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Abstract  
The main purpose of the work was to consider the problem of neural networks and their 

application, especially for data management and control in the medical industry. The software 

product, analyzes processing of unstructured and poorly structured medical data reliability, to 

support decision-making, implements the neural network, was developed and studied from sets 

of user-defined information flows. On the basis of the scientific task, the program training 

algorithm was developed, which provides comprehensive support for decision-making based 

on the study. The developed software application is focused on cross-platform, and the 

graphical interface is implemented using Java FX. The software product provides a network 

for the reverse propagation of neural network errors (BackPropagation) and a network of 

directed random search (Directed Random Search). Designed neural network is trained and 

further recognizes the type of distribution (uniform, normal) on the specified characteristics, 

and used the rule "3 Sigma" to generate synthetic data. According to the study, we can conclude 

that the Directed Random Search learning algorithm, although more complex to implement the 

search for relevant medical documents, works much faster than the classical reverse 

distribution. 
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Introduction 

1.1.   Basic concepts of neural networks 

Artificial neural networks – mathematical models, as well as their software and hardware 

implementation, built on the principle of biological neural networks - networks of nerve cells of a living 

organism. Systems, architecture and principle of operation are based on analogy with the brain of living 

beings. The key element of these systems is an artificial neuron as an imitation model of the brain nerve 

cell, a biological neuron. This term arose when studying the processes occurring in the brain and 

attempting to simulate these processes. The first such attempt was the McCalock and Pitts neural 

networks [1, 4, 6, 11, 12, 18, 23, 27, 34, 37]. As a consequence, after the development of training 

algorithms, the obtained models were used for practical purposes: in forecasting tasks, for pattern 

recognition, in control tasks, and others [21]. The neural networks can be classified by: 

Type of input information: 

 analog neural networks (use information in the form of real numbers); 

 binary neural networks (operate with information presented in binary form). 

Character of learning: 
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 learning with a teacher - known neural network output; 

 teacher less learning - the neural network processes only the input of unstructured and poorly 

structured medical data and generates the output results itself. Such networks are called self-

organizing; 

 teacher-supported learning - a system of fines and incentives from the environment. 

The nature of synapses setting: 

 fixed-linked networks (neural network weights are selected immediately based on the 

conditions of the task, with: where W is the network weights); 

 networks with dynamic links (for them, synaptic links are set up in the course of training, 

i.e.,  where W are the weights of the network). 

1.2.  Back propagation network 

Backpropagation is a method of teaching multilayer perceptron. The method was first described in 

1974 by A.I. Galushkino and independently and simultaneously by Paul G. Verbos. It was further 

developed in 1986 by David I. Rumelhart, J.E. Hinton and Ronald J. Williams and independently and 

simultaneously by S.I. Bartsevim and V.A. Okhoninim (Krasnoyarsk Group). This is an iterative 

gradient algorithm that is used to minimize the error of multilayer perceptron operation and to obtain 

the desired output. The main idea of this method is to distribute error signals from the network outputs 

to its inputs, in the direction opposite to the direct distribution of signals in normal operation. Barth and 

Ohanian proposed a general method («duality principle»), applicable to a wider class of systems, 

including systems with a delay, distributed systems, etc. [17] To be able to apply the method of inverse 

error propagation, the neuron transfer function should be differentiated [24]. The method is a 

modification of the classical gradient descent method. Error reverse propagation algorithm is one of the 

methods to teach multilayer forward propagation neural networks (multilayer perceptron’s) [2, 7, 25, 

30, 36 40]. Training in the method of error propagation reverse involves two passes through all layers 

of the network: forward and reverse. In a forward pass, the input vector is fed to the input layer of the 

neural network and then propagated through the network from layer to layer. As a result, a set of output 

signals is generated, which is the actual reaction of the network to this input image. All synaptic weights 

of the network are fixed during the direct pass. During the reverse pass, all synaptic weights are adjusted 

according to the error correction rule, namely: the actual network output is subtracted from the desired 

one, resulting in an error signal. This signal is then propagated through the network in the opposite 

direction to the synaptic links. Hence, the name is the method of error propagation backwards. Synaptic 

weights are adjusted to bring the network output as close to the desired one as possible [9, 10, 13]. The 

appearance of the reverse propagation algorithm has become a landmark event in the field of neural 

network development, as it implements a computationally efficient method of multilayer perceptron 

training. It would be wrong to say that the error reverse propagation algorithm offers a really optimal 

solution to all potential problems, but it has dispelled the pessimism about multilayer machine learning 

[26, 29, 33]. Let us consider the work of the algorithm in more detail. Let's assume that it is necessary 

to teach the next neural network (Fig. 1) by applying the algorithm of error back propagation: 

The following symbols are used in this picture: 

 each layer of the neural network has its own letter, e.g. the input layer has its own letter a 

and the source layer c; 

 all neurons of each layer are numbered in Arabic numerals; 

 w (a1-b1) - synaptic scales between neurons a1 and b1. 

