
Cutting Down the TPTP Language (And Others)
Nahku Saidya, Hanna Siegfrieda, Stephan Schulza and Geoff Sutcliffeb

aDHBW Stuttgart, Germany
bUniversity of Miami, FL, USA

Abstract
Computer languages are likely to grow over time as they get more complex when their functionality
is extended. An example of that is the TPTP language for automated theorem proving. Over time
various forms of classical logics ranging from Clause Normal Form (CNF) to Typed Higher-order Form
(THF) have been added, and that extended the TPTP language. This paper describes Synplifier, a tool
that automatically extracts sub-languages from the TPTP language. Automatic extraction instead of
manually maintaining sub-languages has the advantage of avoiding maintenance overhead as well as
unnoticed divergences from the full language. Sub-languages of interest are for example CNF and First-
order Form (FOF), and are extracted based on the user’s selection. Synplifier has been successfully tested
by extracting CNF from the TPTP language.

1. Introduction

Computer languages are designed under competing constraints. On the one hand, languages
should be as expressive as possible, allowing users to specify their intent in a simple, compact,
and natural way. This calls for a syntax with a large number of specialised features, geared
to many possible use cases. On the other hand, increased complexity makes a language more
difficult to learn and use, and, in particular, makes it more difficult to implement tools that
use the language. One example of this is the TPTP [1] family of languages, which is used
nearly universally by Automated Theorem Proving (ATP) systems for classical logics. Originally
the TPTP used only Clause Normal Form (CNF) [2], but over the years expanded to include
First-Order Form (FOF) [2], Typed First-order Form (TFF, consisting of the monomorphic TF0
[3] and the polymorphic TF1 [4]), through to typed higher-order form (THF, consisting of the
monomorphic TH0 [5] and the polymorphic TH1 [6]). There are proposals to further extend
the TPTP syntax, to an extended typed first-order form (TFX) [7], and to modal logics [8].

The TPTP syntax uses an extended Backus-Naur Form (BNF), with distinct rules for syntax,
semantic constraints, tokens, and character classes. A small tool chain based on Lex/Yacc for
building a basic parser from the syntax is available [9]. While the TPTP is a major success story,
the resulting syntax has grown large and complex.1 Understanding the syntax is non-trivial.
For new developers who want to implement “only” a first theorem prover for CNF, identifying
the relevant parts of the syntax and implementing a parser is a significant barrier to entry.

In this paper, we describe a tool called Synplifier (“Syntax Simplifier”) that extracts a coherent
sub-syntax from a larger syntax (in Backus-Naur form). Synplifier parses the syntax and

PAAR 2020: Seventh Workshop on Practical Aspects of Automated Reasoning, June 29–30, 2020, Paris, France (virtual)
© 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1http://www.tptp.org/TPTP/SyntaxBNF.html

134

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://www.tptp.org/TPTP/SyntaxBNF.html

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

Import of
syntax file
and lexing

Parsing
Grammar

graph
generation

Grammar
graph

modifica-
tion

Grammar
output

Figure 1: Procedure of extracting a sublanguage

presents it in a GUI. The user specifies the start symbol(s) of the desired sub-syntax, and
Synplifier extracts the parts of the syntax that are necessary for the sub-syntax. The user can
disable arbitrary (alternatives of) syntax rules. Synplifier uses heuristics to detect potentially
relevant comments in the input syntax file and maintains them. Synplifier has been used
successfully on the TPTP 7.3.0 syntax, to extract a sub-syntax for pure CNF. The source code of
Synplifier is available on GitHub2.

2. Architecture and Implementation

In order to decompose the full TPTP syntax into smaller sub-syntaxes we propose to extract
desired sub-syntaxes by selecting a start symbol and disabling undesired productions. The TPTP
grammar is processed in multiple stages. These stages include (1) parsing the grammar into a
structured internal representation and (2) presenting it to the user in order to define undesired
productions and the start symbol. To (3) extract the sub-syntax, we use a recursive algorithm that
checks which symbols and productions are still reachable and extracts all reachable productions.

