
Layered Clause Selection for Saturation-Based
Theorem Proving
Bernhard Gleissa, Martin Sudab

aTU Wien Informatics, Favoritenstraße 9–11, 1040 Vienna, Austria
bCzech Institute of Informatics, Robotics, and Cybernetics, Jugoslávských partyzánů 1580/3, 160 00 Prague 6, Czech
Republic

Abstract
Clause selection is one of the main heuristic decision points in navigating proof search of saturation-
based theorem provers. A recently developed layered clause selection framework allows one to boost a
basic clause selection heuristic by organising clauses into groups of more or less promising ones accord-
ing to a specified numerical feature. In this work, we investigate this framework in depth and introduce,
in addition to a previously presented feature (based on the amount of theory reasoning in the derivation
of a clause), three new features for clause selection (tracking relatedness to the goal, the number of split
dependencies in the Avatar architecture, and closeness to the Horn fragment, respectively). We imple-
mented the resulting clause selection heuristics in the state-of-the-art saturation-based theorem prover
Vampire and present an evaluation of these new clause-selection strategies and their combinations over
the TPTP and SMTLIB libraries.

Keywords
saturation-based theorem proving, heuristic, clause selection, layered selection

1. Introduction

In the context of automated theorem proving, saturation refers to the process of iteratively
deriving (according to a particular inference system) logical consequences of a set of given input
clauses until the empty clause is derived, which witnesses unsatisfiability. Modern saturation-
based theorem provers for first-order logic typically employ some variant of a given-clause
algorithm, in which clauses are selected for inferences one by one [1]. Clause selection, i.e. the
procedure for picking in each iteration the next clause to process, is one of the main heuristic
decision points in the prover, hugely affecting its performance [2].

The standard technology for implementing clause selection heuristics relies on two concepts.
First, certain numerical clause evaluation criteria are identified, such as the number of symbols
in a clause (a.k.a. clause weight) or the iteration when the clause was derived during search
(a.k.a. clause age1), such that a small clause in terms of the given criterion is more likely to lead
to a refutation than a large one. The prover then maintains a priority queue for each criterion

PAAR 2020: Seventh Workshop on Practical Aspects of Automated Reasoning, June 29–30, 2020, Paris, France (virtual)
 bgleiss@forsyte.tuwien.ac.at (B. Gleiss); martin.suda@cvut.cz (M. Suda)
� 0000-0002-2592-124X (B. Gleiss); 0000-0003-0989-5800 (M. Suda)

© 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1Although “age” is the common term which we keep using in this paper, “date of birth” would be more appro-
priate since a child clause has a higher “age” than its parents (see also Definition 1 in Section 2).

34

mailto:bgleiss@forsyte.tuwien.ac.at
mailto:martin.suda@cvut.cz
https://orcid.org/0000-0002-2592-124X
https://orcid.org/0000-0003-0989-5800
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

for the efficient extraction of “the current best clause”. Second, the prover alternates picking
clauses from these priority queues using a specified ratio. For example, a heuristic may specify
that every 10 selections, the prover should pick 9 clauses that are small by weight, i.e. light, and
one clause that is small by age, i.e. old.

A recently developed layered clause selection framework [3, 4] allows one to boost a basic
clause selection heuristic, such as the one just described, by organising clauses into groups
of more or less promising ones according to a specified numerical feature and a certain cutoff
value (or values). An example of a feature explored in this work is the number of positive
literals of a clause. According to this feature, we can split clauses into those having at most one
positive literal, i.e. those belonging to the Horn fragment, and the remaining ones. Now, the
main idea of layered selection is to “instantiate” the basic clause selection heuristic separately
for each such group of clauses and alternate between selecting from each group according to a
new “layer two” ratio. For example, the prover may decide to pick a Horn clause every four
out of five selections. Note that clause selection according to age and weight is still happening
according to the original ratio on “layer one”, i.e. in each group separately.

In [4], we proposed a clause feature measuring the amount of theory reasoning in the deriva-
tion of a clause, and obtained a layered clause selection heuristic that dramatically improves
the performance of the automated theorem prover Vampire [5] on relevant benchmarks. In
this paper, we 1) present the framework of layered clause selection in more detail (Section 2)
including the ideas of

• defining the groups as either disjoint or monotone with respect to set inclusion, and
• the possibility of nesting multiple layers of selections based on different features.

2) In addition to the theory reasoning feature (recalled in Section 3), we introduce three additional
features:

• the first being the number of split dependencies of a clause in the AVATAR architecture
[6] for clause splitting (Section 4),

• the second tracking relatedness of a clause to the goal, derived from the computation of
the SInE algorithm [7, 8] (Section 5), and

• the third being the already mentioned number of positive literals in a clause, essentially
measuring closeness of a clause to the Horn fragment (Section 6).

Finally, 3) we present the results of extensive experiments with the new heuristics over TPTP
and SMTLIB and a specific set of benchmarks coming from program verification (Section 7).

2. Layered clause selection using multi-split-queues

We assume the reader to be familiar with the main ideas behind saturation-based theorem
proving [9, 10]. Details on given-clause saturation algorithms used most often in practice
can be found in [1], a comprehensive description and evaluation of clause selection heuristics
pre-dating layered selection in [2].

35

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

2.1. The Age-weight-based heuristic

The de facto standard clause selection heuristic used in modern saturation-based theorem
provers is the age-weight clause selection heuristic.

Definition 1 (Age-weight clause selection heuristic). For any clause 𝐶 , define the age age(𝐶)
as the depth of the derivation tree of 𝐶2 and define the weight weight(𝐶) as the number of
symbols3 of 𝐶 . Let further 𝑟𝑎 : 𝑟𝑤 be a list of two positive integer values. Then the age-weight
clause selection heuristic aw(𝑟𝑎 : 𝑟𝑤) alternates between selecting a clause 𝐶 with the smallest
age age(𝐶) and selecting a clause 𝐶 with the smallest weight weight(𝐶) using the ratio 𝑟𝑎 : 𝑟𝑤 .

The basic understanding of age-weight selection is that it performs a blend between the
breadth-first and the best-first search paradigms. Clauses of small weight are considered
better, because they are closer to the ultimate goal—the empty clause of weight zero—than the
larger ones. They also tend to produce small clauses as children, on average serve as stronger
simplifiers, and are computationally cheaper to process. The age criterion, on the other hand,
corresponds to the breadth-first aspect and helps to ensure fairness under which no generated
clause (unless shown redundant) waits too long before getting selected.

2.2. Split heuristics

Definition 2 (Split heuristics). Let 𝜇 be a real-valued clause evaluation feature such that prefer-
able clauses have low value of 𝜇(𝐶), and let the cutoffs 𝑐1, . . . , 𝑐𝑘 be monotonically increasing
real numbers with 𝑐𝑘 =∞. Furthermore, let the ratio 𝑟1 : . . . : 𝑟𝑘 be a list of positive integer
values, and let finally 𝑐𝑠 be an arbitrary clause selection heuristic.