As an activation function in multilayer perceptron’s, the sigmoid activation function, in particular 

the logistic one, is usually used: 

𝑂𝑈𝑇 =
1

1 + exp⁡(−𝑎𝑌)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 
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where a is the tilt parameter of the sigmoid function. 

 

 

Figure 1: Example of a two-layer perceptron 

By changing this parameter, you can build functions with different steepness. Let us agree that for 

all subsequent considerations will be used exactly the logistic activation function (Fig. 2), represented 

by the (formula 1). 

 

 

Figure 2: Sigmoid 

The sigmoid narrows the range of change so that the OUT value lies between zero and one. 

Multilayer neural networks have more reflective power than single-layer networks only when non-

linearity is present. The compression function provides the necessary non-linearity. In fact, there are 

many functions that could be used. For an algorithm to reverse the error propagation, it is only necessary 

that the function is differentiated everywhere. The sigmoid meets this requirement. Its additional 

advantage is the automatic gain control. For weak signals (i.e. when OUT is close to zero) the 

input/output curve has a strong slope which gives a high gain. When the signal becomes larger the gain 

drops. Thus large signals are perceived by the network without saturation, while weak signals pass 

through the network without excessive attenuation. The purpose of error propagation training for the 

network is to adjust the weights so that a certain number of inputs lead to the required number of outputs. 

For short, these sets of inputs and outputs are called vectors. At training it is supposed that for each 

input vector there is a target vector paired to it, which sets the required output. Together, they are called 

a training pair. The network learns on many pairs. 

The algorithm of error back propagation is as follows: 

1. Initialize synaptic weights with small random values. 

2. Select the next training pair from the training set; submit the input vector to the network input. 

3. Calculate the network output. 

4. Calculate the difference between a network output and the required output (target vector of a 

training pair). 

5. Adjust the network weights to minimize the error. 



6. Repeat steps 2 to 5 for each vector of a training set until the error on all set reaches an admissible 

level. 

The operations performed in Steps 2 and 3 are similar to those performed at operation of the already 

trained network, i.e. input vector is supplied and output is calculated. Calculations shall be performed 

layer-by-layer. In Fig. 1, the outputs of neurons of layer B (layer A of the input layer, which means there 

are no calculations in it) are calculated first, then they are used as inputs of layer C, the outputs of OUT 

(CN) of neurons of layer C are calculated, which form the output vector of the OUT network. Steps 2 

and 3 form the so-called «pass forward» because the signal is distributed in the network from input to 

output. 

Steps 4 and 5 make up a «reverse pass», here the calculated error signal spreads back through the 

network and is used to adjust the weights. 

Let us consider in detail step 5 - correction of the network scales. Two cases should be highlighted 

here. 

Case 1. Correction of synaptic weights of the output layer 

For example, for the neural network model in Fig. 1., these scales have the following designations: 

w(B1-C1) and w(B2-C1). Let us define that the index p will denote the neuron from which the synaptic 

scales follow, and the q-neuron into which it enters [8, 19]. 

Enter the value Δ, which is equal to the difference between the required 𝑇𝑞 and the real 𝑂𝑈𝑇𝑞 

outputs multiplied by the derivative of the activation logistic function (formula 1.): 

∆⁡= ⁡OUT𝑞(1–OUT𝑞)(T𝑞–OUT𝑞)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

Then, the weights of the output layer after the correction will be equal: 

𝑊𝑝−𝑞(i + 1) ⁡= ⁡𝑊𝑝−𝑞(i) + n∆𝑞OUT𝑝⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

where i is the number of the current learning iteration; 𝑊𝑝−𝑞 is the value of synaptic weight 

connecting neuron p with neuron q; n - the «learning rate» coefficient, which allows to control the 

average value of weight change; OUT𝑝 - neuron p output. 

Here is an example of calculations for synaptic weight 𝑊𝑏1−𝑐1: 

∆𝑐1⁡= ⁡OUT𝑐1(1–OUT𝑐1)(T–OUT𝑐1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

𝑊𝑏1−𝑐1(i + 1) = 𝑊𝑏1−𝑐1(i) + ⁡n∆𝑐1OUT𝑏1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

Case 2. Correction of synaptic weights of the hidden layer. 