Our assumed use cases are all hand-created grammars of relatively small size (dozens to
thousands of rules). Also, the algorithms employed do not have high complexity. We have
therefore settled on Python 3 as the implementation language. Python is a modern multi-
paradigm language with good support and excellent libraries. In particular, there is an existing
tool chain for building parsers in Python.

2.1. Overview

Figure 1 outlines the procedure of extracting a sub-syntax of the TPTP language. First, the
TPTP syntax file is loaded and broken into to tokens using the lexer. The next phase converts
the token sequence into an internal data structure using a parser. This step also also checks
the syntax of the input file. From the abstract syntax, we then build a graph representing the
imported TPTP syntax.

This graph can be manipulated by disabling certain transitions or selecting a new start symbol
in the following phase. This phase also includes computation of the remaining reachable and
terminating productions. The resulting reduced graph represents the syntax of the extracted
sub-language. To output the reduced grammar in the same format as the TPTP original syntax,
the new graph is serialized into a string that can be written to an output file.

2https://github.com/nahku/Synplifier

135

https://github.com/nahku/Synplifier

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

2.2. Lexing

The lexer is responsible for extracting tokens from the TPTP syntax file. We decided to use PLY
(Python Lex-Yacc)3 which is an implementation of lex and yacc in Python. Using PLY a lexer
can be generated by specifying tokens using regular expressions.

In order to find elementary tokens the TPTP syntax has been analysed and regular expressions
that precisely describe these tokens have been defined. Standard extended BNF uses only one
production symbol (::=). In the TPTP syntax, the standard production symbol is used for
syntactic rules. Additional symbols for semantic (:==), lexical (::-), and character-macro (:::)
rules have been added.

The following tokens are recognized by the lexer:

• Following standard BNF, non-terminal symbols are enclosed by the < and > symbols.
In between there can be any alphanumeric characters and underscores.

• A terminal symbol does not have any special notation, and can be any sequence of
characters excluding whitespace characters.

• There are four expression token types (one for each rule type). Expressions are defined
as a non-terminal symbol followed by a production symbol. The non-terminal symbol and
the following production symbol are considered to be a single token, and are not identified
as two separate tokens. This clearly identifies the start of a new rule and therefore avoids
ambiguity while parsing. The example below features two tokens, a syntax expression
and a non-terminal symbol.

<formula_role> ::= <lower_word>

• A comment is defined as the start of a new line, a percentage sign, arbitrary characters
and ends with a newline character. The percentage sign when used as terminal symbol is
embedded in square brackets and therefore cannot be the first character of a new line.

• Additional tokens are the meta-symbols including open ”(” and close parentheses ”)”,
open ”[” and close square brackets ”]”, repetition symbols ” * ”, and alternative
symbols ” | ”.

2.3. Parsing

The parser takes the tokens from the lexer as input and creates a data structure that represents
the structure of the TPTP syntax.

Figure 2 outlines the responsibilities of the parser component and the sequence of its sub-
functions. First, the tokens generated by the lexer need to be parsed and based on that the data
structure representing the TPTP syntax is to be created. Secondly, the rules in the data structure
have to be numbered to maintain the correct order for output. The third step is the so-called
disambiguation of square brackets. In the TPTP syntax, square brackets not necessarily denote
that an expression is optional, which is the case in traditional EBNF. In lexical and character-
macro rules they denote that an expression is optional and in syntactic and semantic rules

3https://www.dabeaz.com/ply/

136

https://www.dabeaz.com/ply/

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

Parse
tokens

Number
rules

Disambigue
square

brackets

Return
result

Figure 2: Parsing procedure

square brackets are terminals. Therefore, disambiguation of square brackets is necessary. As a
last step, the output of the parser is returned.

2.4. Graph generation

After parsing the TPTP grammar is stored in a grammar list. The grammar list data structure does
not allow traversing which is why a new data structure is introduced that allows for modification
and traversing. The data structure that is used is a graph representing the grammar.