A split heuristic groups clauses into sets 𝐺1, . . . , 𝐺𝑘, and selects clauses by alternating
selection from 𝐺1, . . . , 𝐺𝑘 using the ratio 𝑟1 : . . . : 𝑟𝑘. The selection from each such set 𝐺𝑖 is
performed using 𝑐𝑠. We define two modes of split clause selection heuristic, which differ in how
they group clauses:

• The monotone split heuristic mono-split(𝜇, 𝑐1, . . . , 𝑐𝑘, 𝑟1 : · · · : 𝑟𝑘, 𝑐𝑠) uses sets 𝐺𝑖 :=
{𝐶 | 𝜇(𝐶) ≤ 𝑐𝑖} for 𝑖 = 1, . . . , 𝑘.

• The disjoint split heuristic disj-split(𝜇, 𝑐1, . . . , 𝑐𝑘, 𝑟1 : · · · : 𝑟𝑘, 𝑐𝑠) uses sets 𝐺1 := {𝐶 |
𝜇(𝐶) ≤ 𝑐1}, and 𝐺𝑖 := {𝐶 | 𝑐𝑖−1 < 𝜇(𝐶) ≤ 𝑐𝑖} for 2 ≤ 𝑖 ≤ 𝑘.

Example 1. Consider the clause selection heuristic mono-split(𝜇, 0, 1,∞, 3 : 1 : 1, 𝑎𝑤(1 : 1)).
This heuristic will select 3 out of 5 times a clause 𝐶 such that 𝜇(𝐶) ≤ 0, 1 out of 5 times a
clause 𝐶 such that 𝜇(𝐶) ≤ 1, and 1 out of 5 times an arbitrary clause. On “layer one”, e.g., 3 out
of 10 times the clause 𝐶 with the smallest age among the clauses 𝐶 with 𝜇(𝐶) ≤ 0 is selected,
or 1 out of 10 times the clause with smallest weight out of all clauses is selected.

2This corresponds to how age is defined in Vampire. More precisely still, one uses only the depth with respect
to generating inferences. Reductions do not alter the age of a reduced clause.

3Including multiplicities. As a variation, different kinds of symbols (such as the variables, the predicate symbols,
or the constants) may weigh more than others [2].

36

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Split heuristics allow to adapt an existing clause selection heuristic 𝑐𝑠 to take into account
the clause feature 𝜇. We now discuss how to pick the mode, the cutoffs, and the ratios. We
observed two kinds of clause features:

First, there are features where clauses with low feature value are more likely to contribute
to the proof search (this is the case for the features distth, distSInE, and distHorn, discussed in
Section 3, Section 5, resp. Section 6). For features of this kind, one should use a monotone split
heuristic. A good starting point for cutoffs and ratios is 𝑐1,∞ and 1 : 1, resp., where 𝑐1 is the
feature value we expect to obtain for the empty clause ⊥ (based on domain knowledge and
experience). One can extend the cutoffs by introducing one or two additional cutoffs close to 𝑐1,
in order to smooth the transition between 𝑐1 and∞, and extend the ratio accordingly. It can
also make sense to vary the ratio, although in our experience, it is more important to identify
good cutoffs, than to fine-tune the ratio.

Secondly, there are features where clauses with low feature value are not necessarily more
likely to contribute to the proof search, but are less likely to have low weight (this is the case
for the feature distAV discussed in Section 4). As a consequence, it does not make sense to
compare clauses, which have different feature values, by weight. In such a case, one can use a
split heuristic in disjoint mode. Varying the cutoffs and ratios of disjoint split heuristics has
a less predictable effect than for the monotone split heuristic and needs to be fine-tuned on a
case-by-case basis.

2.3. Nesting split heuristics

As split heuristics are parameterized by an arbitrary clause selection heuristic, we are able to
build clause selection heuristics containing nestings of split heuristics. Such clause selection
heuristics are powerful, as they allow us to easily combine different features.

Example 2. Consider the nested split heuristic

mono-split(𝜇1, 0, 1,∞, 15 : 4 : 1,

mono-split(𝜇2, 1,∞, 5 : 1,

𝑎𝑤(1 : 1))).

The resulting clause groupings and frequencies to pick from these groups are visualized in
Figure 1. The nested split heuristics form a tree. Each leaf node of the tree represents a set of
clauses, from which clauses are selected using 𝑎𝑤(1 : 1). We can see that the leftmost leaf node
of the tree represents all clauses 𝐶 with 𝜇1(𝐶) ≤ 0 and 𝜇2(𝐶) ≤ 1. We pick clauses from this
leaf using 𝑎𝑤(1 : 1) in 15/20 · 5/6 = 5/8 of the cases.

Note that each split heuristic ℎ provides a horizontal dimension consisting of the groups of ℎ.
The nesting of different split heuristics itself provides a vertical dimension.

2.4. Implementation

In this subsection we briefly discuss how to implement clause selection heuristics. As typical runs
of saturation algorithms can include several million clause selections, we strive to implement
these heuristics efficiently.

37

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

all clauses

𝜇1(𝐶) ≤ 0 𝜇1(𝐶) ≤ 1 all clauses

15/20 4/20 1/20

𝜇1(𝐶) ≤ 0
𝜇2(𝐶) ≤ 1

𝜇1(𝐶) ≤ 0
𝜇1(𝐶) ≤ 1
𝜇2(𝐶) ≤ 1

𝜇1(𝐶) ≤ 1 𝜇2(𝐶) ≤ 1 all clauses

5/6 1/6 5/6 1/6 5/6 1/6

Figure 1: Demonstrating nested split heuristics.

An 𝑎𝑤-heuristic with ratio 𝑟𝑎𝑔𝑒 : 𝑟𝑤𝑒𝑖𝑔ℎ𝑡 can be implemented as a container 𝐴𝑊 as follows.
The container 𝐴𝑊 internally keeps two priority queues4 𝑄𝑎, 𝑄𝑤 , where both 𝑄𝑎 and 𝑄𝑤 store
all the clauses of 𝐴𝑊 , 𝑄𝑎 keeps its clauses ordered by age and 𝑄𝑤 keeps its clauses ordered by
weight. The container 𝐴𝑊 determines whether it should select the next clause from 𝑄𝑎𝑔𝑒 or
𝑄𝑤𝑒𝑖𝑔ℎ𝑡 using a weighted round-robin scheme with ratio 𝑟𝑎 : 𝑟𝑤 , and selection from the chosen
queue proceeds by popping the first element (i.e. a clause) from that queue and deleting the
corresponding record (of that clause) from the other queue.

The heuristic mono-split(𝜇, 𝑐1, . . . , 𝑐𝑘, 𝑟1 : · · · : 𝑟𝑘, 𝑐𝑠), resp. disj-split(𝜇, 𝑐1, . . . , 𝑐𝑘, 𝑟1 : · · · :
𝑟𝑘, 𝑐𝑠), can be implemented as a container SH as follows. Assume that 𝑐𝑠 is implemented using
a container CS. The container SH keeps 𝑘 instances CS1, . . . ,CS𝑘 of CS, where container CS𝑖
contains all clauses of group 𝐺𝑖 of SH. The container SH determines from which of the sub-
containers CS1, . . . ,CS𝑘 it should select the next clause using a weighted round-robin scheme
with ratio 𝑟1 : · · · : 𝑟𝑘 and then delegates clause selection to that CS𝑖.

