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Abstract. This paper discusses the optimization of procedurally generated po-

lygonal landscapes. The Level of Detail method is considered and its shortcom-

ings are listed. The proposed approach to solving the optimization problem 

based on the Ramer-Douglas-Pecker algorithms for the three-dimensional case, 

Delaunay triangulation, and the Hausdorff metric is presented. To achieve bet-

ter results in number of triangles of the optimized mesh and maintaining land-

scape detail than some LOD implementations the follows is proposed: from a 

height map, in a certain way, points are selected that most accurately convey the 

curvature and terrain features. Other points are deleted. The basis of the ob-

tained points, an irregular triangulated grid is constructed. The proposed meth-

od for analyzing the similarity of polygonal models of an arbitrary topological 

type can serve as a basis for the implementation of the corresponding algo-

rithms. The use of the weighted average when calculating the normal vectors, 

according to the authors, increases the accuracy of the subsequent calculation of 

the Hausdoff metric.  Issues of assessing the quality of optimization are consid-

ered. A mathematical model is proposed. A prototype of the optimizer for the 

polygonal mesh was developed and tested. 
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1 Introduction 

Procedural landscape generation (PGL) is the automatic creation of a three-

dimensional landscape model without human intervention or with its minimal contri-

bution. This approach is often used in the field of computer games, in various simula-

tors or training programs, as well as in the film industry. 

One of the most common methods of procedural landscape creation is the genera-

tion of a height map using various stochastic or fractal algorithms [1, 2]. The height 

map in this case is a black and white image in which each pixel contains information 

about the height of the future point of the landscape polygonal mesh. There are vari-
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ous programs that allow you to create such maps, for example, World Machine or 

L3DT. 

Procedural landscape generation is used in many industries, in particular, in the 

gaming industry, in cinema, in training programs, simulators, etc. In some cases, the 

main task of PGL is to achieve the maximum realism of landscapes, in some - quickly 

and variably create a virtual environment.  

When the terrain is generated for real-time rendering, as is the case in games or, for 

example, navigation applications, there is a need to optimize the 3D model, because 

otherwise you may encounter a significant delay between rendering frames. And if in 

computer games this situation is more unpleasant than critical, then in navigation 

applications that display terrain data received from the satellite, such a problem can 

cause extremely negative consequences.  In computer games, this delay can make the 

process of the playing uncomfortable, in the worst situations – impossible. However, 

in navigation applications render delays can cause extremely negative consequences. 

In this situation, 3D models contain information about real terrain, which means that 

correct navigation requires a timely and most reliable display of the terrain data re-

ceived from the satellite. At the stage of landscape generation, it can only be opti-

mized at the level of the polygonal mesh, that is, to reduce the number of polygons. 

At the same time, it is highly desirable to keep the landscape recognizable, not to 

distort the silhouette, and in special cases, to preserve distinctive details. All of the 

above indicates that there is a problem associated with optimizing the landscape mod-

el and maintaining sufficient detail. 

2 Existing Optimization Methods 

In modern computer graphics systems, especially those operating in real time, several 

types of algorithms are used to reduce computational costs. One of these algorithmic 

approaches is to display an object with a different level of detail in terms of visual 

resolution. When creating each subsequent level of simplification, small model details 

that do not actually affect the image structure are combined and replaced with larger 

ones. This technology is known as Level of Detail (LOD) [3]. 

We used a simple version of algorithm LOD, which reduces the number of points 

with a certain step evenly over the entire plane. There are a lot of more complicated 

methods of LOD [4], which modify the polygonal mesh partially, depending on the 

detail of the terrain fragment or the distance between fragment and camera. At this 

stage, we are considering only a fragment of such a complexly modified mesh to un-

derstand how our method works with different types of landscapes. Obviously, if the 

level is too low, the landscape model may lose a significant amount of detail, but if 

you increase it, there is a risk of going beyond the limit in terms of the number of 

model polygons. Also, the quality of the result of this method depends strongly on the 

"roughness" of the landscape, that is, on how detailed it is. 
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Fig. 1. An example of the work of the considered LOD method. 