The non-terminal symbols in the TPTP syntax are represented by a node class that has the
following attributes:

• value: name of non-terminal symbol
• productions list: list of non-terminal symbols that have been created by the parser
• rule type: rule type of the non-terminal symbol
• comment block: list of comments belonging to the non-terminal symbol
• position: position of the production in the input file
• children: nested list that contains the node of every non-terminal symbol that is part of

the productions list

Before generating the graph, a dictionary is created. The dictionary provides an efficient
way accessing the nodes in order to build the grammar graph and also during the next steps
of the sub-syntax generation. This dictionary contains nodes constructed from the grammar
list output by the parser that contains rules and comments. While constructing the dictionary,
comments in the grammar list are associated with nodes using a heuristic that is described in
section 2.5. The combination of the nodes value and rule type form the unique key for each
node. The dictionary provides an efficient way accessing them in order to build the grammar
graph and also during the next step of sub-syntax generation.

As one non-terminal symbol in the TPTP syntax can be mapped to multiple nodes, a new
temporary start symbol is introduced. The example below shows the productions for the non-
terminal symbol <formula_role>. Since this non-terminal symbol has multiple types of rules
one node will be created for each rule type.

<formula_role> ::= <lower_word>
<formula_role> :== axiom | hypothesis | definition | assumption |

lemma | theorem | corollary | conjecture |
negated_conjecture | plain | type |
fi_domain | fi_functors | fi_predicates | unknown

137

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

If a non-terminal symbol that has multiple rule types is selected as the desired start symbol
multiple nodes would represent that start symbol and therefore it would not be possible to select
one node as the starting point of the graph generation. To solve this problem, a temporary start
symbol is introduced before generating the graph. The temporary start symbol produces the
start symbol that the user specified and is used as a starting point for the graph generation. If
the non-terminal symbol <formula_role> that was mentioned before would be selected as
start symbol by the user a temporary start symbol representing the rule

<start_symbol> ::= <formula_role>

would be introduced. This ensures that only one node is representing the start symbol, that is
used for graph generation.

Starting with the temporary start symbol, the graph is generated recursively. Iterating over
each non-terminal symbol in the productions list of the start symbol, the corresponding nodes
are identified. These nodes are then appended to the list of children of the start symbol. The
identified children may again have children. This process is repeated until a node has no children
because there are only terminal symbols in the productions list of a non-terminal symbol.

Since it is possible for a non-terminal symbol to be on the right side as well as on the left side
of the same production rule, a node can also be its own child. To avoid revisiting the same node
infinitely, it is checked whether a node already has children so that it will not be visited again.
This also improves the performance of Synplifier as a non-terminal symbol that has already
been visited will not be visited again independent of circular dependencies.

The following example shows a production rule and the resulting list of children belonging
to the node. Each production alternative has its own list of children.

Production rule:
<disjunction> ::= <literal> | <disjunction><vline><literal>
Output:
node.value: <disjunction>
node.ruleType: grammar
node.children: [[<literal>],[<disjunction>,<vline>,<literal>]]

2.5. Maintaining comments

In the TPTP syntax there are comments providing supplemental information about the language
and its symbols and rules. When generating a reduced grammar maintaining comments is
desired. This means that comments from the original language specification should be associated
with the rule they belong to semantically and if the rule is still present in the reduced grammar,
the comment should be as well.

The following example features a comment in the TPTP syntax. This comment begins with
a Top of Page line that, in the HTML version of the TPTP syntax, contains a hyperlink which
leads to the beginning of the syntax file. The next line contains a relevant comment.

%----Top of Page---
%----TFF formulae.
<tff_formula> ::= <tff_logic_formula> | <tff_atom_typing> |

<tff_subtype> | <tfx_sequent>

138

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

The heuristic matching comments to rules takes these Top of Page lines into account. When there
is a Top of Page line in between comment lines it generally also splits comments semantically.
Therefore it would be correct to associate the comment line(s) after the Top of Page line to the
rule after. Also, if there is one Top of Page line in between multiple comment lines it is highly
probable that the first part of the comment lines before the Top of Page line refer to the rule
before the comment lines and that the comment lines after the Top of Page line refer to the rule
after the comment lines. In the following the process of splitting and maintaining comments is
summarized. First, the comment block is split into multiple separate comment blocks by using
Top of Page lines as separators.