2.5. Discussion

We believe that the nesting of split heuristics is a great conceptual tool for composing indepen-
dent ideas on how to improve clause selection into a single compound heuristic. This can be
already seen with the two layers, where the time-tested age-weight selection serves as a building
block for more powerful refined heuristics, and can get further pronounced with additional
nestings, as demonstrated by our experiments (see Section 7).

Nevertheless, in retrospect it is not hard to see that computationally, the layered scheme
can be essentially “compiled down” to multiple level-one queues. More precisely, one needs
an extension of the typical level-one queue arrangement, such as the one implemented in E
[11], to allow clause queue content filtering by clause properties. This means that one needs to

4In Vampire, these priority queues are implemented as skip lists.

38

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

be able to set up a clause queue to only contain those clauses that satisfy a given property 𝑃 .
Such property 𝑃 could be, e.g., 𝑃 (𝐶) = 𝜇1(𝐶) ≤ 0 ∧ 𝜇2(𝐶) ≤ 1 to define the age and weight
level-one queues corresponding to the left-most leaf in Figure 1. The reason why clause queue
content filtering has until now not been used (to the best of our knowledge) in saturation-based
provers is probably that in the standard perspective each clause queue is meant to provide an
independent view of the whole set of passive clauses and not just a subset thereof (which would
complicate reasoning about completeness if left further unconstrained).5

3. Feature: Amount of theory reasoning

Recently, saturation-based theorem provers have increasingly been used to reason about prob-
lems requiring quantified theory reasoning [13, 14]. The standard solution to provide a prover
with support for reasoning in a given theory is to extend the input axioms of the problem
with an explicit axiomatization of the corresponding theory. There are two related problems
caused by this approach: First, the theory axioms generate a huge number of consequences, as
the theory axioms are repeatedly combined either with themselves or with other axioms, and
therefore blow up the search space. Secondly, many of these generated consequences have small
weight. If a standard age-weight-based heuristic is used for clause selection, those consequences
are therefore often selected, as selection by weight will favor them. While manually inspecting
proofs for problems of the application domains [13, 14], we observed that the amount of theory
reasoning actually required to prove these problems is small. As a result, the prover spends
most of its proof search in a part of the search space, where the chances to find a clause relevant
for the proof are low. We are therefore facing the challenge of guiding the proof search, so that
the prover does not spend too much time with theory reasoning, but at the same time still finds
proofs containing a small amount of theory reasoning.

In the remainder of this section, we give an extended presentation of the solution to this
challenge already presented in [4]. In a nutshell, our solution consists of a clause feature
distth, which measures the amount of theory reasoning in the derivation of a clause, and a
corresponding clause selection heuristic based on split heuristic and distth. We assume that the
input problem is given as a set of axioms, where the axioms corresponding to the axiomatization
of the theory are distinguished.

We start by formalizing the amount of theory reasoning in the derivation of a clause 𝐶 as the
ratio of the number of theory axioms and the number of all axioms in the derivation-DAG of 𝐶 .
Computing these numbers exactly for the derivation of each clause is potentially expensive,
since it requires for each clause a traversal of the derivation-DAG of the clause. We instead
approximate those numbers by treating the derivation-DAG as a tree, for which we can compute
the numbers using running sums, as follows:

Definition 3. For a theory axiom 𝐶 , define both thAx(𝐶) and allAx(𝐶) as 1. For a non-theory
axiom 𝐶 , define thAx(𝐶) as 0 and allAx(𝐶) as 1. For a derived clause 𝐶 with parent clauses
𝐶1, . . . , 𝐶𝑛, define thAx(𝐶) as

∑︀
𝑖 thAx(𝐶𝑖) and allAx(𝐶) as

∑︀
𝑖 allAx(𝐶𝑖). Finally, we set

frac(𝐶) := thAx(𝐶)/allAx(𝐶).
5We note that clause priority functions of E [12] allow the user to order clauses on a particular queue such that

those clauses satisfying a given property 𝑃 are all considered smaller than those that satisfy ¬𝑃 .

39

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

With these notations at hand, we identify proofs that only need a small amount of theory
reasoning with the proofs where frac(⊥) is at most 1/𝑑, for some small positive integer value 𝑑
(⊥ here denotes the empty clause).

Next, we present a clause feature dist𝑑th which approximates the likeliness that a given
clause 𝐶 occurs in a proof where frac(⊥) is at most 1/𝑑. The clause selection feature dist𝑑th
is parameterized by the value 𝑑 and measures the number of non-theory axioms which the
derivation of 𝐶 would need to contain additionally in order to achieve a ratio of at most 1 : 𝑑.

Definition 4. Let 𝑑 be a positive integer value. Then dist𝑑th : Clauses→ N is defined as

dist𝑑th(𝐶) := max(thAx(𝐶) · 𝑑− allAx(𝐶), 0).

The feature dist𝑑th satisfies several properties, which we think are favorable: (i) if the derivation
of a clause 𝐶 consists only of several axioms, then dist𝑑th(𝐶) is small, (ii) if derivations of clauses
𝐶1, 𝐶2 are combined into a derivation of clause 𝐶 , and if both dist𝑑th(𝐶1) > 0 and dist𝑑th(𝐶2) > 0,
then dist𝑑th(𝐶) > dist𝑑th(𝐶1) and dist𝑑th(𝐶) > dist𝑑th(𝐶2), and (iii) if derivations of clauses 𝐶1, 𝐶2

are combined into a derivation of clause 𝐶 , and if frac(𝐶1) = 1/𝑑, then dist𝑑th(𝐶) = dist𝑑th(𝐶2).
Note that frac itself does not fulfill these properties.

Example 3. Consider a clause 𝐶1, such that thAx(𝐶1) = 3 and allAx(𝐶1) = 5. Consider
further a clause 𝐶2, such that thAx(𝐶2) = 100 and allAx(𝐶2) = 200. Intuitively, 𝐶1 is much
more likely to occur in a proof with frac(⊥) = 1/4. We have dist4th(𝐶1) = 7 < 200 = dist4th(𝐶2),
but frac(𝐶1) = 0.6 > 0.5 = frac(𝐶2).

Finally, we are able to construct a clause selection heuristic, which addresses the challenges
presented at the beginning of this section, using the split heuristic from Section 2.2 as

mono-split(dist𝑑th, 𝑐1, . . . , 𝑐𝑘−1,∞, 𝑟1 : · · · : 𝑟𝑘, 𝜇),

where 𝑑 is the positive integer such that 1/𝑑 is the expected fraction of the proof which we want
to find, 𝜇 is some clause selection strategy, 𝑐1, . . . , 𝑐𝑘−1,∞ are cutoff values, and 𝑟1 : · · · : 𝑟𝑘 is
a ratio. In our experience, varying 𝑑 has a bigger effect than varying cutoffs and ratios, and
setting 𝑑 to 8 is a reasonable starting point for fine-tuning 𝑑. In our experiments, other useful
values of 𝑑 were between 4 and 50.

