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Abstract. The paper considers an original approach to the semi-synchronous cal-

culation of the luminance of caustic and indirect illumination for the group of 

methods based on the bidirectional stochastic ray tracing with backward photon 

maps. The designed parallelization method uses the two-level threads hierarchy. 

The low level of this thread hierarchy is synchronous calculations of the part of 

the whole image defined by a randomly generated pixel mask which is applied to 

the whole image. The top level is semi-synchronous parallelization level that con-

sists groups of the low level threads which of them calculate own part of the 

whole image in a way similar to asynchronous calculations. As the top level is 

semi-synchronous it means that when calculating the luminance of the caustic 

and indirect illumination, the threads of the low level have access to the data 

accumulated in the backward photon maps of the other parallel threads of the 

semi-synchronous level. A special algorithm for organizing an access to data of 

the upper-level threads avoids delays associated with data synchronization. The 

comparison of the developed solution with purely synchronous and asynchronous 

parallelization methods is presented. 

Keywords: Ray Tracing, Photon Maps, Backward Photon Maps, Parallel Com-

puting. 

1 Introduction 

Realistic rendering is a significant component that is commonly used in the modern 

realistic visualization, virtual prototyping and virtual reality systems. In addition, it is 

used to solve a wide range of applied problems, including the realistic images forming, 

optical effects simulation, virtual prototyping of complex optical systems, etc. With 

increasing computing power and computation architecture complexity of modern com-

puter systems, both the complexity of tasks for virtual prototyping and the required 
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accuracy of calculations raise. The tasks of virtual prototyping, solved by physically 

correct realistic visualization methods, include modeling the illumination of optical sys-

tems, modeling the human perception of synthesized images formed by complex optical 

systems, such as, for example, virtual or mixed reality systems, indicators on the wind-

shield, and others. 

Traditionally realistic rendering algorithms are based on the Monte-Carlo ray tracing 

methods which are used to calculate the luminance. These ray tracing methods can be 

forward, backward or bidirectional. The most universal of these method for calculating 

the physically correct luminance of indirect and caustic illumination are the methods 

based on the use of photon maps [1, 2]. These rendering methods have a good parallel-

ization capability, however effective usage of the photon map in a multi-core environ-

ment is a challenging task. Despite there are existing solutions aimed at the effective 

CPU or GPU ray tracing as, for example, Intel Embree [3], Nvidia RTX [4] or AMD 

RadeonRays, they do not solve the problem of the effective processing of the traced 

rays for the needs of the realistic rendering with photon mapping. So, the research and 

development of effective rendering methods using all available computation resources 

of modern multi-core CPUs with continuously raising number of cores is still an urgent 

challenge. 

There are existing solutions aimed on parallelizing the photon mapping rendering 

algorithms using synchronous calculations on multi-core CPU [5], out-of-core photon 

mapping [6, 7], massive parallel calculations with GPUs [8, 9], distributed simulations 

[6, 10] and cloud rendering [11]. At the same time the rendering algorithm might be 

aimed either at the speed to achieve the real-time rendering or at the physical correct-

ness of the simulated image. In the scope of the current article we concentrated on the 

effective usage of the backward photon maps in a multi-thread environment when ren-

dering with the stochastic progressive backward photon mapping (SPBPM) method on 

a single-CPU workstation with multiple cores with aim at the physical correctness of 

simulation. 

2 Rendering parallelization 

2.1 Rendering method 

In the scope of the current research we used the method based on bidirectional ray 

tracing with backward photon mapping [12, 13]. Opposite to the traditional photon 

mapping based methods the backward photon maps are formed by the backward rays 

emitted from the camera and luminance transferred by forward rays is accumulated in 

these maps to form the final image. The general workflow of the rendering method is 

shown on the Fig. 1. The rendering method consist of four main steps: 

1. Backward path tracing when the backward paths from the camera are generated and 

traced in the scene with the direct light and BDF samplings to account the direct 

luminance. 

2. Backward photon maps forming along with creation of the acceleration structures. 
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3. Forward ray tracing when forward rays from light sources are generated and traced 

in the scene. By intersecting with previously formed backward photon maps, the 

indirect and caustic luminance is accumulated. 