For citations of references, we prefer the use of square brackets and consecutive num-

bers. Citations using labels or the author/year convention are also acceptable. The 

following bibliography provides a sample reference list with entries for journal arti-

cles [4], an LNCS chapter [5], a book [6], proceedings without editors [7], as well as a 

URL [8]. Consider two different landscapes that differ from each other in the degree 

of smoothness (Fig. 1). For each landscape, we perform a series of actions: 

1. Optimize the landscape using the LOD method, having examined and saved all the 

levels of detail possible for a given polygonal mesh; 

2. For each optimized grid, we calculate the Hausdorff distance [9, 10] relative to the 

original high-poly model. An image representing inputs with caption (flattened and 

detailed) (see Fig. 2). 

 

 

Fig. 2. An example of the work of the considered LOD method. 

The graph and table of measurements of the dependence of the Hausdorff distance on 

the level of detail are presented in Figure 3. 
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Fig. 3. An example of the work of the considered LOD method. 

Most iterative algorithms for simplifying polygonal models can be divided into three 

categories [10]: 

• Thinning peaks; 

• Coagulation of the ribs; 

• Thinning faces. 

Clusters are a three-dimensional grid, i.e., the coordinates of the vertices are actually 

rounded with a given accuracy, and when several vertices coincide, after rounding, 

the vertices are replaced by one. All references of the set K to collapsed vertices are 

replaced by references to a new vertex. The advantage is high speed, the disadvantage 

is not very high quality of the resulting models. 

More precisely, the topology of the model is transmitted by the vertex thinning al-

gorithm, which is executed in several passes. At each stage, the vertices located from 

the averaged plane of neighboring vertices are removed at a distance less than the 

specified one. One of the problems that occurs during the implementation of the algo-

rithm is the removal of faces belonging to deleted vertices. In this case, a hole may be 

formed, which is filled with a triangulation operation. The algorithm gives good re-

sults, but triangulation operations require additional time. Algorithms based on fold-

ing of edges can be considered as a special case of removing vertices, but they do not 

require additional triangulation operations. Therefore, their implementation gives 

good results in terms of quality and speed. Coagulation of an edge is a merger of two 

vertices forming an edge into one. In this case, in the general case, the removal of two 

triangular cells occurs. 

The sequence of coagulation of the edges is determined by some measure of error, 

which reflects the local geometric deviation of the cells. The methods for calculating 

this error determine the difference between the algorithms of this class. 

The following error measures are known that are used to select a strategy when 

folding an edge: 

• Determining the average distance between new triangles and sample points in the 

original model. 

• Finding the tolerance value as a convex combination of spheres located at each 

vertex of simplification. The choice of faces is based on the smallest length, and 
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the new vertex is positioned so that the new surface is guaranteed to lie within this 

tolerance. 

• Support for communication between points of the original model and the corre-

sponding neighborhoods on the simplified model. 

Due to the fact that both in nature and in various virtual environments, the landscape 

is more “rough” than smoothed, it is necessary to find an approach to optimizing 3D 

landscape models better than LOD. 

3 Proposed Approach 

As noted earlier, the generation of landscapes using elevation maps leads to the crea-

tion of a regular grid, which can still be highly polygonal, and the LOD method can-

not always maintain the desired detail or reduce a sufficient number of polygons. 

Therefore, it is proposed to modify this approach and generate terrain from a height 

map of an irregular triangulated optimized grid using a pair of Ramer-Douglas-Pecker 

[8] and Delaunay triangulation algorithms. The work uses an algorithm for lines. 

There are several publications about the 3D version, they were tested, but the results 

were unsatisfactory. 

