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Abstract  
The infectious disease mathematical model by Marchuk for conditions of diffusion 

perturbations and taking into account impulse influences is generalized. The corresponding 

singularly perturbed model problem with delays is reduced to a sequence of problems without 

delay, for which the corresponding asymptotic developments of solutions are obtained. The 

results of numerical experiments characterizing the impulse effects of infectious disease factors 

on the immune response development in the conditions of spatially distributed diffusion 

perturbations are presented. The model decrease of the antigens maximum level in the infection 

epicenter due to their diffusion "erosion" in the viral disease process development is illustrated.  
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1. Introduction 

The simplest (basic) infectious disease model which describes the most general laws of organism 

humoral immune response to the viral antigens found is resulted in [1,2,3]. The infectious disease 

process development in the model is determined by the nonlinear differential equations system with 

delay, describing the rate of change in the viral antigens number, plasma cells, antibodies and the extent 

of damage to the target organ. The relatively small number of active factors of the infectious disease 

simplest model allows to establish strictly justified properties of its solutions, in particular, the stability 

of inpatient solutions. In [1] it was shown that the stationary solution, which describes the healthy 

organism state under certain conditions is asymptotically stable and retains this kind of resistance when 

infecting a healthy organism with a dose of antigen 0V , that does not exceed a certain level *V  of 

immunological barrier. The infectious disease basic model and its modifications in identifying their 

parameters according to clinical observations allow to predict the nature of the course and outcome of 

infectious disease, to investigate the general patterns of external influence on the process dynamics, 

analyze and evaluate various treatment procedures. The generalization of an infectious disease  simplest 

model is antiviral and antibacterial immune response mathematical models[2,3]. In contrast to the 

simplest model, in addition to the humoral immune response with the antibodies production, the cellular 

type of immunity with the cytotoxic T-lymphocyte effectors accumulation  is taken into account. As 

mentioned in [2,3], antibodies are able to neutralize viral antigens that circulate freely in the blood or 

lymph, but can’t penetrate into infected cells and neutralize viruses that multiply in them. Detection and 

destruction of infected cells is carried out by cytotoxic T-killer lymphocytes. The antiviral immune 

response model, as well as the basic model, is represented by a nonlinear differential equations system 
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with delay, describing the rates of change of free circulating in the body viruses Vf , antibodies F, 

infected with viruses of target cells CV, T-killer lymphocytes Е, T-helper lymphocytes of cellular 

immunity НЕ, T-lymphocytes helpers of humoral immunity HB, B-lymphocytes B, plasma P cells, 

stimulated MV macrophages and non-functioning part of the virus-affected organ m. 

The infectious disease basic model, the antiviral immune response model and other immunology 

models [7,8,9] are built under the assumption that the "organism" is a homogeneous environment in 

which all the process components are instantly mixed and, as a result, evenly distributed. On the other 

hand, the antigens detection and the launch of the immune system of appropriate mechanisms of 

response to them does not occur immediately after the antigens penetration into the body. That is, some 

of the antigens that were not immediately neutralized by the immune system will penetrate into the 

cells, multiply in them and spread further in the body. As a result, infection foci with higher antigens 

concentrations forms around the affected cells. The antigens generated in the body will eventually be 

redistributed from the initial infection foci to the surrounding uninfected areas, increasing the affected 

area and decreasing the antigen concentrations values in the respective infection epicenters. An 

approach for taking into account small spatially distributed diffusion effects on population dynamics is 

presented in [4,5,6]. In particular, in [6] when modifying the simplest infectious disease model to take 

into account the impact on the dynamics of the disease of certain drugs introduced into the body, articles 

describing diffusion perturbations of the process active factors were added. The model decrease of the 

maximum antigens concentration in the infection epicenter due to their diffusion "erosion" in the 

infectious disease process development is illustrated. It is emphasized that even if the initial antigens 

concentration in some infection area exceeds a certain critical value (immunological barrier), diffusion 

"redistribution" for a certain period of time will reduce above critical values of antigen concentrations 

to below critical level, and their subsequent disposal can be provided with the level of organism immune 

protection available before infection. 

But as in traditional infectious disease models of antiviral (antibacterial) immune response, and in 

their modifications [5,6], which take into account spatially distributed diffusion perturbations, impulse 

effects are not considered. The purpose of this work is to "fill" this gap. 