• If this results in no comment blocks, the comment block consisted only of one line which
is the Top of Page line. Then no comment block has to be associated to a rule because Top
of Page lines are not relevant.

• If this results in one comment block, that means that no Top of Page line was present
in the comment block and the comment block is associated with the rule after, if the
comment block is not at the end of the file. If it is at the end of the file it is associated
with the rule before.

• If this results in two comment blocks, one Top of Page line was present. Then the comment
block before the Top of Page line is associated with the rule before when possible. If this
comment block is at the beginning of the file it is associated with the rule after. The
comment block after the Top of Page line is associated with the rule after. If it is at the
end of the file it is associated with the rule before.

The case of three or more comment blocks after splitting the original comment block is not
featured above because it does not occur in the TPTP syntax version 7.3.0. Since it might occur
in a future version of the TPTP syntax it is handled by merging all comment blocks starting
from the second comment block and then following the procedure of two comment blocks as
explained above.

2.6. Sub-syntax extraction

Information about which part of the syntax to extract are described in a control file. To extract
a sub-syntax from the original grammar graph, four steps must be performed:

1. The control file has to be parsed, in order to get the information on the desired start
symbol and which productions to block.

2. The blocked productions specified in the control file must be disabled and therefore the
corresponding transitions are removed from the grammar graph.

3. The remaining part of the grammar that is terminating must be computed.
4. From the part of the grammar that is terminating, non-reachable symbols are removed.

2.6.1. Control file format

A format for specifying the desired start symbol and blocked productions is required. Using
a file-based configuration enables the user to store desired configurations so that a manual

139

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

selection in the GUI is not necessary. It is also essential for using the command line interface,
because there manual selection is not possible. The file should be human-readable and -editable.
The format should be easy to parse and allow the specification of all necessary information.
This includes the desired start symbol and all production rules that should be blocked. The way
this information is provided is as follows:

• Define the desired start symbol in the first line.
• Define blocked productions grouped by the non-terminal symbol and rule type symbol,

separating each group by a new line. First defining the non-terminal symbol, then the
production symbol and after that the indexes of the alternatives that should be blocked
(indexing starts at zero).

Identifying the production symbol is necessary because there are non-terminal symbols that
have productions with more than one production symbol. The example below contains a sample
control file. In this file, <TPTP_file> is specified as start symbol. The second line indicates that
the second grammar production alternative of the non-terminal symbol <TPTP_input> should
be disabled. Furthermore, the first, second, third and fifth grammar production alternative of
the non-terminal symbol <annotated_formula> are disabled in the third line.

<TPTP_file>
<TPTP_input>,::=,1
<annotated_formula>,::=,0,1,2,5

This format is easy to parse and also enables users to specify their desired start symbols and
blocked productions without having to use the GUI. The control file can also be generated
from selections made by the user in the GUI. It can be exported as a textfile. When generating
a sub-syntax from the user GUI selection a control file representing that selection is created
internally as input for the next processing steps.

2.6.2. Removing blocked productions

In the control file, for each non-terminal symbol, whose productions should be modified, its
name, rule type and the indices of the productions that should be blocked are listed. From all
nodes that are addressed (by non-terminal symbol name and rule type), the indexed productions
are removed. This includes deleting the corresponding element from the productions list and
from the children list.

2.6.3. Determination of the remaining terminating symbols

After the desired productions have been deleted from the grammar graph, the next step is to
remove the non-terminating symbols from the grammar graph. First it must be determined
which symbols are terminating and which are non-terminating. Terminating nodes are found
by iterating the nodes in the children_list of a node. If the children_list is empty, the production
consists only of terminal symbols. If that is not the case, the node is terminating if all nodes in
the children_list represent a non-terminal symbol that is terminating. If a non-terminal symbol
has multiple rule types it is represented by multiple nodes. Also, if a non-terminal symbol with

140

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

Traverse grammar
graph and get nodes
strings and positions

Order nodes strings by
positions

Store ordered nodes
strings in file

Figure 3: Procedure of generating a string representing the grammar graph

multiple rule types is in featured in a production, all nodes representing that non-terminal
symbol are in the children list corresponding to this production. However, only one of the
nodes needs to be terminating for the non-terminal symbol to be terminating.