4. Final image forming when the luminance accumulated in backward photon maps is 

added to corresponding pixels of the image and weighted. The image accuracy is 

estimated and if the required accuracy is not achieved then calculation continue from 

the first step. 

 

Fig. 1. General workflow of the used backward photon mapping rendering method. 

2.2 Traditional parallelization methods 

The traditional parallelization methods used for ray tracing-based rendering are 

synchronous and asynchronous calculations. Both traditional methods were 

implemented and tested on 12 cores of the Intel Xeon 6230 CPU and standard Cornell 

box scene. Ray tracing and processing speedup test results are presented on Fig. 2 and 

Tables 1 and 2. 

Synchronous calculations method for parallelizing the rendering process on a multi-

core system is using all available cores in a synchronous way. In this case all threads 
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share the same memory pool and render the same scene in synchronous way. The main 

problem of this approach is presence of the non-parallelizable parts of the algorithm 

that according to the Amdahl’s law [14] cause the significant ray tracing and processing 

slowdown when increasing the number of cores. As it can be seen from the presented 

graph the rays tracing and processing speed growth almost stops at some point when 

increasing the number of used computation cores. 

In opposite to the synchronous calculations method the asynchronous calculations 

use one main thread and a group of computation threads. Each of these computation 

thread performs the independent rendering of the whole image, and the main thread is 

used to control the computation threads and gather rendering results from the 

computation threads. Due to asynchronous nature of calculation all computation threads 

use their own private memory and as result it multiplies the memory usage of the whole 

rendering process by number of computation threads. As result as it can be seen from 

the presented graph the number of traced and processed rays growth linearly when 

increasing the number of the used cores. 

 

Fig. 2. Test results for traditional synchronous and asynchronous parallelization methods. 

At the same time after 10 minutes of calculations using all computation cores the syn-

chronous method achieved the accuracy of 3.9%, while asynchronous method achieved 

the accuracy of 5.1%. So even if asynchronous method traces and processes more rays 

the accuracy attained after 10 minutes of calculations of the same scene is lower com-

paring to synchronous calculations. The main reason of this slowdown is that in case of 

the asynchronous calculations the whole available memory is split between threads and 

as result rays are processed in smaller groups resulting in less connections made be-

tween light sources and camera pixels. 
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2.3 Semi-synchronous parallelization method 

The research goal was to unite the scalability of the asynchronous calculations with 

higher accuracy of the synchronous calculations in the most effective way. So, in the 

scope of the current research the semi-synchronous parallelization method was devel-

oped. This method consists of two parallelization levels: synchronous and semi-syn-

chronous. 

The first parallelization level is synchronous rendering of the part of the whole scene 

image defined by the random mask, mainly of 32x32 pixels size. This mask defines 

image pixels that are used at the backward ray tracing step for the backward photon 

map forming. Each rendering step is parallelized independently in a synchronous way 

with one main thread that controls the rendering method workflow. The synchronous 

parallelization level is shown on the Fig. 3. 

 

Fig. 3. Synchronous parallelization level. 

The second parallelization level is semi-synchronous that unites several of synchronous 

thread groups to render the whole scene in semi-synchronous way. Each group of 

synchronous threads have their own random mask. These masks are generated by the 

main thread so that they cover all image pixels and at the same time do not intersect 

with each other. Once in a several number of rendering phases all threads are 

synchronized, the whole rendered image is formed, and masks are re-randomized. This 

re-randomization is required to guarantee that all synchronous thread groups have about 

equal load and all image pixels are processed equally. Each of the synchronous thread 

groups uses their own backward photon maps as result multiplying the memory usage 

required to store maps by the number of synchronous thread groups, however the size 

of each of these maps can be made smaller comparing to a map built for the whole 

image. The semi-synchronous parallelization level is shown on the Fig. 4. 

 

Fig. 4. Semi-synchronous parallelization level. 
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It is possible that at the forward ray tracing step of the rendering method the forward 

ray traced by one synchronous group of threads do not find an intersection with the own 

backward photon maps, however this ray might result in the luminance forming in 

backward photon maps of the other synchronous groups of threads. To increase the ray 

processing ratio of the traced forward rays it is required provide an access to all 

backward photon maps that exist at the moment. This means that some flag should be 

maintained by the backward photon maps owner indicating that maps are available and 

open for other threads to be used. At the same time these maps should not be closed 

and deleted while some other thread is using them. The workflow of the rendering 

process in a synchronous group of threads with opening and closing an access to the 

own backward photon maps is shown on the Fig. 5. 

