI and CU could be calculated.
The process is repeated eight times to extract the appropriate values for all the
eight signals of our problem space in the first experiment. In other words, eight
different Cminx, Cmaxx, CI and CU values are generated in total. The same
procedure is dominated on the second experiment, yet generating seven Cminx,
Cmaxx, CI and CU values in accordance with seven signals of MAHNOB-HCI
dataset. In all the iterations, the absmin and absmax values in Equation 1 are
set to 0 and 1 respectively, indicating all possible values for the class probability
(output). Moreover, CI and CU values range between [0−1]. To be more readable,
the values of CI and CU are then converted to the percentage scale.

Table 1: Numerical results of outcome explanation related to WESAD

ACC0 ACC1 ACC2 ECG EDA EMG TEMP RESP

Sample 0.898 -0.003 -0.179 -0.003 7.078 0.001 32.97 -0.865
Cmin 0.933 0.0 0.0 0.965 0.0 0.845 0.0 0.0
Cmax 0.999 0.969 0.959 0.972 0.999 0.969 0.732 0.991
CI% 7% 97% 96% 0.63% 100% 12% 73% 99%
CU% 54% 100% 100% 53% 97% 100% 100% 98%

(a) (b)

Fig. 1: (a) CI and (b) CU values of all signals in meditation state



Table 1 demonstrates the numerical results of the aforementioned process
regarding the first dataset. In addition, Figure 1 shows the visual representation
of how important and favorable the signals of the first dataset are to choose
‘‘meditation’’ state as the predicted class of our ‘Case’. The results reveal that
ACC1, ACC2, EDA and RESP are highly important and favorable signals
contributing in the outcome class, while the other signals except TEMP could
be ignored within the decision making process. More specifically, in theory, the
former signals produce CI and CU values around/equal to 100%, whereas the
latter signals provide CI values around zero in spite of (highly) favorable utilities.
In practice, the importance of EDA, TEMP and RESP signals could be considered
as the meditation state had been designed to de-excite participants after exciting
them in the stress and amusement states. This result in either lower average
conductance changes at the skin surface or lower variation in temperature and
breathing. Similar argument could be true for ACC1 and ACC2 to differentiate
the baseline state from meditation since the participants in general were allowed
to sit and stand in baseline while only to sit in a comfortable position in the
meditation state.

Table 2: Numerical results of outcome explanation related to MAHNOB-HCI

ECG1 ECG2 ECG3 GSR1 GSR2 RESP TEMP

Sample -849000 -544000 -777000 2900000 90 -1560000 26078
Cmin 1.0 0.0 1.0 1.0 1.0 0.0 1.0
Cmax 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CI% 0% 100% 0% 0% 0% 100% 0%
CU% 0% 100% 0% 0% 0% 100% 0%

(a) (b)

Fig. 2: (a) CI and (b) CU values of all signals in surprised state

Following the same procedure in the second dataset, the importance of signals
are illustrated in Table 2 and Figure 2. The results unveil that ECG2 and RESP
are highly contributing in the ‘‘surprised’’ state (CI and CU values are equal
to 100%). However, other physiological responses do not represent their relative
contribution (CI and CU values are equal to 0%). Asserting this argument,
we found that the statistical specifications of the classes in this database are
overlapped on all signals except ECG2 and RESP (see Figure 3). Therefore,



distinguishing the ‘‘surprised’’ class from ‘‘amusement’’ and ‘‘happiness’’ are
challenging by neural network relying on ECG1, ECG3, GSR1, GSR2 and TEMP
in comparison with ECG2 and RESP signals.

It should be noted that we further examined a few other instances of both
datasets with the same classes as the ‘Case’ and reached out to (rather) similar
results as the Tables 1 and 2.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3: Three classes of MAHNOB-HCI in (a) ECG1 (b) ECG2 (c) ECG3 (d)
GSR1 (e) GSR2 (f) RESP (g) TEMP signals

To better show the intensity of CI and CU values, we have used different
colors in Figures 1 and 2 related to the two datasets. The higher the CI and
CU values, the darker the colors become. Figures 4 (a) and (b) also represent



Table 3: Symbolic representation of the CI and CU values

Degree (d) Contextual Importance Contextual Utility

0 < d ≤ 0.25 Not important Not favorable
0.25 < d ≤ 0.5 Important Unlikely
0.5 < d ≤ 0.75 Rather important favorable
0.75 < d ≤ 1.0 Highly important Highly favorable

the textual explanation of CI and CU values related to all the signals. This
representation is based on a conversion method (see Table 3) from numerical
values to linguistic texts suggested by [1].