After the terminating symbols have been determined, productions that contain a non-
terminating symbol are removed from the nodes of the grammar graph. Because some non-
terminal symbols might have productions that contain non-terminating symbols, but also
other productions that only contain terminating symbols, only the productions containing
non-terminating symbols are removed.

2.6.4. Determination of the remaining reachable symbols

After removing the productions that are non-terminating it has to be determined which part
of the grammar still remains reachable. This is done by generating a new grammar graph
starting from the desired start symbol. When generating the new grammar graph, all parts of
the grammar that are reachable from the start symbol are added to the new grammar graph.
All nodes that are not part of the new grammar graph are not reachable and can therefore be
removed.

2.7. Output generation

Within Synplifier a syntax is represented by a grammar graph. To export sub-syntaxes that
have been extracted from a grammar graph they have to be converted to the original form of a
TPTP syntax file. There are three steps necessary, displayed in Figure 3, in order to convert a
syntax represented by a grammar graph to the original TPTP syntax file form.

The first step is to traverse the grammar graph by iterating all nodes and getting a string
representation of the nodes. For creating the string representation, the Python string class is
used.4 The string class creates a string version of the object passed to the constructor. For doing
so it calls the __str __() of the passed object, if the object provides that method.

In order to maintain the same order that rules have in the TPTP syntax, the position of the
nodes is saved alongside the node string. After generating all the strings, in the second step all
the node strings are ordered based on the position of the node.

In the third step the ordered list of nodes strings is written to a file and exported. The node
that represents the temporary start symbol is not printed as it does not belong to the TPTP
syntax.

4https://docs.python.org/3/library/stdtypes.html#str

141

https://docs.python.org/3/library/stdtypes.html# str

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

Figure 4: GUI

2.8. GUI

The graphical user interface is built using PyQt5. An advantage of using PyQT is that it offers a
treeview that is used for displaying the grammar. In comparison to the standard Python library
Tkinter6, PyQt offers checkboxes in treeviews that are used for selecting blocked productions.
The menu of the GUI consists of five submenus.

The 𝐼𝑚𝑝𝑜𝑟𝑡 menu provides the option to import a TPTP syntax file in text file format from
local storage, or to import the latest TPTP syntax version from the TPTP website. The TPTP
syntax on the TPTP project website is stored in a HTML format. This file is downloaded and
converted to plain text using the Beautiful Soup Python library7. After selecting a file for import
a start symbol needs to be selected. Starting with the start symbol a grammar graph is generated
and the corresponding text displayed. Each rule in the TPTP grammar is a top element of the
treeview and can be expanded to show the production alternatives. Right of the non-terminals
name the rule type is displayed. Comments that have been assigned to a rule are also displayed.
An example of the imported TPTP grammar is shown in Figure 4.

The 𝑉 𝑖𝑒𝑤 menu provides the possibility to toggle the display of comments to improve
readability. In order to extract a sub grammar, the user has to choose a new start symbol by
checking one of the check boxes left of the non-terminal symbols name. By default, the start
symbol that has been selected after importing the grammar is selected. For selecting blocked

5https://www.riverbankcomputing.com/static/Docs/PyQt5/introduction.html
6https://docs.python.org/3/library/tkinter.html
7https://pypi.org/project/beautifulsoup4/

142

https://www.riverbankcomputing.com/static/Docs/PyQt5/introduction.html
https://docs.python.org/3/library/tkinter.html
https://pypi.org/project/beautifulsoup4/

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

Name Short form Default Description
--grammar -g None TPTP syntax file path and filename
--control -c None Control file path and filename
--output -o output.txt Output file path and filename (optional)
--external_comment -ex False Flag to include external comment syntax (optional)

productions, the user has the choice of on the one hand expanding the rules and unchecking the
checkboxes belonging to the productions the user wishes to block. On the other hand, the user
can import a control file. If the user imports a control file, the checkboxes are set accordingly.