For the neural network model in Fig. 1, it will be the corresponding weights between layers A and 

B. Let us define that the index p will indicate the neuron from which the synaptic weight follows, and 

q - the neuron which enters (we pay attention to the appearance of a new variable k): 

∆𝑞⁡= ⁡OUT𝑞(1–OUT𝑞)∑∆kwq − k

𝑚

𝑘−1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

Then, the weights of the hidden layer after the correction will be equal: 

𝑊𝑝−𝑞(i + 1) = 𝑊𝑝−𝑞(i) + ⁡n∆𝑝OUT𝑝⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

Here is an example of a calculation for synaptic weight 𝑊𝐴1−𝐵1: 

∆𝐵1⁡= ⁡OUT𝐵1(1–OUT𝐵1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 
 

𝑊𝐴1−𝐵1(i + 1) = 𝑊𝐴1−𝐵1(i) + ⁡n∆𝐵1OUT𝐴1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 
 

For each neuron in the hidden layer, Δ must be calculated and all weights associated with this layer 

must be set. This process is repeated layer by layer until all weights have been corrected. 

Despite the many successful applications of inverse propagation, it is not a universal solution. What 

causes most trouble is an indefinitely long learning process. In complex tasks, it may take days or even 

weeks to train a network and it may not learn at all. The reason may be one of the following. 



Network fixation. In the process of learning a network, the weights may become very large values 

as a result of correction. This can cause all or most neurons to function at very high OUT values, in an 

area where the compression function derivative is very small. Since the error sent back in the learning 

process is proportional to this derivative, the learning process can almost freeze. In theory, this problem 

is poorly understood. Usually this is avoided by reducing the step size of η, but this increases the 

learning time. Different heuristics have been used to prevent loops or to recover from them, but so far 

they can only be seen as experimental. 

Local minimums. Reverse propagation uses a type of gradient descent, i.e. the descent down the 

error surface, continuously adjusting the weights in the direction of the minimum. The error surface of 

a complex network is severely cut and consists of elevations, valleys, folds in the space of high 

dimensionality. A network can hit the local minimum (shallow valleys) when there is a much deeper 

minimum nearby. At the point of the local minimum, all directions lead upwards and the network is 

unable to get out of it. The main difficulty in training neural networks are precisely the methods of 

getting out of the local minimum: each time, based on the local minimum is again looking for the next 

local minimum by the same method of reverse propagation of the error until it is no longer possible to 

find an exit. Step size. A careful analysis of the evidence of convergence shows that the correction of 

weights is assumed to be infinitely small. It is clear that this is not feasible in practice, as it leads to 

infinite learning time. The step size should be taken as a final one. If the step size is fixed and very 

small, the convergence is too slow; if it is fixed and too large, you may experience paralysis or constant 

instability. Effectively increase the step until the improvement of the evaluation in this direction of the 

anti-gradient stops and decrease if such improvement does not occur. P. D. Wasserman described an 

adaptive step selection algorithm that automatically corrects step size during training. The book by  

A. N. Gorban offers a branched technology of learning optimization. 

It should also be noted that the possibility of network retraining is rather a result of erroneous design 

of its topology [5]. If there are too many neurons the property of the network to generalize information 

is lost. The whole set of images provided for learning will be studied by the network, but any other 

images, even very similar ones, can be classified incorrectly. [3, 14, 15]] 

1.2.1. Extracting knowledge from a dataset to determine the distribution type (Normal, 

uniform) 

The results of any measurement or observation, presented as figures, can be considered random 

values corresponding to probable laws. They are likely to understand that it is fundamentally impossible 

to obtain the actual value of the parameter we are interested in — too many factors affect it, the process 

of change, etc. We can only get closer to the actual value, estimate the interval in which it falls. All 

conclusions made when working with random variables are not definitions but probabilistic. An 

arbitrary random value is most fully described by the distribution function, which determines the 

probability that a given value will take a value less than or equal to a given one as a result of a single 

experiment. If a random variable is continuous, its derivative will be a probability density function, and 

it is impossible to calculate it explicitly for each natural object because of the large set. It is known from 

the experience of long-term use of the apparatus of applied mathematical statistics that the absolute 

majority of random phenomena in nature describe functions of only a few types with high accuracy 

[31]. They are well known; I am called in detail the basic laws of distribution of random variables. 