We adapted an original Ramer-Douglas-Pecker algorithm for a two-dimensional 

array of points. Each point has two status variables called rowStatus and columnSta-

tus. In the first step of the adapted Ramer-Douglas-Pecker algorithm the rows of the 

points array are considered. If the point is not important its rowStatus is set to 

FALSE. In the second step algorithm processes the columns of the array in the same 

way, if point is not important in the column its columnStatus is set to FALSE. In the 

final step points with both positive statuses are kept. This new array of points will 

compose an optimized terrain mesh. 

To achieve better results in number of triangles of the optimized mesh and main-

taining landscape detail than some LOD implementations the follows is proposed: 

• From a height map, in a certain way, points are selected that most accurately con-

vey the curvature and terrain features. Other points are deleted; 

• Then, on the basis of the obtained points, an irregular triangulated grid is con-

structed [3]. 

In this approach, in step 1, two algorithms will be used: Diamond Square [4] and Per-

lin Noise [5]. The generation results with their help are very different from each other 

and generate fundamentally different landscapes, which will allow taking into account 

different situations in the developed approach. Using DiamondSquare  produces 

rougher mountain surfaces, while Perlin Noise can generate smooth, hilly terrain (see 

Fig. 4). 

Step two is the most important. It is the algorithm of this stage that will determine 

the quality of preservation of landscape detail. In search of a suitable solution, it was 

found that similar tasks of reducing landscape data are solved in the fields of topogra-

phy and geodesy. So, in [11], various methods for selecting points from raster surface 



6 A. Mezhenin, A. Shevchenko 

data obtained from a satellite are presented. Due to the relative simplicity of imple-

mentation and versatility, the Ramer-Douglas-Pecker algorithm for three-dimensional 

data was chosen for the approach being developed [13]. In the simplest case, this 

algorithm has one configurable parameter - ε, with which you can adjust the number 

of deleted points. 

 

 

Fig. 4. DiamondSquare algorithm example. An example of the Perlin Noise algorithm. 

Finally, at the third step of the proposed approach, the obtained control points will 

serve as the basis for constructing the Delaunay triangulation. There are a lot of ways 

to construct such a triangulation; many of them are described in [14]. In order not to 

spend too much time on complex implementations, it was decided at this stage to 

implement the Delaunay triangulation with a simple iterative algorithm. 

4 Optimization Quality Assessment 

The criteria used in the simplification process are highly differentiated and do not 

give the total value of the simplification error. In fact, many algorithms do not return 

measures of the approximation error obtained by simplifying the polygon mesh [15-

18]. 

In most cases, the Root Mean Square Error (RMSE) is used to estimate the accura-

cy of 3D model reconstruction or to solve simplification problems, 
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This approach, according to the authors, does not allow obtaining reliable results. 

One of the possible solutions to this problem is to use the Hausdorff dimension, which 

will allow obtaining a quantitative estimate of the similarity of polygonal objects [6, 

7]. 

For the sake of simplicity, let us imagine discrete 3D models represented by trian-

gular meshes, since this is the most general way of representation of such data. The 

triangular mesh M will be a representation of the ensemble of points P in R3 (apices) 

and the ensemble of triangles T that describe the connection between the apices of P. 

Let us denote the two continuous surfaces S and S ', and 
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where  – is the Euclidian norm. 

Therefore Hausdorff  metrics between S and S':  . It is important to understand the 

fact that the metrics is not symmetrical, h.e. Let us denote  as the direct distance,   as 

inverse distance.  Then the symmetrical metrics: 
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Symmetric metrics ensures a more precise measurement of an error between two 

surfaces, since the calculation of a “one-way” error can lead to significantly underes-

timated distance values, as it was shown in Figure 5. 

 

Fig. 5. Distance Comparison. Projection Construction. 

One can see that 
),( 'SSd

is smaller than 
),( ' SSd

, since  
),(),( ' BSdSAd 

. 