In the 𝑅𝑒𝑑𝑢𝑐𝑒 menu the user can reduce the grammar according to his selections. The
grammar is reduced and the reduced grammar is displayed afterwards. The rules maintain the
same order as in the original TPTP grammar.

In the 𝑆𝑎𝑣𝑒 𝑠𝑦𝑛𝑡𝑎𝑥 menu the user can reduce the grammar based on the GUI selection or an
imported control file. The difference between the reduce option and the save menu is that the
save menu saves the generated reduced grammar to local storage and does not display it. If
the user wants the <comments> production that is necessary for using the automated parser
generator (see Section 3.1, that production is included in the reduced grammar.

The 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑓𝑖𝑙𝑒 menu gives the user the option to import a control file instead of blocking
productions manually. If the user imports a control file the checkboxes are set accordingly.
The user also has the option of generating a control file based on his GUI selection. This is
particularly helpful if the user uses the same blocked productions multiple times. This way he
can use the import control file option later instead of selecting the blocked productions in the
GUI tool.

2.9. Command line interface

In addition to the GUI, Synplifier offers a command-line interface to provide the means for
convenient automation of sub-syntax extraction. It takes a TPTP syntax file and a control file
as input and outputs the resulting sub-syntax. It is implemented using the Python module
argparse8, which provides a framework for creating command-line argument parsers. The table
below provides an overview of the command-line arguments. The syntax file location and the
control file location have to be specified. Specifying an output path and filename is optional, by
default the output filename will be output.txt. The −𝑒𝑥 flag enables additional output of the
comment syntax. The help description can be displayed by using the -h option.

3. Results

To demonstrate the usability and capability of Synplifier a parser is build using the automated
parser generator based on an the extracted CNF TPTP sub-syntax. parsing only a sub-syntax
of the TPTP syntax. and counting the number of remaining rules is used. The parser is built
using an automated parser generator [9]. The automated parser generator can be used with any

8https://docs.python.org/3/library/argparse.html

143

https://docs.python.org/3/library/argparse.html

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

sub-syntax generated by Synplifier, for example sub-syntaxes containing only FOF or CNF. The
following sections exemplify the validation of Synplifier by extracting CNF.

3.1. Automated parser generation

To ensure compatibility with the automated parser generator Synplifier offers the possibility
of exporting an extracted sub-syntax and adding the part of the syntax concerning comments
(displayed in the following listing), even though it is not reachable in the original syntax. This is
implemented by maintaining this part of the syntax in a configuration file. Synplifier creates a
grammar graph from this part of the syntax with <comment> as start symbol and appends this
syntax to the output of a generated sub-syntax. If this part of the syntax would not be present
in the output sub-syntax file, the automated parser generation would fail because this syntax
part is expected to be present.

<comment> ::- <comment_line>|<comment_block>
<comment_line> ::- [%]<printable_char>*
<comment_block> ::: [/][*]<not_star_slash>[*][*]*[/]
<not_star_slash> ::: ([^*]*[*][*]*[^/*])*[^*]*
<printable_char> ::: .

The automated parser generator is used to check if the output sub-syntax follows the original
TPTP syntax format.

3.2. Extracting and validating CNF

The CNF sub-syntax has been validated by using the automated parser generator. It is validated
by testing if the generated parser accepts TPTP problems written in CNF and returns an error
when parsing a TPTP problem not written in CNF. In order to generate the parser, the CNF
sub-syntax has to be extracted. The extraction is summarised in the following. The listing below
contains the control file content that extracts CNF from the TPTP syntax version 7.3.0. The
start symbol is <TPTP_file>.

<TPTP_file>
<annotated_formula>,::=,0,1,2,3,5
<annotations>,::=,0

All productions except the cnf_annotated are disabled from the annotated_formula grammar
rule (line 2 of the listing above). The annotated_formula grammar rule can be seen in the
following listing.