Among them, there is one — the normal law of distribution. It is one of the most common models, and 

the specific features of the function that describes it make this law the main one in applied statistics 

methods. The normal distribution density graph is characterized by symmetry. This means that 

deviations from the most probable value of a random value are equal to both greater and lesser ones, a 

property that simplifies calculations. Most of the methods described prove that the random value under 

study is distributed by a normal law. Therefore, at the beginning of any statistical analysis processing 

of unstructured and poorly structured medical of data at least approximately determine the distribution 

law and estimate the degree of its deviation from the normal [20, 38, 39]. There are many methods that 

solve the medical problem. The simplest method is based on the visual evaluation of the distribution of 

asymmetry and excess coefficients by histograms and value. The histogram is a simplified model of the 

curve of random value density distribution. By constructing it and comparing it with reference plots of 

the basic laws, we can roughly judge the degree of similarity between them. To build a histogram, a 



random value is broken down into a certain number of bits (grouping intervals) and counts how many 

of them fall into each bit. Then, the abscissa is placed on the abscissa axis and the frequencies 

corresponding to them are placed on the ordinate axis. There are no absolutely strict methods of 

determining the number of discharges. Mostly 8-12 bits are used. There is no ideal match for histograms 

of real random variables. By the type of the built histogram we can judge about the degree of deviation 

from its normal distribution. If the histogram is symmetric with respect to the vertical axis passing 

through the apex, we can speak about possible approximation of its normal laws. The discrete random 

value is the most probable value, while continuity is the value where the density of distribution is 

maximum. If a curve of the distribution law has more than one maximum, the distribution is called 

binary or poly-modal, respectively. A media random value is a value in relation to which a random 

value is equally likely to be detected more or less than that value. 

1.2.2. Rule "3 sigma" 

A normal distribution, also called a Gaussian distribution, is a distribution of probabilities defined 

by the probability density function, which coincides with the Gauss function: 

𝑓(𝑥) = ⁡
1

√2
𝑒
(𝑥−µ)2

22 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

where µ - mathematical expectation, 2 – the variance of a random variable. 

The central limit theorem states that the normal distribution occurs when a given random 

variable is the sum of a large number of independent random variables, each of which plays an 

insignificant role in the formation of the whole sum. For example, the distance from a projectile 

hitting a target with a large number of shots is characterized by the normal distribution. The 

standard normal distribution is called normal distribution with mathematical expectation 

µ = 0 and standard deviation  = 1. 

The rule of 3 sigma (3) - where almost all values of a normally widespread random value 

lie in the interval [𝑥 − 3; 𝑥 + 3]⁡(Fig. 3). 

 

Figure 3: Rule of 3 sigma 

To be more precise - at least with 99.7% reliability, the value of a normally distributed random value 

lies within the specified interval (unless the value of x is precisely known and not obtained as a result 

of sample processing). If the true value of the value is unknown, then you should use not , but s. Thus, 

the rule of 3 s will turn into the rule of 3 s. 

2. Practical Implementation of the Method of Searching for Weakly 
Structured Information 

2.1. UML class diagrams 

The GUI package (classes that implement the interface) includes 2 classes: MainController and 

Main. MainController is a class responsible for user interaction; it contains event handlers and the main 

interface elements (buttons, tables, combo boxes), as well as links to Main class. The Main class is 



responsible for initializing the main window of the program and loading the interface structure from an 

FXML file [16, 32]. 

The neuralNets package contains the NeuralNet interface and the DirectedRandomSearchNet and 

BackPropagationNeuralNet classes (Fig. 5). The NueralNet interface is used (according to SOLID 

principles) to provide flexibility of the program architecture. It contains signatures of the following 

methods: train - training of the neural network, solve - calculation of results by already trained neural 

network, loadWeights - loading of scales from a file, saveWeights - saving of scales to a file, getWeights 

- return of scales, and others. 

 

 

Figure 4: GUI package class diagram 

 

Figure 5: Neural nets class diagram 



2.2.  Description of neural network structure 

To accomplish this task, a neural network (multilayer perceptron) with 3 layers was designed. The 

input layer consists of 4 neurons (due to the size of the input image), the hidden layer consists of 10 

neurons (the size is chosen empirically) and the output layer contains one neuron (Fig. 6) [22]. 

 

Figure 6: The structure of the neural network 

For the hidden layer the logistic unipolar function - sigmoid (11) is used. 

𝑓(𝑧) =
1

1 + 𝑒−𝑧
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

The value of landslide neurons - units. Initial values of weights are small random numbers within 

[-0.3; 0.3]. 