2. Problem Statement 

To take into account spatially distributed diffusion perturbations of infectious disease development, 

it is proposed to modify the basic models by introducing components that describe small diffusion 

spatially distributed effects ("redistributions"). Let us generalize this kind of modification of basic 

models by G. Marchuk by introducing additional terms describing the influences that are close to the 

impulse character. The spatio-temporal dynamics of the infectious disease process model components, 

taking into account close to impulse influences in the domain   ;  ZG x,t : x  0 t  will 

be described by such a singularly perturbed dimensionless nonlinear differential equations system: 
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where     mv x,t V x,t V ,     *s x,t С x,t C ,     f x,t F x,t F ;  V x,t ,  С x,t ,  F x,t ,  m x,t  – 

respectively, the concentration of antigens, plasma cells, antibodies and the value of the damage degree 

to the target organ at point  x at time t; 
mV is some scale factor for the  antigens concentration, for 

example, the biologically acceptable antigens concentration in the body; *C , 
F  are the plasma cells 



and antibodies concentration in a healthy organism; 
1 h , 2  *h F , 3  * *

mh V F C , 
4  fh , 

5  Ch , 

6  mh V , 
7  mh , 

8  mh V ;   is the antigens reproduction rate;   is the coefficient that takes into 

account the result of the antigens interaction with antibodies;  is the period of time (delay) required to 

form a plasma cells cascade; С
 is value inverse to the plasma cells lifespan;   is immune system 

stimulation factor;   is the rate of antibodies production by one plasma cell;  f
 is the value inverse of 

the antibodies duration;   is the cost of antibodies to neutralize one antigen;   is the rate of the target 

organ cells damage; m
 is the rate of the target organ recovery, 

9h , 
11h , 

2

10 h , 
2

12 h  are diffusion 

redistribution coefficients of antigens, antibodies, plasma and affected cells, respectively,   is a small 

parameter that characterizes the respective components small impact compared to the dominant 

components of the process. The function (m) takes into account the effect of reducing the antibody 

production productivity in significant damage to the target organ. If is  the maximum value of the degree 

of the target organ damage, at which the immune system normal functioning is still possible, then on 

the segment 0  *m m  value   m  is equal to one, regardless of the lesion, the immunological organs 

function fully. If 1 *m m , the body efficiency is rapidly declining. Functions  Vu x,t ,  Fu x,t , 

describing a close to pulse change, respectively, of the antigens   and antibodies concentrations with 

maximum values at points
V jx , 

F jx  at times 
V jt , 

F jt  will be represented as 
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where 
V jA , 

F jA , V j
, F j

, V j
, F j

 are parameters that determine the pulse intensity and "duration". 

Note that in the future as initial, we will take, in particular, the conditions that characterize the 

stationary solution, which corresponds to the healthy organism state, namely 
 

        0 0 0 01  0  0 1  s x,t , m x,t , v x,t , f x,t , t t t       .  (4) 

 

At the beginning we consider the case when the level of damage to the target organ by antigens 

remains such that it does not lead to a decrease in the productivity of antibody production,   1 m . 

Then the solution of problem (1) - (2) with delay is reduced to a sequence of problems without delay 

[10]: 
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To ensure sufficient smoothness of the corresponding solutions at 
0  t t , 

0 2 t t , …, 
0  t t n

, in addition to the traditional smoothness conditions with respect to the initial conditions functions in 

the infectious disease model, it is necessary to impose conditions of their consistency at 
0  t t , 

0t t , 

… [11]. In particular, the condition must be met 
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Given that the diffusion redistributions of active factors are small compared to other components of 

the infectious disease process, we use the asymptotic method to solve the corresponding singularly 

perturbed model problems (4) - (5) [11,12]. In particular, the solutions of problems (4) - (5) are formally 
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Note that the proposed approach is easy to transfer to other, in particular, finite domains 
ZG . In this 

case, of course, instead of those described above, more complex schedules should be used (see, for 

example, [9,10,11]). Estimation of residual terms  v

njR x,t , ,  s

njR x,t , ,  ,f

njR x,t ,   m

njR x,t ,  and 

establishment of spatio-temporal intervals of convergence for forecasting of concrete processes are 

carried out on the basis of the principle of type of a maximum similarly to [4,11,12]. 



