
Scalable Web Service Composition with Partial Matches

Adina Sirbu and Jörg Hoffmann?

Digital Enterprise Research Institute (DERI)
University of Innsbruck, Austria

firstname.lastname@deri.org

Abstract. We will investigate scalable algorithms for automated Semantic Web
Service Composition (WSC). Our notion of WSC is very general: it allows the
generation of new constants by Web service outputs; the composition semantics
includes powerful background ontologies; and we use the most general notion
of matching, partial matches, where several services can cooperate each cover-
ing only a part of a requirement. Herein, we define a first formalism. We show
that automatic composition is very hard: even testing solutions is Π2

p -complete.
We identify a special case that covers many relevant WSC scenarios, and where
solution testing is only coNP-complete. While coNP is still hard, in the area of
planning under uncertainty, scalable tools have been developed that deal with
the same complexity. In our next step, we will adapt the techniques underlying
one of these tools to develop a scalable tool for WSC. In the long term, we will
investigate richer formalisms, and accordingly adapt our algorithms.

1 Introduction

In any task that involves automatic processing of Web services, one needs support for
background ontologies. In the case of WSC, almost all existing solutions compile the
problem into AI Planning formalisms. The motivation is that planning tools have be-
come many times more scalable in recent years, through the use of heuristic functions
and other search techniques, e.g. [8]. The problem here is that those tools cannot handle
background ontologies. The following example illustrates the importance of those:
Example 1. A service shall be composed that inputs a constant of concept A, and out-
puts one of concept C. (E.g., A may be a trip request and C a ticket.) The ontology de-
fines the concepts A, B, B1, . . . , Bn, C, and states that each Bi ⊆ B, and

⋃n
1 Bi ⊇ B.

(E.g., B may be a geographical region and the Bi its parts.) An available service wsAB

transforms A into B, and for each i an available service wsBiC transforms Bi into C.
A solution first applies wsAB , and then applies the wsBiC in conjunction.

In Example 1, reasoning over the background ontology is necessary to (1) under-
stand which services can be used, and to (2) test whether a given composition is actually
a solution. Such reasoning can be modelled through the background theories explored
in some planning works, e.g., [4, 6]. However, incorporating this notion into the modern
scalable planning tools poses serious challenges, and has not yet even been tried. Due to
the background theory, even computing a state transition – which is now a form of be-
lief revision – is a computationally very hard task. The existing planning tools dealing
? Ph.D. Supervisor

with background theories, e.g., [4, 6], map the problem into generic deduction, which
is well known for its lack of scalability. The existing planning tools dealing with WSC,
e.g., [9, 2], ignore the ontology and assume exact matches. In Example 1, this would
require B = Bi instead of B∩Bi 6= ∅. Obviously, this renders the example unsolvable.

We identify an interesting special case of WSC. We exploit the fact that Web ser-
vices may output new constants.1 Now, if all ramifications of a Web service concern
only propositions involving at least one new constant, then a belief revision is not nec-
essary. We term this special case WSC with forward effects: the effects are “forward”
in the sense that no backwards-directed belief revision is necessary. E.g., the services in
Example 1 have forward effects. The same holds for many WSC scenarios from the lit-
erature, and from real case studies. A simple example is the wide-spread “virtual travel
agency”, where Web services must be linked that book travel and accommodation, gen-
erating new constants corresponding to tickets and reservations.

We introduce a framework for planning with background theories.2 We show that
testing whether an action sequence is a solution – solution testing – is Πp

2 -complete in
general, but only coNP-complete with forward effects. Of course, coNP is still hard.
However, planning under uncertainty has the same complexity of solution testing, and
scalable tools for this case have already been developed. Adapting them for WSC with
forward effects will be our next step. In particular, the Conformant-FF tool [7] is based
on CNF reasoning, which can be naturally extended to our setting.

Section 2 introduces our formalism, Section 3 discusses forward effects. Sections 4
provides some details regarding our future developments, Section 5 concludes.

2 WSC with Partial Matches

The (planning) terminology of our formalism corresponds to WSC is as follows. Web
services are planning ”operators”; their input/output behaviour maps to input/output
parameters on which preconditions and effects are specified [1, 3, 5]. The background
ontology is the background ”theory”. The precondition in the goal is equivalent to sets
of ”initial literals” and ”initial constants”. The effect in the goal is the ”goal condition”.