Thus, a not very large one-way distance does not mean a small presentation. The cal-

culation of the Hausdorff distance between two discrete surfaces   
),( TPM

 and   is 

related to the preceding definitions. Let us focus on calculation of the Hausdorff di-

rect distance, h.e.  , since the symmetric distance can be calculated from the direct and 

inverse distances. The distance between any point p from M (p is assumed not to be 

from P) and  
'M  can be calculated from the estimation of the distance minimum 

between p and all triangles 
'TT  . When the orthographical projection  p 'of  p on 

the plane T' is inside the triangle, the distance between the point and the triangle is 

simply a distance from the point to the plane. When the projection remains outside T ', 

the distance between the point and the plane is the distance between p and the closest 

p " from T', which should lie on one of the sides of T ' (Fig. 5). 

Although d(p,S')  can be calculated for any point p, it is essential to perform sam-

pling to calculate the maximum pєS. Each T triangle is sampled, and the distance 

between each sample and M 'is estimated. Each triangle sampling is performed as 

follows: two sides of the triangle are considered as directions for the sample lattice. In 

accordance with the criterion of length, each side is selected with n points. By means 

of directions, it is easy to construct a 'correct' mesh of the triangle under considera-

tion. According to this sampling, n (n + 1) / 2 samples are constricted in each triangle. 

An interesting property of this sample is that the triangle can be split into smaller ones 
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that possess all the same areas, which leads to much simpler calculations of the inte-

grals taken through surface. Representative illustration of a sample made on a triangle 

for n = 5. The sides adopted as main directions are in bold and the samples are speci-

fied with black dots. 

5 Experimental Results 

The optimizer prototype is implemented in Unity3d, in C #  (Figure 6). 

 

 

Fig. 6. Unity3d environment. Code snippet. 

During testing, the following independent variables were set: 

• The size of the landscape in points; 

• Algorithm for generating height maps: Perlin Noise or Diamond Square; 

• The parameter ε of the Ramer-Douglas-Pecker algorithm, on which the number of 

discarded points depends; 

• The lod parameter of the Level of Detail optimization algorithm. 

As the measured characteristics will be considered: 

• The number of triangles / vertices of the optimized model. Measurement scale: 

absolute. This parameter is necessary for comparing optimized and non-optimized 

models, as well as for calculating the degree of optimization, which will be men-

tioned later. 

• The Hausdorff distance between the high-poly model and the optimized one. 

Measurement scale: absolute. Hausdorff distance will show how the optimized 

model differs from the original. This metric will be calculated in the MeshLab 

package, where heat maps will also be built, which will make it possible to judge 

how well or poorly the detail is preserved during optimization. 

• The degree of optimization as a percentage of the number of points of the high 

poly model: Measurement scale: absolute. This parameter will be calculated based 

on the number of vertices or triangles of the optimized and original model. This is 

necessary in order to be able to compare models optimized in different ways. So, 

with one degree of optimization, they can have different Hausdorff distances and 

different heat maps. 
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The results of the optimizer are presented in Fig. 7. As an example, it can be seen that 

the density of points is higher precisely in places of detailed landscape - that is, on 

hills and depressions. 

 

 

Fig. 7. Optimizer Results. 

6 Conclusion 

Procedural landscape generation (PGL) is the automatic creation of a three-

dimensional landscape model without human intervention or with its minimal contri-

bution. This approach is often used in the field of computer games, in various simula-

tors or training programs, as well as in the film industry. The proposed approach to 

procedural landscape generation will allow the generation of an irregular triangulated 

grid that will more accurately transmit a height map than a regular grid optimized by 

the LOD method. In addition to maintaining a certain level of detail, the developed 

method will generate a landscape with fewer triangles than a landscape optimized by 

the LOD method. The proposed method for analyzing the similarity of polygonal 

models of an arbitrary topological type can serve as a basis for the implementation of 

the corresponding algorithms. The use of the weighted average when calculating the 

normal vectors, according to the authors, increases the accuracy of the subsequent 

calculation of the Hausdoff metric. The proposed approaches can find application in 

the problems of assessing the quality of algorithms for reconstruction and recognition 

of 3D models, as well as in problems of multiscale representation of polygonal mod-

els. 
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