4. Feature: AVATAR-splits

AVATAR [6, 15, 16] is a theorem prover architecture in which a saturation algorithm is augmented
with a SAT (or an SMT) solver to facilitate an efficient version of clause splitting [17, 18]. In
a nutshell, a first-order clause 𝐶 is called splittable if it can be written as 𝐶 = 𝐶1 ∨ . . . ∨ 𝐶𝑘,
𝑘 > 1, such that the individual components 𝐶𝑖 are pairwise variable-disjoint. The main idea
behind splitting is that one can reason about the individual components separately, since for
every set of clauses 𝑁 and every such splittable clause 𝐶 , 𝑁 ∪ {𝐶} is unsatisfiable if and only
if 𝑁 ∪ {𝐶𝑖} is unsatisfiable for every 𝑖 = 1, . . . , 𝑘. This is advantageous, as the individual
components 𝐶𝑖 are smaller than the original clause 𝐶 and thus promise a strictly faster search.

40

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

While the exact details of how AVATAR works are out of the scope of this paper, the key
aspect important here is easy to explain. First-order clauses in AVATAR need to keep track
of the dependencies on splits from which they were derived. This is done by assigning to
each clause 𝐶 a set of dependencies 𝐷𝐶 , denoted 𝐶 ← 𝐷𝐶 , where a dependency 𝑑 ∈ 𝐷𝐶

is some identifier of a performed split registered elsewhere in the architecture. Clauses from
the input have their dependency set initialised as empty and the dependency set of a derived
clause is computed as the union of the dependencies of its parents. Then, when a clause such as
𝐶1 ∨ 𝐶2 ← 𝐷𝐶 is split, with 𝐶1 and 𝐶2 variable-disjoint, the prover may continue reasoning
with 𝐶1 ← 𝐷𝐶 ∪ {[𝐶1]} where [𝐶1] is the identifier of the dependency on the performed
split. Intuitively, each dependency 𝑑 ∈ 𝐷𝐶 is a choice point for which the prover might
need to consider alternatives in the future. This means that a clause with many dependencies
corresponds to a logically weaker fact than a clause with fewer ones.

Because the basic setup of AVATAR is oblivious to the size of the dependency set of a clause,
there is a danger of a strong preference for clauses of small weight (which arise easily with
splitting) that nevertheless depend on many splits and are therefore not the best for closing the
overall search fast. In order to potentially mitigate this effect, we propose here to use the size of
the dependency set of a clause, distAV(𝐶 ← 𝐷𝐶) = |𝐷𝐶 |, as a feature for split heuristics.

We then construct a clause selection heuristic using the split heuristic from Section 2 as

disj-split(distAV, 𝑐1, . . . , 𝑐𝑘−1,∞, 𝑟1 : · · · : 𝑟𝑘, 𝜇),

for a given clause selection function 𝜇, cutoffs 𝑐1, . . . , 𝑐𝑘−1,∞ and ratio 𝑟1 : · · · : 𝑟𝑘.

5. Feature: SInE-levels of a Clause

The Sumo Inference Engine (SInE) [7] is a well-established algorithm for selecting premises for
first-order theorem proving, i.e. for the task of reducing—before the start of the search—the
possibly large set of input axioms to a more manageable subset of those ones estimated to be
most promising for proving a given conjecture. SInE is an iterative algorithm which takes the
conjecture (also called the goal) and iteratively adds axioms that appear to be most related
to the goal or to previously added axioms by a similarity metric based on sharing symbols.
We define, for every input axiom 𝐴, a heuristical distance distSInE(𝐴) from the goal 𝐺 as the
iteration number 𝑖 at which 𝐴 would be added by SInE to the included axioms for proving 𝐺. By
definition, distSInE(𝐺) = 0 for the goal itself and typically ranges between 1 up to approximately
10 for the non-goal input axioms [8]. We will informally refer to the value distSInE(𝐹) for a
particular formula 𝐹 as its SInE-level.

So far, we defined SInE-levels only for the input axioms and the goal. To be able to use them
as a feature of general clauses in proof search, we further define distSInE(𝐶) of a derived clause
as the minimum of distSInE(𝑃𝑖) over the parents 𝑃𝑖 of 𝐶 . While the choice of the minimum
operation may appear arbitrary, note that it has the nice property that distSInE(𝐶) = 0 if and only
if 𝐶 has a goal among its ancestors. This is an important “flag” of a clause, typically tracked by
a theorem prover for use in various goal-directed heuristics, and SInE-levels therefore naturally
generalise this flag.

41

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Finally, we derive a clause selection heuristic using the split heuristic from Section 2 as

mono-split(distSInE, 𝑐1, . . . , 𝑐𝑘−1,∞, 𝑟1 : · · · : 𝑟𝑘, 𝜇),

for a given clause selection function 𝜇, cutoffs 𝑐1, . . . , 𝑐𝑘−1,∞ and ratio 𝑟1 : · · · : 𝑟𝑘. For
instance, we can use cutoffs 0,∞ and ratio 1 : 𝑟2 to ensure that from 𝑟2 + 1 clauses at least one
clause is selected which has a goal among its ancestors.

6. Feature: Positive literals

Saturation-based theorem provers are known to work well on benchmarks where each axiom is
a Horn clause, that is, a clause with at most one positive literal. We would like to extend the
efficiency of these provers to problems which are nearly Horn, in the sense that there exists a
proof of the conjecture of the problem, where the number of positive literals for each clause is
small. We can formalize this as follows: The Horn-distance distHorn(𝐶) is defined as

distHorn(𝐶) := 𝑚𝑎𝑥(posLits(𝐶)− 1, 0),

where posLits(𝐶) denotes the number of positive literals of 𝐶 . For a given proof 𝑃 define

distHorn(𝑃) :=
∑︁

𝐶 clause in 𝑃

distHorn(𝐶).

We claim that for many application domains, most examples are provable using a proof with
a small Horn-distance. But if we run a saturation-based theorem prover on such a problem,
it can still generate a lot of consequences which contain several positive literals. Such con-
sequences would typically be classified as highly unlikely to contribute to the refutation by
human inspection.

We are able to guide clause selection towards finding proofs with small Horn-distance by
instantiating the split heuristic from Section 2 as

disj-split(distHorn, 𝑐1, . . . , 𝑐𝑘−1,∞, 𝑟1 : · · · : 𝑟𝑘, 𝜇),

for a given clause selection function 𝜇, cutoffs 𝑐1, . . . , 𝑐𝑘−1,∞ and ratio 𝑟1 : · · · : 𝑟𝑘.

7. Experiments

We implemented the heuristics described in Sections 3–6 in the state-of-the-art theorem prover
Vampire (version 4.4) [5]. Our implementation consists of about 1000 lines of C++ code and
will become integrated in the next release of the prover.