We assume supplies of logical predicates p, q, variable names x, y and constant
names a, b, c, d, e; (ground) literals are defined as usual. For variables X , LX is the
set of literals using only variables from X . We write l[X] for a literal l with vari-
able arguments X . For a tuple C of constants substituting X , we write l[C/X]. In
the same way, we use the substitution notation for any construct involving variables.
Positive ground literals are propositions. A clause is a disjunction of literals with uni-
versal quantification on the outside, e.g. ∀x.(¬p(x) ∨ q(x)). A theory is a conjunc-
tion of clauses. An operator o is a tuple (Xo, preo, Yo, effo), where Xo, Yo are sets
of variables, preo is a conjunction of literals from LXo , and effo is a conjunction of
literals from LXo∪Yo . The intended meaning is that Xo are the inputs and Yo the out-
puts, i.e., the new constants created by the operator. For an operator o, an action a
is given by (prea, effa) ≡ (preo, effo)[Ca/Xo, Ea/Yo] where Ca and Ea are vectors

1 Namely, the outputs model the generated data.
2 [10] defines a similar WSC formalism, but considering plug-in matches and restricting the

background theory, instead of the service effects, to obtain efficiency.

of constants; for Ea we require that the constants are pairwise different. In this way
”operators” are Web services and ”actions” are service calls. WSC tasks are tuples
(P, T ,O, C0, φ0, φG). Here, P are predicates; T is the theory; O is a set of operators;
C0 is a set of constants, the initial constants supply; φ0 is a conjunction of ground liter-
als, describing the possible initial states; φG is a conjunction of literals with existential
quantification on the outside, describing the goal states, e.g., ∃x, y.(p(x) ∧ q(y)).3 All
predicates are from P , all constants are from C0, all constructs are finite.

Assume we are given a task (P, T ,O, C0, φ0, φG). States in our formalism are pairs
(Cs, Is) where Cs is a set of constants, and Is is a Cs-interpretation, i.e., an interpre-
tation of all propositions formed from the predicates P and the constants Cs. We need
to define the outcome of applying actions in states. Given a state s and an action a, a
is applicable in s if Is |= prea, Ca ⊆ Cs, and Ea ∩ Cs = ∅. We allow parallel ac-
tions. These are sets of actions which are applied at the same point in time. The result
of applying a parallel action A in a state s is res(s,A) :=

{(C ′, I ′) | C ′ = Cs ∪
⋃

a∈A,appl(s,a)

Ea, I ′ ∈ min(s, C ′, T ∧
∧

a∈A,appl(s,a)

effa)}

Here, min(s, C ′, φ) is the set of all C ′-interpretations that satisfy φ and that are minimal
with respect to the partial order defined by I1 ≤ I2 :iff for all propositions p over Cs, if
I2(p) = Is(p) then I1(p) = Is(p). This is a standard semantics where the ramification
problem is addressed by requiring minimal changes to the predecessor state s [11]. A
is inconsistent with s iff res(s,A) = ∅; this can happen in case of conflicts. Note that
res(s,A) allows non-applicable actions. This realizes partial matches: a Web service
can be applied as soon as it matches at least one possible situation.

We refer to the set of states possible at a given time as a belief. The initial belief is
b0 := {s | Cs = C0, s |= T ∧ φ0}. A parallel action A is inconsistent with a belief
b if it is inconsistent with at least one s ∈ b. In the latter case, res(b, A) is undefined;
else, it is

⋃
s∈b res(s,A). This is extended to action sequences in the obvious way. A

solution is a sequence 〈A1, . . . , An〉 s.t. for all s ∈ res(b0, 〈A1, . . . , An〉) : s |= φG.
When assuming fixed arity – a constant upper bound on the arity of all variable

vectors (e.g., used in predicates) – transformation to a propositional representation is
polynomial. Even in this case, solution testing is Πp

2 -complete in WSC. Further, we
have proved that polynomially bounded solution existence is Σp

3 -complete.

Theorem 1 (Solution testing in WSC). Assume a WSC task with fixed arity, and
a sequence 〈A1, . . . , An〉 of parallel actions. It is Πp

2 -complete to decide whether
〈A1, . . . , An〉 is a solution.

3 Forward Effects

The high complexity of WSC motivates the search for interesting special cases. As
stated, here we define a special case where every change an action makes to the state
involves a new constant. A WSC task (P, T ,O, C0, φ0, φG) has forward effects iff:

3 The existential quantification is needed to give meaning to the creation of new constants.

– For all o ∈ O, and for all l[X] ∈ effo, we have X ∩ Yo 6= ∅. In words, the variables
of every effect literal contain at least one output variable.

– For all clauses cl[X] ∈ T , where cl[X] = ∀X.(l1[X1]∨· · ·∨ln[Xn]), we have X =
X1 = · · · = Xn. In words, in every clause all literals share the same arguments.

The set of all such tasks is denoted with WSC|fwd. The second condition implies that
effects involving new constants can only affect literals involving new constants. Given
a state s and a parallel action A, define res|fwd(s,A) :=

{(C ′, I ′) | C ′ = Cs ∪
⋃

a∈A,exec(s,a)

Ea, I ′|Cs
= Is, I

′ |= T ∧
∧

a∈A,exec(s,a)

effa}

Here, I ′|Cs
denotes the restriction of I ′ to the propositions over Cs.