<annotated_formula> ::= <thf_annotated> | <tff_annotated> |
<tcf_annotated> | <fof_annotated> |
<cnf_annotated> | <tpi_annotated>

Annotations are disabled as well. To extract the CNF sub-syntax based on the control file
shown above, either the command-line interface or the GUI can be used. The parser has been

144

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

Table 1
TPTP syntax size comparison

Syntax Rules Productions

TPTP syntax v. 7.3.0 313 635

Reachable part of TPTP syntax v. 7.3.0 285 595

FOF 108 198

CNF 92 165

generated using the CNF sub-syntax as input and the output Lex/Yacc parser has been modified
to count CNF clauses. The generated parser has been successfully tested on all CNF TPTP
problems. If the parser accepts the input, it counts the number of CNF clauses. It returns an
error if the problem is written using other logics than CNF (100 problems of each logic FOF,
TFF, TFA, higher order logic have been tested). The successful testing indicates that the CNF
sub-syntax from which the parser has been generated was correctly extracted by Synplifier.
The generated parser and the list of non CNF problems that have been used for testing can be
found on GitHub9.

3.3. Syntax size comparison

Based on the extracted CNF and FOF sub-syntax, the size of the sub-syntaxes in comparison to
the full TPTP syntax has been analysed. Table 1 contains the number of rules and productions
of the original TPTP syntax and extracted sub-syntaxes. A rule is the combination of left hand
side non-terminal symbol, rule type and rule alternatives. Since rule alternatives are just a
convenient way to display multiple rules with same non-terminal symbol on the left hand
side and the same rule type, in addition to the number of rules the number of productions
is compared. A production in this case is a rule alternative. The reachable part of the TPTP
syntax in the second row of the table contains only the reachable symbols counted from the
start symbol <TPTP_file>. Rules are counted by counting the nodes in grammar graph and
the number of productions is counted by counting the productions list entries of all nodes.

Table 1 implies that the FOF sub-syntax contains only circa 35% of the rules of the full syntax.
The CNF sub-syntax contains only circa 30% of the rules of the full syntax. Compared with
the total number of reachable productions in the TPTP syntax, FOF contains circa 33% of the
total reachable productions and CNF contains circa 28% of the total reachable productions. This
shows a significant syntax reduction, which is one goal of using Synplifier.

4. Future Work

The concept of sub-syntax extraction is not only limited to the TPTP language and can also
be applied to any other computer language, e.g., the SMT-LIB language [10]. In order to

9https://github.com/nahku/TPTP-CNF-Parser

145

https://github.com/nahku/TPTP-CNF-Parser

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

adopt Synplifier to extract sub-syntaxes from other languages, mainly the lexer and the parser
components would have to be modified to parse the new syntax. Other components can be used
with only minor modifications because the logic of the sub-syntax extraction would mostly
remain the same. Furthermore, comment association would have to be adapted based on the
specific comment convention (if comments are present in the syntax description).

It would also be possible to create a tool that accepts plain BNF or EBNF since many computer
languages are described in these forms. This would make the developed tool a standard tool
since it could then be used with any arbitrary computer languages that is described in BNF/EBNF.
As the design of Synplifier is not limited to automated reasoning, mainly the lexing and parsing
component have to be modified in order to parse plain BNF/EBNF.

Apart from adopting Synplifier to other languages, it can be investigated if comment associa-
tion based on the comments content would lead to a significantly better result than using the
heuristic approach that we have introduced.

5. Conclusion

This paper has described a tool called Synplifier that automatically extracts sub-syntaxes from
the TPTP syntax. Synplifier includes lexing and parsing the TPTP syntax, building a graph that
represents the syntax and extracting a sub-syntax based on the graph. The user can interact
with Synplifier using a command-line interface or a GUI. The functionality of Synplifier has
been demonstrated by extracting the CNF sub-syntax and creating a parser based on that syntax,
which has been successfully tested with a number of TPTP problems.

Synplifier reduces the entry barrier for new users of the TPTP language because desired
sub-syntaxes of the TPTP syntax can be extracted while maintaining consistency with the
original TPTP syntax. In short, Synplifier enables users to consistently, conveniently, and
automatically extract sub-languages from the TPTP syntax, turning this one language into a
family of languages, coming from a single source, but optimized for particular use cases.