We evaluated the extended implementation of Vampire on two sets of problems coming
from the TPTP library [19] and from SMTLIB [20], respectively. In detail, we selected all the
first-order problems of the form CNF, FOF, and TF0 (including those with arithmetic) from TPTP
version 7.3.0. This gave us 18 294 problems. Additionally, we picked a subset of a recent version
(release 2019-05-06) of SMTLIB consisting of all the problems from the sub-logics that contain

42

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Table 1
Default parameters for the heuristics presented in the first experiment.

tag feature 𝑑-value cutoffs ratio mode of split
th dist𝑑th 8 (0, 32, 80,∞) 20:10:10:1 monotone
av distAV − (0,∞) 1:1 disjoint
sl distSInE − (0, 1,∞) 1:2:3 monotone
pl distHorn − (0,∞) 1:4 disjoint

quantification and theories, such as ALIA, LRA, NRA, UFDT, . . . , except for those requiring
bit-vector (BV) or floating-point (FP) reasoning, currently not supported by Vampire. For this
SMTLIB benchmark we obtained 68 234 problems.

Our experiments were run on our local server with two Intel Xeon Gold 6140 Processors
(i.e., with 72 processor threads) and 188GB RAM. We were running 30 instances of Vampire
in parallel with no other significant load on the server. To obtain a baseline strategy, denoted
as base, we modified the default Vampire strategy (which uses Avatar) to use the Discount
saturation loop (for stability of results6) and the clause selection heuristic 𝑎𝑤(1 : 10) (which
in our experience leads in Vampire to a good performance with Discount). All other tested
strategies extend base by applying one or more split heuristics for clause selection on top of
this setup. With the exception of Experiment 4 we used a time limit of 10 s per problem.7

7.1. Experiment 1: testing the initial defaults

Searching for good values of the cutoffs, the ratio and other parameters of split heuristics is
rewarding, but requires some experience and a certain amount of experimental “tuning”. In
our previous work on layered clause selection [4], we gained some of such experience for the
feature measuring the amount of theory reasoning (Section 3) and later—also with the help
of an experiment reported further below—picked certain default values for parameters of the
heuristics corresponding to the other features. We used these defaults (presented in Table 1) in
the first experiment, the purpose of which is to demonstrate the basic improvement we obtain
from using the presented heuristics and their combinations.

Table 1 assigns a tag, typeset in the typewriter font, to each of our four heuristics when
understood as Vampire options used for defining a strategy. Thanks to the possibility of
nesting split heuristics, these options can be turned on and off independently from one another.
Although a particular fixed order is employed in Vampire to build up the nestings (namely the
order, from inside out: th, av, sl, pl), we use the operator + to denote possible combinations
to suggest that this order is actually irrelevant for the proof search (cf. Section 2.5).

The results of the first experiment are shown in Table 2, separately for TPTP and for SMTLIB.
We observe that in the case of TPTP all the four new heuristics lead to an improvement in
the number of solved problems. This is easiest to see from the always positive column Δbase,
which shows the difference of the number of problems solved between the current strategy and

6The default Limited Resource Strategy [1] is sensitive to timing measurements and repeated runs on the same
benchmark under essentially the same conditions may vary a lot.

7A list of the selected problems along with other information needed to reproduce our experiments can be
found at https://github.com/quickbeam123/LCS4SbTP-materials.

43

https://github.com/quickbeam123/LCS4SbTP-materials

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Table 2
Results of Experiment 1: on the TPTP benchmark (left) and the SMTLIB one (right).

strategy solved Δbase uniques
base 9108 0 9

th 9204 96 22
av 9160 52 89
sl 9525 417 109
pl 9289 181 42

th+av+sl+pl 9526 418 147
union 10 297 1189

strategy solved Δbase uniques
base 39 943 0 45
th 41 841 1898 321
av 39 906 −37 116
— — — —
pl 40 442 499 95

th+av+pl 40 952 1009 287
union 43 169 3226

base. The same success is not fully repeated on SMTLIB where th shows a great improvement,
but av performs worse than base. (Note that we did not run sl on SMTLIB, since the format
used in the library does not support specifying the goal.8)

It should be pointed out that even a strategy which does not improve over base in terms
of the number of solved problems could be valuable for the potential participation in strategy
schedules, because of the problems it solves uniquely (as reported in the last column in the
tables). For another view of this effect, the last line in the two tables shows the number of
problems solved by at least one of the listed strategies, again also compared against base. We
can see that the use of split heuristics allows us to solve almost 1200 TPTP problems (and more
than 3200 SMTLIB problems) not solved by base.

7.2. Experiment 2: nesting of the heuristics

When looking in Table 2 at the performance of the combination of the four heuristics (strategy
th+av+sl+pl) one can ask why it does not get better at achieving a combined benefit of its
constituents. In Experiment 2, we look at this trend closer and especially try to estimate how
much time is typically spent on computing the clause selection heuristic and how this depends
on the number of heuristics combined.

The report in Table 3 is based on TPTP runs of all the 16 possible strategies which combine
between zero to four of the heuristics introduced in this paper. The middle part of the table
reports on their performance in terms of the number of solved problems and is comparable
to (in fact, a super-set of) the results in Table 2 (left). One can notice here that combinations
indeed sometimes do not outcompete their constituents. E.g., *+av+pl is always worse than
just *+pl, which could indicate some unfavourable interactions of the two heuristics. (We leave
a more detailed study of this phenomenon for future work.)

Our main focus in this experiment, however, is on the right part of the table. There, we took
the runs on those problems which none of the strategies could solve9 (i.e., on which they ran
for the full 10 s) and measured how much time was spent (on average) on interacting with the
passive clause container (this includes insertions, deletions and the popping of the selected

8There is, however, interesting work on “guessing the goal” for SMTLIB problems [21], which we plan to
experiment with in the future.

9There were 7808 such problems.

44

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Table 3
Combined strategies run on TPTP: number of solved problems and average time spent (on the com-
monly unsolved problems) maintaining the passive clause container.

strategy solved Δbase #queues avg. time on unsolved
base 9108 0 2 0.32 s
pl 9289 181 2(*2) 0.32 s
av+pl 9179 71 2(*2)(*2) 0.32 s
av 9160 52 2(*2) 0.33 s

sl 9525 417 2*3 0.58 s
sl+pl 9594 486 2*3(*2) 0.58 s
sl+av+pl 9511 403 2*3(*2)(*2) 0.58 s
sl+av 9560 452 2*3(*2) 0.59 s

th+av+pl 9181 73 2*4(*2)(*2) 1.04 s
th+pl 9338 230 2*4(*2) 1.06 s
th 9204 96 2*4 1.06 s
th+av 9234 126 2*4(*2) 1.08 s

th+av+sl+pl 9526 418 2*4(*2)*3(*2) 1.75 s
th+sl+pl 9601 493 2*4*3(*2) 1.76 s
th+av+sl 9584 476 2*4(*2)*3 1.79 s
th+sl 9557 449 2*4*3 1.80 s

clauses). This average time is reported in the last column, from which we can see that, indeed,
the more complex combined strategies are more expensive to execute.