3. Numerical Experiments Results 

Numerical experiments within this model investigated the features of the body's humoral immune 

response to viral antigens and the corresponding spatiotemporal dynamics of infectious disease for 

different situational conditions under diffusion disturbances and taking into account close to pulse 

changes in antigen and antibody concentrations in certain areas of the body. 

Fig. 1 presents the spatial and temporal dynamics of antigen concentrations with the development 

of infectious disease in the chronic form according to model (1) - (2) in cases without taking into account 

(Fig. 1, a)) and taking into account (Fig. 1, b)) small spatially distributed diffusion influences under 

conditions that the initial distribution of antigens concentration is uneven in space

   
20 ( )

0

xv x,t v x e       (there is a separate center of infection of an organism with a maximum 

antigens concentration in a point
0x  ). These results show that in the case without diffusion 

"redistribution", the development of the process according to the "scenario" of chronic disease is in 

some way "localized" in some area, which corresponds to the area with higher relative to some 

immunological barrier values of antigen concentration at the initial time. The influence of diffusion 

"redistribution" of the antigens initial concentration smooths out such "localization" of the model 

process. The corresponding model change with time of antigen concentration in the conditions of the 

chronic form of the disease at different intensities of diffusion "redistribution" in the infection epicenter 

is shown in Fig. 2. Under conditions without diffusion "redistribution" (ε = 0) the  antigens  
 

 
Figure 1: Spatial-temporal dynamics of antigen concentration under conditions of non-uniform in 
space distribution of antigen concentration at the initial time 

0t at a) 0,000  ;  b) 0,025   

 
 

Figure 2: Dynamics of antigen concentration of model (1) - (2) in the infectious epicenter disease in 
chronic form at different levels of diffusion intensity 
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Figure 3: Spatial-temporal dynamics of antigen concentration under conditions of pulsed exposure at 
a) 0,000  ;  b) 0,025   

 

concentration in the body increases to some maximum level, then decreases and is established over time 

at some stationary level. As the intensity of diffusion "redistribution" increases, the maximum value of 

antigen concentration in the epicenter decreases, and starting from some value of intensity the maximum 

antigens concentration will not increase, ie the level of immune protection adopted in the model in the 

presence of diffusion redistribution moment of time to prevent a model increase in the maximum  

antigens concentration in the infection epicenter and over time without "exacerbations" to reduce their 

concentration to some stationary level. 

Spatial and temporal dynamics of antigen concentration with the development of infectious disease 

in a situation where at the initial time the values of the active factors of the process correspond to the 

values of the stationary solution, which characterizes the state of a healthy organism is shown in Fig. 3. 

The change in the concentration of antigens in the body is close to the pulse nature with the maximum 

value at some point 
Vx  at time 

Vt . As already mentioned, the humoral type of immune response 

provides antibody neutralization of viral antigens that circulate freely in the blood or lymph. Depending 

on the immune system state, individual antigens can enter the cells of the target organ, where they can 

multiply and cause its destruction. As a result, a cell with a high antigens concentration appears at the 

site of the destroyed cell, which causes a close to impulse effect. The obtained results, as in the case of 

the initial condition with uneven distribution of antigen concentration, illustrate a certain "localization" 

in some area of the "scenario" of the disease in the chronic form (Fig. 3, a)) in the case without diffusion 

"redistribution".  As in the previous case, the diffusion "redistribution" of the  antigens concentration 

in the region of the impulse effect smooths the "localization" of the model process. Note that the 

presented generalization of the mathematical model of infectious disease taking into account the 

impulse effects under diffusion perturbations allows us to investigate the effects caused by several close 

to pulse sources of antigens with maximum values at different points 
V jx  and in different time 

V jt . 

Quite an effective procedure for the treatment of infectious diseases is the use of immunotherapy 

[6]. Donor antibodies can be administered by injection, which in this model will be presented as close 

to pulsed sources of donor antibodies with maximum values at points 
F jx  in time 

F jt . Figure 4 presents 

the spatiotemporal dynamics of antigen concentrations with the development of infectious disease in 

the chronic form in the presence of close to pulsed sources of antigens and donor antibodies with 

maximum values at one point  (
V Fx x ), but different time (

V Ft t ) under conditions excluding 

diffusion "redistribution" (Fig. 4, a)) and taking into account the diffusion "redistribution" (Fig. 4, b). 