(a) (b)

Fig. 4: Textual explanation of model prediction for each signal in (a) WESAD
(b) MAHNOB-HCI

As an example of more granular level, Figure 5 represents each signal’s
variation within the ‘‘meditation’’ class in WESAD dataset. The red dot point
in all subfigures stands for the ‘Case’ sample. As shown in the figure, the ‘Case’
should be located somewhere between the Cminx and Cmaxx, comparable with
synthetically generated samples. This argument preserves the relative nature of
CU concept. The closer the ‘Case’ to Cmaxx, the higher utility the signal has
and in contrary, the further away the ‘Case’ from Cmaxx (closer to Cminx),
the lower CU is generated. However, inferring from TEMP and ACC2 signals
in WESAD dataset, (see Figures 5 (g) and (c)) the ‘Case’ probability exceeds
Cmaxx, basically contradicting our previous argument. To solve this problem,
we consider the ‘Case’ probability equal to Cmaxx, however one could define
CU with a constraint yij < Cmaxx(Ci). Moreover, in a situation where ‘Case’
has a lower value than Cminx, a constraint of yij > Cminx(Ci) enforces the
process to produce a random data with at least the same value as the ‘Case’
probability. Therefore, we reformulate the Equation 2 as follows:

CU =
yij − Cminx(Ci)

Cmaxx(Ci) − Cminx(Ci)

s.t. Cminx(Ci) < yij < Cmaxx(Ci)

(3)



In conclusion, further experiments are required to explore the limitations
of CI and CU concepts in the context of black-box outcome explanation and
multimodal affective computation. Although these concepts could provide expla-
nations to both the expert and non-expert users in terms of visual and textual
representations, yet such explanations alone do not meet the requirements of
real-world applications. A higher level of explanation should be integrated w.r.t
both the skills of experts as well as the affective state of non-expert users. How-
ever, as we mentioned previously, CI and CU concepts are theoretically correct
from the Decision Theory point of view [7].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5: Cmin and Cmax values for input variations in (a) ACC0 (b) ACC1 (c)
ACC2 (d) ECG (e) EDA (f) EMG (g) TEMP (h) RESP signals in WESAD



6 Conclusion

In this paper, we examined one of the earliest concepts in the black-box outcome
explanation. We filled out the gap in explaining the detection of human mental
states by utilizing Contextual Importance (CI) and Contextual Utility (CU)
concepts. The concepts are assigned as model-agnostic explanations [5], applicable
in linear and non-linear black-box models. In this study, we focused on neural
network model as a non-linear function approximator. For this purpose, we
conducted two experiments on WESAD and MAHNOB-HCI, as publicly and aca-
demically available benchmarks in the area of multimodal affective computation.
Choosing wearable sensors, different signals were experimented in the process
of personalized decision making in the first and second datasets. We further
explained the outcome of neural network by CI and CU . The results revealed
that mainly electrodermal activity, respiration as well as accelorometer, have
significantly contributed in the ‘‘meditation’’ state of the first experiment, in
terms of feature importance and utility. Moreover, in case of second experiment,
the electrocardiogram and respiration provided intervention in the ‘‘surprised’’
outcome of examined neural network. More interesting finding of explainability
referred to the fact that not only the sensors types, but also their position on the
body affects the expression of mental states as in the first experiment only ACC1
and ACC2 and in the second experiment only ECG2 proved their contribution
in the decision making. In conclusion, this work opened a new room of XAI in
health domain applications by critically examining affect detection problems. For
future work, we will focus on improving the CI and CU formulations to explain
the prediction of more complex models such as deep neural networks, consider-
ing additive information from the hidden layers. In addition, augmenting the
generated explanation with further clarifications can be performed for different
types of users.
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