Additionally, for comparison, the #queues column in the table reminds us how many “layer
one” clause queues each strategy maintains (recall Section 2.3 and the number of “horizontal”
splits each heuristic uses, as shown in Table 1). The multiplier (*2) corresponding to av and pl
is rendered in brackets, because these two heuristics use the disjoint split mode. This means
that when deciding on distAV (or distHorn), each clause is strictly inserted only into one of two
possible sub-containers (rather than possibly to more than one, as with the monotone mode).
Correspondingly, the strategies are clearly separated into four groups in terms of average
interaction time, where the monotone splits of sl and th are the costly ones (and maintaining
the 4 queues of th costs more than the 3 queues of sl) whereas the disjoint split of the other
two heuristics does not seem to be adding any measurable overhead.

We remark that the reported average times are not directly proportional to speed of clause
processing as each run was terminated after 10 s no matter how many selections were performed.
Moreover, quite different search spaces could have been traversed by each of the strategies.

7.3. Experiment 3: parameter tunings

In this section, we shed some light on how the performance of our heuristics varies under
the two possible modes of split and under changing the ratios. We focus here on the SInE-
levels, AVATAR-splits, and the number of positive literals, referring the reader to [4] for more
information on the behaviour of the theory reasoning heuristic. Fortunately, for these three
features, we always have a canonical value for the main cutoff to try first:

45

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Figure 2: The number of TPTP problems solved when splitting on distSInE with cutoffs (0,∞), and
varying the ratio. Quadratic interpolation used to connect the obtained measurements.

• as explained in Section 5, clauses of distSInE(𝐶) ≤ 0 are exactly those derived with the
help of the goal,

• clauses with distAV(𝐶) ≤ 0 do not depend on any AVATAR splits, and
• clauses with distHorn(𝐶) ≤ 1 are exactly the Horn clauses.

With the last feature, we also try out the “obvious” cutoff value 0.
Although we do not spend much effort on exploring the multi-value “horizontal” splits (since

the risk of overfitting to the benchmark increases, and the parameter space becomes both too
large to sample efficiently and hard to visualise), we explain how we discovered the successful
default for sl with cutoffs (0, 1,∞) and suggest a multi-value cutoff setting for pl.

Tuning SInE-levels Figure 2 shows the result of varying the ratio while splitting on distSInE
with the cutoffs (0,∞). We can observe that with distSInE, the monotone mode is clearly more
successful than the disjoint one.

For a comparison, the figure also includes marks for the base strategy and the base strategy
enhanced by setting the non-goal weight coefficient (nwc) to values 2.0, 5.0, and 10.0. Changing
the non-goal weight coefficient is a different way of making clause selection goal oriented
which relies on multiplying the weight of each clause not derived from the goal by the given
nwc, making it artificially larger and thus less likely to be selected [8]. We can see that the
“nwc = 10.0” strategy still beats the best possible ratio for the SInE level split queue setup here.

The method we used to further improve the SInE level split heuristic is as follows. We took
the best ratio 1 : 5 for the monotone split as shown in Figure 2. Let us recall that this strategy
tries to select once out of every 6 selections a clause 𝐶 with distSInE(𝐶) ≤ 0, the remaining 5
selections being unconstrained by distSInE. After adding a second cutoff (of value 1), we can
speculate how to split these 5 selections into those with distSInE(𝐶) ≤ 1 and the remaining,
again unconstrained ones. This led us to an experiment with the fixed cutoffs (0, 1,∞) and the
varied ratios 1:4:1, 1:3:2, 1:2:3, and 1:1:4, and with the resulting number of problems solved: 9112

46

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Figure 3: The number of TPTP (left) and SMTLIB (right) problems solved when splitting on distAV with
cutoffs (0,∞) and varying the ratio. Quadratic interpolation applied as previously.

(+4 over base), 9410 (+302), 9512 (+404), and 9501 (+393), respectively. Based on this experiment
we selected the cutoffs (0, 1,∞) and ratio 1:2:3 as the default for sl.10

Tuning AVATAR-splits Figure 3 visualizes the changes in performance when varying the
ratios for the AVATAR-based split heuristic with the distAV(𝐶) ≤ 0 cutoff and compares them
to base. We can see that the trends are similar for TPTP and SMTLIB and that here the highest
values are reached for the disjoint mode of split. Although the best ratio on TPTP is 2:3, we
chose the ratio 1:1 for the default in av given its much better performance on SMTLIB.

Tuning the positive literals feature The situation with the positive literals feature is a bit
harder to understand. Let us first have a look at the distHorn(𝐶) ≤ 0 cutoff, i.e. the perspective
in which the “good” clauses are the clauses with no positive literals.

The performance development for this setup is visualised in Figure 4, again both for TPTP
(left) and SMTLIB (right). Here, the two behaviours are quite different. Most notably, the disjoint
mode, which we selected for the default of pl, is only dominant for SMTLIB, whereas for TPTP,
better values can be achieved with the monotone mode. Moreover, the monotone mode on
TPTP remains to be very successful (as compared to base) for up to high values of the ratio.
In contrast, on SMTLIB the performance of the monotone mode is close to that of base from
the ratio 1:5 onwards (and reaches it “from below” with the smaller values). Note that for the
monotone mode, increasing 𝑥 in a ratio 1:𝑥 effectively converges to turning the heuristic off.
This makes the observation that this mode is still very successful on TPTP for the ratio 1:30
even more surprising. We currently do not have a good explanation for this phenomenon.

Let us with Figure 5 move on to the distHorn(𝐶) ≤ 1 cutoff, under which we recognise as
“good” those clauses that have at most one positive literal. This “Horn fragment” perspective is

10Table 2 reports a slightly different number of solved problems for the default sl. The variation, i.e., the 9512 vs
9525 solved problems, is an artefact of rerunning the experiment (in an inherently non-deterministic environment)
whose magnitude should be taken into account when interpreting the results in this whole section.

47

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Figure 4: The number of TPTP (left) and SMTLIB (right) problems solved when splitting on distHorn
with cutoffs (0,∞) and varying the ratio.

Figure 5: The number of TPTP (left) and SMTLIB (right) problems solved when splitting on distHorn
with cutoffs (1,∞) and varying the ratio.

both for TPTP and for SMTLIB dominated by the monotone mode of split. When looking at the
actual number of problems solved, however, we observe that on neither of the two benchmarks is
the improvement over base as pronounced as for the distHorn(𝐶) ≤ 0 cutoff. The best measured
improvement for SMTLIB is +78 problems over base achieved for the ratio 1:1. On TPTP, we
gain +103 problems over base with the ratio 6:1.