Proposition 1 (Semantics of WSC|fwd). Assume a WSC|fwd task, a state s, and a
parallel action A. Then res(s,A) = res|fwd(s,A).

Hence, the action semantics becomes a lot simpler with forward effects, no longer
needing the notion of minimal changes with respect to the previous state. We get:

Proposition 2 (Solution testing in WSC|fwd). Assume a WSC|fwd task with fixed
arity, and a sequence 〈A1, . . . , An〉 of parallel actions. It is coNP-complete to decide
whether 〈A1, . . . , An〉 is a solution.

It is currently an open problem what the complexity of deciding polynomially
bounded solution existence is in WSC|fwd. With Proposition 2, membership in Σ2

p

is easy to see. However, we suspect that the problem is actually coNP-complete. We
have one half of a proof, but some tricky issues must still be resolved regarding the
generation of exponentially many constants.

4 Tool and Language Developments

Our next step will be to develop a tool forWSC|fwd. We focus on achieving scalability:
we expect practical SWS scenarios to involve large sets of Web services, involving
huge search spaces (of partial compositions). We will try to overcome this by designing
heuristic solution distance and search node filtering techniques. Specifically, we will
start from the ideas underlying the Conformant-FF (CFF) [7] planning tool.

CFF represents beliefs in terms of propositional CNF formulas, and uses SAT rea-
soning to test solutions. We will adapt this to our purposes, simply by adapting the
generation of the CNFs. Note that this is possible only in WSC|fwd, not in WSC, for
complexity reasons. CFF also introduces heuristic and filtering techniques, based on
an abstraction of the planning problem. Namely, for each belief CFF computes an ab-
stract solution using approximate SAT reasoning, and then uses the abstract solution
to inform the search. We will apply the same principle for WSC|fwd. This will differ
from CFF in the different structure of our CNFs, necessitating different approximate
reasoning, and in that we will explore typical forms of background theories (e.g., sub-
sumption hierarchies) to obtain better distance estimates. Further, in difference to us,
CFF (and indeed every existing planning tool) does not allow the generation of new
constants. We will devise new heuristics for dealing with this. Note that this is critical:

as already indicated, exponentially many constants may be generated in general, so one
needs heuristics identifying which are important. Those heuristics need to be clever: if
they remove too many constants, then the solutions may be cut out; if they remove too
few constants, then the search space may explode.

In the long term, our line of research will be to incrementally enrich the language
our tool accepts, accordingly adapting the algorithms. For a start, some generalisations
of WSC|fwd are possible without losing Proposition 1. Most importantly, instead of
requiring that every effect literal involves a new constant, one can postulate this only for
literals that may actually be affected by the background theory. This may be important,
e.g., , for dealing with updates on attributes of existing constants. If such a language
turns out to not be enough for many practical examples, then we will look into how
feasible it is to drop the forward effects restriction and deal with full WSC. Note that,
due to Theorem 1, this would require QBF solving for reasoning about beliefs. We
further plan to investigate into allowing non-deterministic outcomes of Web services.
These would be modelled as operators with lists of alternative effects, each of which
may occur. We expect that we can handle this by appropriately extending the CNF
formulas underlying beliefs, as well as the associated machinery.

5 Conclusion

We have introduced a formalism for WSC, and identified a special case for which no
belief revision is necessary. We will solve some open complexity problems, and develop
a tool inspired from CFF. We will incrementally extend the tool to richer languages.

References
1. A. Ankolenkar et al. DAML-S: Web service description for the semantic web. In ISWC,

2002.
2. R. Akkiraju, B. Srivastava, I. Anca-Andreea, R. Goodwin, and T. Syeda. Semaplan: Combin-

ing planning with semantic matching to achieve web service composition. In ICWS, 2006.
3. D. Martin et al. OWL-S: Semantic markup for web services. In SWSWPC, 2004.
4. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to

knowledge-state planning, II: The DLVK system. AI, 144(1-2):157–211, 2003.
5. D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and J. Domingue.

Enabling Semantic Web Services: The Web Service Modeling Ontology. Springer-Verlag,
2006.

6. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theo-
ries. AI, 153(1-2):49–104, 2004.

7. J. Hoffmann and R. Brafman. Conformant planning via heuristic forward search: A new
approach. AI, 170(6–7):507–541, May 2006.

8. J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic
search. JAIR, 14:253–302, 2001.

9. S. Ponnekanti and A. Fox. SWORD: A developer toolkit for web services composition. In
WWW, 2002.

10. J. Scicluna and J. Hoffmann. Semantic web service composition: Background theories, par-
allelisation, and business policies. In ESWC PhD Symposium, 2007. Submitted.

11. M. Winslett. Reasoning about actions using a possible models approach. In AAAI, 1988.