 

Fig. 5. General workflow of the single thread of the backward photon mapping rendering method 

with shared photon maps. 
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This opening and closing the access to the own backward photon maps should be per-

formed without interrupting the calculation process and without using the critical sec-

tions. So, in the scope of the current research the algorithm of asynchronous access to 

the backward photon maps was developed. This algorithm uses only atomic operations 

both to open and close the access to the own backward photon maps and to gain and 

release access to the other thread’s backward photon maps. 

For these needs the backward photon maps active thread counter is stored along with 

along with each of the backward photon maps. This counter shows how many inde-

pendent threads are currently accessing corresponding map. If this counter is equal to 

zero that means that maps either do not exist or are not open for access by not-owner 

thread. If the counter is more than zero, then maps are available for other threads to be 

used. Only the thread that created photon maps can increase the counter from zero state. 

The owner thread can decrease the corresponding counter to zero only if it is equal to 

1 that means that no other thread is currently using these maps. To open and close the 

access to the own backward photon maps at the beginning and end of the forward ray 

tracing step the following algorithm is used: 

1. Increase the own backward photon maps active thread counter by 1 with an atomic 

increment operation. This would mark the own backward photon maps as ready to 

be used during forward ray tracing step for indirect and caustic luminance calcula-

tion by other threads. 

2. Proceed to the forward ray tracing along with indirect and caustic illumination cal-

culation using both own backward photon maps and backward photon maps of the 

other threads that are open for access at the moment. 

3. When the desired number of forward rays are traced and processed try to perform 

the atomic compare-and-swap operation to decrease the own backward photon maps 

active thread counter from 1 to 0. 

a. If the compare-and-swap operation succeeds, then it means that the current thread 

was the last one accessing these backward photon maps and new access is suc-

cessfully closed for other threads.  

b. If the compare-and-swap operation fails it means that some other thread is still 

accessing current backward photon maps and they cannot be closed at the mo-

ment. In this case more forward rays are traced and processed until this compare-

and-swap operation can be successfully completed. 

As result the thread that created the backward photon maps performs the forward ray 

tracing and processing until two conditions are fulfilled: first the desired number of 

forward rays are traced and second the access to the own backward photon map can be 

successfully closed. To guarantee that thread do not get stuck in the forward ray tracing 

step the forward ray tracing step the thread stops using other backward photon maps 

after the required number of forward rays is reached. The workflow of the algorithm of 

opening ang closing an access to the own backward photon maps at the forward ray 

tracing step is shown on the Fig. 6. 
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Fig. 6. Opening and closing the access to the own backward photon maps at the forward ray 

tracing step. 

The forward ray tracing step is also modified to account the indirect and caustic 

luminance that might be formed in backward photon maps of the other threads that are 

available at the moment of the forward ray tracing. To gain the access to the backward 

photon maps of the other threads it should temporary increase the other thread’s 

backward photon maps active thread counter to let it know that it is currently being 

used. The following operations are performed: 

1. First of all, it should check the required backward photon maps active thread counter. 

If it is equal to zero, then maps are not available and should not be processed when 

calculating the indirect and caustic luminance formed by the current ray. 

2. If the backward photon maps active thread counter is more than zero, then try to 

increment it by 1 with an atomic compare-and-swap operation. 

3. If the compare-and-swap operation failed, then access was not granted, and this map 

is ignored when processing current forward ray. 

4. If the compare-and-swap operation was successful, that means that access to the 

other thread’s backward photon maps was successfully granted. 

5. If an access was granted, then intersection of forward ray with other thread’s back-

ward photon maps is analyzed and in case of success the indirect and caustic lumi-

nance are accounted in corresponding backward photons. Also, the forward ray is 

accounted in the total energy processed by this backward photon map. 



The Two-Level Semi-Synchronous Parallelization Method 9 

6. After backward photon map processing is finished the corresponding backward pho-

ton maps active thread counter is decreased by 1 with an atomic decrement operation 

to release the access. 