References

[1] G. Sutcliffe, The TPTP problem library and associated infrastructure - from CNF to TH0,
TPTP v6.4.0, Journal of Automated Reasoning 59 (2017) 483–502.

[2] G. Sutcliffe, The TPTP Problem Library and Associated Infrastructure. The FOF and CNF
Parts, v3.5.0, Journal of Automated Reasoning 43 (2009) 337–362.

[3] G. Sutcliffe, S. Schulz, K. Claessen, P. Baumgartner, The TPTP Typed First-order Form
with Arithmetic, in: N. Bjørner, A. Voronkov (Eds.), Proceedings of the 18th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning, number
7180 in Lecture Notes in Artificial Intelligence, Springer-Verlag, 2012, pp. 406–419.

[4] J. C. Blanchette, A. Paskevich, TFF1: The TPTP typed first-order form with rank-1
polymorphism, in: M. P. Bonacina (Ed.), Proc. of the 24th CADE, Lake Placid, volume 7898
of LNAI, Springer, 2013, pp. 414–420.

[5] G. Sutcliffe, C. Benzmüller, Automated Reasoning in Higher-Order Logic using the TPTP
THF Infrastructure, Journal of Formalized Reasoning 3 (2010) 1–27.

146

Nahku Saidy et al. CEUR Workshop Proceedings 134–147

[6] C. Kaliszyk, G. Sutcliffe, F. Rabe, TH1: The TPTP Typed Higher-Order Form with Rank-1
Polymorphism, in: P. Fontaine, S. Schulz, J. Urban (Eds.), Proceedings of the 5th Work-
shop on Practical Aspects of Automated Reasoning, number 1635 in CEUR Workshop
Proceedings, 2016, pp. 41–55. URL: http://ceur-ws.org/Vol-1635/.

[7] G. Sutcliffe, E. Kotelnikov, TFX: The TPTP extended typed first-order form, in: B. Konev,
J. Urban, P. Rümmer (Eds.), Proceedings of the 6th Workshop on Practical Aspects of
Automated Reasoning (PAAR), Oxford, UK, number 2162 in CEUR Workshop Proceedings,
2018, pp. 72–87. URL: http://ceur-ws.org/Vol-2162/#paper-07.

[8] T. Gleissner, A. Steen, C. Benzmüller, Theorem Provers for Every Normal Modal Logic,
in: T. Eiter, D. Sands (Eds.), Proceedings of the 21st International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, number 46 in EPiC Series in
Computing, EasyChair Publications, 2017, pp. 14–30.

[9] A. Van Gelder, G. Sutcliffe, Extending the TPTP language to higher-order logic with
automated parser generation, in: U. Furbach, N. Shankar (Eds.), Proceedings of the 3rd
IJCAR, Seattle, number 4130 in LNAI, Springer, 2006, pp. 156–161.

[10] C. Barrett, P. Fontaine, C. Tinelli, The SMT-LIB Standard: Version 2.6, Technical Report,
Department of Computer Science, The University of Iowa, 2017. Available at http://www.
SMT-LIB.org.

147

http://ceur-ws.org/Vol-1635/
http://ceur-ws.org/Vol-2162/#paper-07
http://www.SMT-LIB.org
http://www.SMT-LIB.org

	1 Introduction
	2 Architecture and Implementation
	2.1 Overview
	2.2 Lexing
	2.3 Parsing
	2.4 Graph generation
	2.5 Maintaining comments
	2.6 Sub-syntax extraction
	2.6.1 Control file format
	2.6.2 Removing blocked productions
	2.6.3 Determination of the remaining terminating symbols
	2.6.4 Determination of the remaining reachable symbols

	2.7 Output generation
	2.8 GUI
	2.9 Command line interface

	3 Results
	3.1 Automated parser generation
	3.2 Extracting and validating CNF
	3.3 Syntax size comparison

	4 Future Work
	5 Conclusion