2.3. GUI Description 

The application is focused on cross-platform so developed by means of Java SE 14 and JavaFX 

(note, to run the application must be installed JRE 10.0.2). To get acquainted with the functionality of 

the application, consider the main window of the program (Fig. 7). 

 

Figure 7: Main program window 



1 – Menu file 

2 – Selection of neural network type 

3 – Button to start the training of the neural network 

4 – Training data table 

5 – Table of forecasted data 

6 – Button for generation of synthetic data 

7 – The button to start the process of classifying objects by the neural network 

8 – Text field of execution results 

  

Figure 8: Menu file 

The file menu includes the following sub-items: 

1 - (New training data) - clearing the "Training data" table; 

2 - (Download training data) - uploading data to the "Training data" table from the CSV file; 

3 - (Save training data) - save data from "Training data" table to CSV-file; 

4 - (New data) - clearing the "Real data" table; 

5 - (Download data) - upload data to the table "Real data" from the CSV-file; 

6 - (Save data) - save data from table "Real data" to CSV-file; 

7 - (New weights) - clear weights for neural network; 

8 - (Download Weights) - download weights from the file; 

9 - (Save Weights) - save weights to a file; 

10 - (Clear Results) - clear the text field results; 

11 - (Exit) - finish the program; 

To increase the functionality of the application, dynamic tables were implemented, i.e. you can add 

new records to the table, edit and delete existing ones, as well as upload and save unstructured and 

poorly structured medical data to a file. To improve the functionality of the application, dynamic tables 

were implemented, i.e. you can add new records to the table, edit and delete existing ones, as well as 

upload and save data to a file [28, 35]. To load data into a table, you need to go to the menu "File" -> 

("Download training data" or "Download data") and select the file you want to upload (only CSV files 

are supported). The data and weights are saved in the same way - "File" -> ("Save Training Data", "Save 

Data" or "Save Weights" respectively). 

To train a neural network, first you need to select the algorithm by which it will learn  

(Fig. 9). 

 

 

Figure 9: Setting of neural network training parameters 



After that press the "Train" button and set the neural network training parameters, such as: training 

speed, maximum number of iterations and maximum permissible error (Fig. 10). 

 

Figure 10: Setting of neural network training parameters 

After setting the training parameters for the neural network, you need to press the "Yes" key to start 

training. When the neural network finishes training, the user will see the graph of error change (Fig. 11, 

Fig. 12), as well as information about training results (Fig. 13) and final weights, which can be saved 

to a file. 

 

Figure 11: Error change schedule for Back Propagation network 

 

 

Figure 12: Error change schedule for Directed Random Search network  
(randomly directed search) 



 

Figure 13: Learning outcomes 

According to the error graphs (Fig. 11, Fig. 12) and the number of iterations, it can be concluded 

that the Directed Random Search learning algorithm, although more complex to implement, works 

much faster than the classic Back Propagation. With the same error and speed of learning, training the 

network using Directed Random Search completed in the twentieth iteration, and using Back 

Propagation for nine hundred and forty. 

Synthetic analytical processing of unstructured and poorly structured medical data generated by the 

"3 sigma" rule is used to test the neural network operation. To generate artificial medical data, press the 

"Generate" key, specify the number of columns to be filled with artificial medical data and press the 

"Yes" key (Fig. 14). 

 

Figure 14: Options for generation of synthetic data 

After the generation process is complete, the table will be filled with the corresponding number of 

columns with artificial data (Fig. 15, Fig. 16). 

 

Figure 15: The result of generating synthetic data 

 

Figure 16: Calculation result 



Conclusions 

The main objective of this work was to review the problem of neural networks and their applications, 

especially for management and control. A software product implementing the neural network was 

developed and learned from user-defined medical data. After the training, the program provides support 

for decision-making based on what it has learned. This program is focused on cross-platform, so it is 

made by means of Java SE14, and the graphical interface is designed by means of Java FX. The software 

product implements such a neural network error reverse propagation network (BackPropagation) and 

the network of directed random search (Directed Random Search). The neural network is trained and 

further recognizes the type of distribution (uniform, normal) by the specified characteristics. The "3 

Sigma" rule is used for generation of synthetic unstructured and poorly structured medical data. 

According to the research we can conclude that the learning algorithm Directed Random Search, 

although there is more difficult to implement, but works much faster than the classic Back Propagation. 

With the same error and speed of learning, training the network using Directed Random Search can be 

several times faster than Back Propagation. 
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