All operations related to increasing the luminance accumulated in the backward photon 

map and corresponding ray counters are implemented using solely atomic operations 

to ensure correct luminance accumulation from concurrent threads. The workflow of 

the forward ray tracing with accounting luminance in all available backward photon 

maps is shown on the Fig. 7. 

  

Fig. 7. The forward ray tracing with accounting luminance both in own backward photon maps 

and in backward photon maps of other threads. 

As result at the step when the forward ray tracing is performed the thread’s own 

backward photon maps are available for other threads to accumulate indirect and caustic 

luminance and all backward photon maps that are available at the moment of tracing 

the forward ray are used to account the ray’s luminance. As only atomic operations are 

used in the backward photon maps access algorithms no special synchronization 

between threads is required that gives linear scalability of the rendering process when 



10 A. Zhdanov, D. Zhdanov 

increasing the number of cores. Due to the uniform task distribution between different 

synchronous thread groups this overlapping is quite high and results in more effective 

forward ray tracing along with indirect and caustic luminance accumulation. 

3 Results 

The presented parallelization method was implemented and integrated in Lumicept 

light simulation software [15] and tested along with traditional synchronous and 

asynchronous methods on the same PC with the 12 cores of the Intel Xeon 6230 CPU 

and standard Cornell box scene. Ray tracing and processing speedup test results are 

presented in Tables 1-3 and on Fig. 9. Corresponding rendering results are shown on 

Fig. 8. 

   

Fig. 8. Rendering results attained with synchronous, asynchronous and semi-synchronous 

methods (from left to right) after 10 minutes. 

Table 1. Test results for synchronous parallelization method. 

Cores used 1 core 2 cores 4 cores 8 cores 12 cores 

Forward rays 20689305 34199691 53129762 64440303 71715295 

Backward paths 26788848 44482520 68986597 83987647 93785374 

Speedup 1 1.66 2.57 3.13 3.49 

Table 2. Test results for asynchronous parallelization method. 

Cores used 1 core 2 cores 4 cores 8 cores 12 cores 

Forward rays 20717568 34101290 89476702 220730378 315318894 

Backward paths 26790396 44481495 72347407 102960933 120367282 

Speedup 1 1.65 3.41 7.81 9.17 

Table 3. Test results for semi-synchronous parallelization method. 

Cores used 1 core 2 cores 4 cores 8 cores 12 cores 

Forward rays 20647944 53498805 120166069 220579897 338469540 

Backward paths 26859521 43273242 55467718 72378193 93121907 

Speedup 1 2.03 3.7 6.17 9.08 
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Fig. 9. Comparison of test results for synchronous, asynchronous and semi-synchronous paral-

lelization methods. 

As it can be seen the proposed approach have the same linear scalability of traced and 

process rays with the asynchronous calculation. After 10 minutes of calculations with 

the Cornell box test scene the synchronous calculations method achieved the accuracy 

of 3.9%, asynchronous calculation achieved the accuracy of 5.1% and the proposed 

semi-synchronous calculations achieved the accuracy of 2.6% as result of more effec-

tive usage of the backward photon maps formed by different computation threads. 

The similar acceleration was achieved not only on Cornell box test scene, but also 

on scenes with light guiding optical systems, scenes containing volume scattering and 

others. Corresponding test scenes rendered images are shown on Fig. 10. 

  

Fig. 10. Light guiding optical systems and volume scattering test scenes. 

4 Conclusion 

The developed two-level semi-synchronous parallelization method for the caustic and 

indirect luminance calculation can significantly increase the efficiency of calculating 

these luminance components on multicore systems. This approach allowed us to in-

crease the rendering efficiency in non-parallelizable or poorly parallelizable algorithm 

sections and, when using small number of lower-level computation threads, to achieve 
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an almost linear dependence of the rendering performance on the number of cores used. 

In addition, two-level semi-synchronous parallelization allows reducing the size of the 

backward photon maps in the upper-level threads, which makes it possible to speed up 

the process of maps voxelization and search of intersections with traced rays. The de-

veloped approach can be used as a part of a distributed rendering system, providing 

high performance on a remote server service. 
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