We used the same strategy for extending a good ratio from one non-trivial cutoff to two as
with the SInE-levels. Focusing on the TPTP benchmark, which seems to be more “responsive”
to the heuristic based on positive literals, we started from the successful ratio 1:20 from the
distHorn(𝐶) ≤ 0 cutoff with the monotone mode of split and tested variations in which the
20 selections are distributed between a certain amount of those with distHorn(𝐶) ≤ 1 and
the remaining, unconstrained ones. This way, we tested strategies with the cutoff (0, 1,∞)

48

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

and ratios 1:15:5, 1:16:4, 1:17:3, 1:18:2, and 1:19:1, obtaining, respectively, 9365, 9383, 9368,
9368, 9277 problems solved. The best of these, 1:16:4, improves over the 1:20-ratio (0,∞)-
cutoff monotone-mode strategy by additional 87 problems. For comparison, however, this new
strategy does not fare very well on SMTLIB, where it scores 181 fewer problems than base.
Our tentative conclusion from tuning the positive literals feature is that the ensuing “Horn
fragment” perspective is not very useful for improving the performance on SMTLIB.

7.4. Experiment 4: software verification benchmarks

A recent stream of work (started in [13]) formalizes the correctness of functional properties
about programs containing loops and arrays as validity problems in quantified first-order logic
modulo integers and difference logic over natural numbers. It then uses superposition-based
theorem proving to reason about the resulting encodings.

These encodings are extremely challenging, since they include quantifier alternations and
quantified theory reasoning over both integers and difference logic and require proofs of non-
trivial size. We conjecture that the key ingredient to reason in this domain efficiently is to
equip the prover with domain-specific knowledge: From experience we know that proofs in
this domain require only light-weight theory reasoning and light-weight reasoning with case
distinctions. We furthermore know that it pays off to explore consequences related to the
conjecture. Our work measures the amount of theory reasoning in a derivation of a clause using
distth, measures the amount of case-distinctions in a derivation of a clause using distHorn, and
keeps track of whether the conjecture occurred in the derivation of a clause using distSInE. We
therefore are able to use nested split-heuristics with those features to guide proof search on
these examples.

As a third experiment, we investigated the effect of guiding proof search using nested split
heuristics with features dist8th, distHorn, and distSInE on 103 benchmarks obtained from unpub-
lished work extending and improving [13]. We adapted the default configuration of Vampire
to a base configuration, by (i) turning off Avatar, (ii) turning on additional simplification
rules, including backward subsumption, backward subsumption resolution, and forward- and
backward subsumption demodulation [22] and (iii) additional smaller changes. Starting from
this base configuration, we compared two versions aw and split-heuristics. The version
aw combines the base configuration with Vampire’s default clause selection heuristic 𝑎𝑤(1 : 1).
The version split-heuristics uses a portfolio of configurations, where each configuration
uses the clause selection heuristic

mono-split(dist8th, ,

mono-split(distHorn, ,

mono-split(distSInE, ,

aw(1 : 1)))),

consisting of three nested monotone split heuristics with features dist8th, distHorn and distSInE,
where the cutoffs and ratios of the split heuristics are varied in the portfolio. For each configu-
ration, we imposed a timeout of 60 s. The results of the experiment are listed in Table 4. While
Vampire was only able to prove 18 out of 103 examples with aw, it was able to prove 78 out of

49

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Table 4
Results of Experiment 4.

strategy refuted
aw 18

split-heuristics 78

103 examples while using split-heuristics. These results are significant, and suggest that
adding domain-specific knowledge using clause selection heuristics based on the split heuristic
is a key ingredient to efficient automation of the challenging software verification benchmarks
obtained from extensions of [13].

8. Conclusion

We investigated the framework of layered clause selection and split heuristics for clause selection
and generalized it to support arbitrary nestings and both disjoint and monotone groups. We
then revisited the existing feature distth and introduced three new features distAV, distSInE, and
distHorn. Finally, we instantiated the framework of split heuristics with these four features
and presented a thorough experimental evaluation. Our results suggest that split heuristics
heavily improve the performance for both general domains as well as for a specific application
to software verification.

Acknowledgements

Bernhard Gleiss was supported by the ERC Starting Grant 2014 SYMCAR 639270, the ERC Proof
of Concept Grant 2018 SYMELS 842066, and the Austrian FWF research project W1255-N23.
Martin Suda was supported by the ERC Consolidator grant AI4REASON no. 649043 under the
EU-H2020 programme and the Czech Science Foundataion project 20-06390Y.

We thank the anonymous reviewers for their useful comments and suggestions. We also
thank Sibylle Ortner for a careful proofreading of a preliminary version of this paper.

References

[1] A. Riazanov, A. Voronkov, Limited resource strategy in resolution theorem proving, J.
Symb. Comput. 36 (2003) 101–115. URL: https://doi.org/10.1016/S0747-7171(03)00040-3.
doi:10.1016/S0747-7171(03)00040-3.

[2] S. Schulz, M. Möhrmann, Performance of clause selection heuristics for saturation-based
theorem proving, in: N. Olivetti, A. Tiwari (Eds.), 8th International Joint Conference on
Automated Reasoning (IJCAR 2016), volume 9706 of Lecture Notes in Computer Science,
Springer, 2016, pp. 330–345. URL: https://doi.org/10.1007/978-3-319-40229-1_23. doi:10.
1007/978-3-319-40229-1_23.

[3] T. Tammet, GKC: A reasoning system for large knowledge bases, in: P. Fontaine (Ed.),
27th International Conference on Automated Deduction (CADE 2019), volume 11716 of

50

https://doi.org/10.1016/S0747-7171(03)00040-3
http://dx.doi.org/10.1016/S0747-7171(03)00040-3
https://doi.org/10.1007/978-3-319-40229-1_23
http://dx.doi.org/10.1007/978-3-319-40229-1_23
http://dx.doi.org/10.1007/978-3-319-40229-1_23

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

Lecture Notes in Computer Science, Springer, 2019, pp. 538–549. URL: https://doi.org/10.
1007/978-3-030-29436-6_32. doi:10.1007/978-3-030-29436-6_32.

[4] B. Gleiss, M. Suda, Layered clause selection for theory reasoning (short paper), in: 10th
International Joint Conference on Automated Reasoning (IJCAR 2020), 2020. To appear.

[5] L. Kovács, A. Voronkov, First-order theorem proving and Vampire, in: N. Sharygina,
H. Veith (Eds.), 25th International Conference on Computer Aided Verification (CAV
2013), volume 8044 of Lecture Notes in Computer Science, Springer, 2013, pp. 1–35. URL:
https://doi.org/10.1007/978-3-642-39799-8_1. doi:10.1007/978-3-642-39799-8_1.

[6] A. Voronkov, AVATAR: the architecture for first-order theorem provers, in: A. Biere,
R. Bloem (Eds.), 26th International Conference on Computer Aided Verification (CAV 2014),
volume 8559 of Lecture Notes in Computer Science, Springer, 2014, pp. 696–710. URL: https:
//doi.org/10.1007/978-3-319-08867-9_46. doi:10.1007/978-3-319-08867-9_46.