The results illustrate, as expected, the decrease in antigen concentration due to the introduction of donor 

antibodies in the appropriate area. In conditions without diffusion "redistribution", the effect of donor 

antibodies in the cell of their introduction is longer. In terms of diffusion "redistribution" introduced 

donor antibodies over time "blur" to a larger "territory" of the body, resulting in faster consumption of 

antigen neutralization and their impact on the disease process is less long. 
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Fig. 5 presents the spatial and temporal dynamics of viral antigens concentrations with the 

development of infectious disease in the chronic form in the presence of one close to the pulse source 

of antigens and two close to pulse sources of donor antibodies with maximum values at point (
V Fx x ) 

and at different time (
1 2V F Ft t t  ), without taking into account (Fig. 5, a)) and taking into account the 

diffusion "redistribution" (Fig. 5, b)). As can be seen from the presented results, if the diffusion 

"redistribution" is taken into account, the intensity and duration of action of donor antibodies introduced 

into the body are smaller than in the model situation without such "redistribution" caused by diffusion 

"erosion" of donor antibodies from their injection site.  

 

 
 

Figure 4: Spatial-temporal dynamics of antigen concentration in the presence of close to pulsed 
sources of antigens and donor antibodies 

 

 
 

Figure 5: Spatial-temporal dynamics of antigen concentration in the presence of several close to 
pulsed sources of donor antibodies 
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Figure 6: Dynamics of the main active factors of model (1) - (2) of an infectious disease in a chronic 
form in the presence of several pulse sources of donor antibodies at different levels of diffusion 
influence intensity 

 

Figure 6 illustrates the change in the model dynamics of active infectious disease factors in the 

chronic form in the infection epicenter in a situation with one pulsed source of viral antigens and two 

pulsed sources of donor antibodies depending on the intensity of diffusion "redistribution" (parameter 

ε). The presented results show a decrease in the maximum value of the number of antigens, antibodies, 

plasma and affected cells in the infection epicenter with increasing intensity of diffusion 

"redistribution", which leads to a decrease in model "severity" of infectious disease. The introduction 

of close to the pulse of several sources of donor antibodies allows in this model to further reduce the 

antigens concentration in the infection epicenter. In particular, in a situation without taking into account 

the diffusion "redistribution", the effect of donor antibodies causes a decrease in the concentration of 

antigens to values close to zero. Given the diffusion effect, the action of donor antibodies due to their 

"redistribution" is less effective and leads to a smaller decrease in the antigens concentration. Therefore, 

to achieve the desired therapeutic effect, it is necessary to change the treatment procedure, for example, 

to increase the frequency of administration of antibodies, or their number in one injection. 

4. Conclusions 

Based on the modification of the simplest infectious disease model, an approach is presented to take 

into account close to impulse influences on the development of an infectious disease in the conditions 

of small spatially distributed diffusion perturbations. The corresponding model problem with delay is 

reduced to a sequence of problems without delay, for which representations of the required functions 

in the form of asymptotic series as perturbation of solutions of the corresponding degenerate problems 

are constructed. 

The  numerical experiments results illustrate the decrease in the maximum value of the antigens 

concentration in the infection epicenter due to their diffusion "redistribution", including for different 

situational conditions. It has been shown that even when the initial antigen concentration 0V  or the 

intensity of the pulsed antigen source in some area of the infection zone exceeds a certain critical value 
*V  the diffusion "redistribution" over a period of time can reduce the critical antigen concentration to 

a level below the critical the reduction can be provided by the available level of antibodies, as well as 

a more economical mode of administration of donor antibodies by injection. That is, under this model, 



the "severity" of the infectious disease in such cases will decrease, so to speak, at low cost.  

The developed computational procedure can be an element of designing specialized expert systems 

for making a wide range of decisions such as: can we in this case according to the values of relevant 

input data, in particular, on the intensity of diffusion "redistribution", on the level of immune protection 

available in the body, or, otherwise, to carry out external therapeutic effects. And in a situation where 

it is decided that such an effect should be exercised, in particular by means of injections of donor 

antibodies, to establish the most rational frequency of their introduction and an acceptable concentration 

of antibodies for each injection. 

It is also promising to take into account such impulse effects in spatially distributed diffusion 

perturbations in the study of viral and bacterial diseases on the basis of more general models, in 

particular, models of antiviral and antibacterial immune response by Marchuk and Petrov [5]. 
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