[7] K. Hoder, A. Voronkov, Sine qua non for large theory reasoning, in: N. Bjørner, V. Sofronie-
Stokkermans (Eds.), 23rd International Conference on Automated Deduction (CADE 2011),
volume 6803 of Lecture Notes in Computer Science, Springer, 2011, pp. 299–314. URL: https:
//doi.org/10.1007/978-3-642-22438-6_23. doi:10.1007/978-3-642-22438-6_23.

[8] M. Suda, Aiming for the goal with SInE, in: L. Kovács, A. Voronkov (Eds.), Vampire
2018 and Vampire 2019. The 5th and 6th Vampire Workshops, volume 71 of EPiC Series in
Computing, EasyChair, 2020, pp. 38–44. URL: https://easychair.org/publications/paper/lZfv.
doi:10.29007/q4pt.

[9] R. A. Overbeek, A new class of automated theorem-proving algorithms, J. ACM 21 (1974)
191–200. URL: http://doi.acm.org/10.1145/321812.321814. doi:10.1145/321812.321814.

[10] L. Bachmair, H. Ganzinger, D. A. McAllester, C. Lynch, Resolution theorem proving, in:
Handbook of Automated Reasoning (in 2 volumes), 2001, pp. 19–99. URL: https://doi.org/
10.1016/b978-044450813-3/50004-7. doi:10.1016/b978-044450813-3/50004-7.

[11] S. Schulz, System Description: E 1.8, in: K. McMillan, A. Middeldorp, A. Voronkov (Eds.),
Proc. of the 19th LPAR, Stellenbosch, volume 8312 of LNCS, Springer, 2013.

[12] S. Schulz, E 2.4 User Manual, http://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_
DOWNLOAD/V_2.4/eprover.pdf (accessed January 2020), 2019.

[13] G. Barthe, R. Eilers, P. Georgiou, B. Gleiss, L. Kovács, M. Maffei, Verifying relational
properties using trace logic, in: Formal Methods in Computer Aided Design 2019 (FMCAD
2019), 2019, pp. 170–178. doi:10.23919/FMCAD.2019.8894277.

[14] J. Backes, S. Bayless, B. Cook, C. Dodge, A. Gacek, A. J. Hu, T. Kahsai, B. Kocik, E. Kotelnikov,
J. Kukovec, S. McLaughlin, J. Reed, N. Rungta, J. Sizemore, M. Stalzer, P. Srinivasan,
P. Subotić, C. Varming, B. Whaley, Reachability analysis for aws-based networks, in:
I. Dillig, S. Tasiran (Eds.), Computer Aided Verification, Springer, 2019, pp. 231–241.

[15] G. Reger, M. Suda, A. Voronkov, Playing with AVATAR, in: A. P. Felty, A. Middeldorp
(Eds.), 25th International Conference on Automated Deduction (CADE 2015), volume 9195
of Lecture Notes in Computer Science, Springer, 2015, pp. 399–415. URL: https://doi.org/10.
1007/978-3-319-21401-6_28. doi:10.1007/978-3-319-21401-6_28.

[16] G. Reger, N. Bjorner, M. Suda, A. Voronkov, AVATAR modulo theories, in: C. Benzmüller,
G. Sutcliffe, R. Rojas (Eds.), 2nd Global Conference on Artificial Intelligence (GCAI 2016),
volume 41 of EPiC Series in Computing, EasyChair, 2016, pp. 39–52. URL: https://easychair.
org/publications/paper/7. doi:10.29007/k6tp.

51

https://doi.org/10.1007/978-3-030-29436-6_32
https://doi.org/10.1007/978-3-030-29436-6_32
http://dx.doi.org/10.1007/978-3-030-29436-6_32
https://doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-319-08867-9_46
http://dx.doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-642-22438-6_23
https://doi.org/10.1007/978-3-642-22438-6_23
http://dx.doi.org/10.1007/978-3-642-22438-6_23
https://easychair.org/publications/paper/lZfv
http://dx.doi.org/10.29007/q4pt
http://doi.acm.org/10.1145/321812.321814
http://dx.doi.org/10.1145/321812.321814
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
http://dx.doi.org/10.1016/b978-044450813-3/50004-7
http://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_DOWNLOAD/V_2.4/eprover.pdf
http://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_DOWNLOAD/V_2.4/eprover.pdf
http://dx.doi.org/10.23919/FMCAD.2019.8894277
https://doi.org/10.1007/978-3-319-21401-6_28
https://doi.org/10.1007/978-3-319-21401-6_28
http://dx.doi.org/10.1007/978-3-319-21401-6_28
https://easychair.org/publications/paper/7
https://easychair.org/publications/paper/7
http://dx.doi.org/10.29007/k6tp

Bernhard Gleiss et al. CEUR Workshop Proceedings 34–52

[17] C. Weidenbach, Combining superposition, sorts and splitting, in: J. A. Robinson,
A. Voronkov (Eds.), Handbook of Automated Reasoning (in 2 volumes), Elsevier and
MIT Press, 2001, pp. 1965–2013. URL: https://doi.org/10.1016/b978-044450813-3/50029-1.
doi:10.1016/b978-044450813-3/50029-1.

[18] A. Riazanov, A. Voronkov, Splitting without backtracking, in: B. Nebel (Ed.), 17th
International Joint Conference on Artificial Intelligence (IJCAI 2001), Morgan Kaufmann,
2001, pp. 611–617. URL: http://ijcai.org/proceedings/2001-1.

[19] G. Sutcliffe, The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,
TPTP v6.4.0, Journal of Automated Reasoning 59 (2017) 483–502.

[20] C. Barrett, P. Fontaine, C. Tinelli, The Satisfiability Modulo Theories Library (SMT-LIB),
www.SMT-LIB.org, 2016.

[21] G. Reger, M. Riener, What is the point of an SMT-LIB problem?, in: 16th International
Workshop on Satisfiability Modulo Theories (SMT 2018), 2018.

[22] B. Gleiss, L. Kovács, J. Rath, Subsumption demodulation in first-order theorem prov-
ing, in: Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris,
France, July 1-4, 2020, Proceedings, Part I, 2020, pp. 297–315. URL: https://doi.org/10.1007/
978-3-030-51074-9_17. doi:10.1007/978-3-030-51074-9_17.

52

https://doi.org/10.1016/b978-044450813-3/50029-1
http://dx.doi.org/10.1016/b978-044450813-3/50029-1
http://ijcai.org/proceedings/2001-1
www.SMT-LIB.org
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-030-51074-9_17
http://dx.doi.org/10.1007/978-3-030-51074-9_17

	1 Introduction
	2 Layered clause selection using multi-split-queues
	2.1 The Age-weight-based heuristic
	2.2 Split heuristics
	2.3 Nesting split heuristics
	2.4 Implementation
	2.5 Discussion

	3 Feature: Amount of theory reasoning
	4 Feature: AVATAR-splits
	5 Feature: SInE-levels of a Clause
	6 Feature: Positive literals
	7 Experiments
	7.1 Experiment 1: testing the initial defaults
	7.2 Experiment 2: nesting of the heuristics
	7.3 Experiment 3: parameter tunings
	7.4 Experiment 4: software verification benchmarks

	8 Conclusion

