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Abstract. We consider the coordination of autonomous mobile robots
operating in the standard Look–Compute–Move cycles. Robots are as-
sumed to be very weak computational units, since they are asynchronous,
oblivious, anonymous, silent and execute the same distributed algorithm.
In this area, the main focus has been on the important class of Pattern
Formation problems, where the robots are required to arrange them-
selves to form a given geometric shape. This class of problems has been
extensively studied in the Euclidean plane, whereas few results exist
when robots move on a discretization of the plane, like infinite grids. In
infinite grids, in order to form any pattern, the problem of breaking sym-
metries clearly emerges. Breaking the symmetry by moving some leader
robot is not a straightforward task due to the movement restrictions as
all the adjacent nodes of the leader may be occupied. Due to the asyn-
chrony of robots, this fact greatly increases the difficulty of the problem.
We assume regular tessellation graphs as discretization of the Euclidean
plane, and we devise an algorithm able to solve the Symmetry Break-
ing problem on both the square and triangular grids. The algorithm is
proposed so that it can be also combined with other modules.

1 Introduction

The coordination of autonomous mobile robots has long been object of study
in several fields, including robotics, control, AI, as well as distributed comput-
ing. Within distributed computing, in particular, extensive research efforts have
been conducted in the last two decades to investigate the computational and
complexity issues arising in distributed systems composed of a team of mobile
computational entities moving and operating in a Euclidean space (e.g., see [24]).

These entities, called robots, are autonomous (no centralized control), anony-
mous (they are identical in their external appearance, no unique identifiers), ho-
mogeneous (have the same capabilities and execute the same algorithm), silent
(they have no explicit means of direct communication), and disoriented (no
common coordinate system, no common left-right orientation). Each robot in
the system has sensory capabilities allowing it to determine the location of other
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robots in the environment, relative to its own location (each robot refers in fact
to a local coordinate system that might be different from robot to robot). Each
robot, when active, operates in Look-Compute-Move cycles: it determines the po-
sitions of the robots in the system (Look); this information is used to compute a
destination point (Compute); the robot then moves towards the computed desti-
nation (Move); after the execution of a cycle, the robot may become temporarily
inactive. Furthermore, the entities are oblivious: at the beginning of a cycle the
robot has no recollection of computations and operations performed in previous
cycles; that is, there is no persistent memory. This computational model is called
oblot and it is a standard de-facto in the context of distributed computing by
mobile entities [24]. In this model, the research effort has been on determining
which problems can be solved by a swarm of such robots. Crucial for the solv-
ability of a problem is the activation schedule of robots and the duration of their
activities in each cycle. We consider the asynchronous setting (Async), where
robots do not have a common notion of time (which is possibly continuous), and
the times when each robot is activated as well as the duration of each activity
is decided by an adversary for each cycle.

Concerning the coordination of autonomous mobile robots, the main focus
has been on the important class of Pattern Formation problems, where the robots
are required to arrange themselves to form a given geometric shape (e.g., [17,
20, 22, 29, 30]). The Arbitrary Pattern Formation is a specific version that asks
to determine from which initial configurations it is possible to form any specific
but arbitrary geometric pattern given as input (e.g., [4, 9, 23]). In [11, 25], the
so-called Embedded Pattern Formation problem was studied where the pattern
to be formed is provided as a set of visible points in the plane. The general
class includes also the Gathering problem requiring the robots to move to the
same location, not decided in advance. This problem is of particular importance
and has been extensively studied. It has been fully characterized in [15] (for a
recent survey, see [21] and references therein). A slightly different model impos-
ing robots to gather at some visible and predetermined points provided in the
Euclidean plane has been also investigated and fully characterized, see [5–7].

In the continuous setting, the robots are assumed to be able to execute accu-
rate movements in any direction and by any amount, even by infinitesimally small
amounts. Hence, even in densely crowded situations, punctiform robots can ma-
neuver avoiding collisions. Certain models also permit the robots to move along
curved trajectories, in particular, the circumference of a circle. The correctness
of the algorithms relies on the accurate execution of the movements. However, for
robots with weak mechanical capabilities, it may not be possible to execute such
intricate movements with precision. This motivates to consider robots moving
in a grid-based terrain where the movements are restricted only along grid lines
and only to a neighboring grid point in each step. Grid type floor layouts can
be easily implemented in real-life robot navigation systems. From an algorith-
mic perspective, the restrictions imposed by model on the movements make it
harder to solve problems that resulted to be easy in the continuous environment.
In the grid environment, the most investigated types of formation problems are



the Gathering problem [18] and Mutual Visibility problem [1], where a set of
opaque robots have to form a pattern in which no three robots are collinear.
The gathering problem has been investigated also in other specific graph topolo-
gies like trees [19], rings [16, 8], regular bipartite graphs [27], hypercubes [3],
complete and complete bipartite [12, 13]. For a recent survey, see [10] and refer-
ences therein. Few results concerning the general pattern formation problem on
grids exist. Recently, the Arbitrary Pattern Formation for a set of oblivious asyn-
chronous robots on the infinite grid in absence of any global coordinate system
was first considered in [2]. Authors have shown that if the initial configuration is
asymmetric, then the Arbitrary Pattern Formation problem is deterministically
solvable by Async robots starting from asymmetric configurations. They poses
as an open problem that of investigating about what can be achieved from sym-
metric configurations. This leads to the problem addressed in this work: how to
break symmetries on grid based environments so that robots can later form any
requested geometric pattern.

Our contribution. We extend the concept of discretization of the Euclidean
plane by considering regular tessellation graphs, that is square, triangular, and
hexagonal grids. We assume very weak robots moving in this environment: they
are asynchronous, oblivious, anonymous, silent, and fully disoriented. In this
context, we consider the so-called leader configurations, that is the symmetric
configurations in which it is possible to elect a leader and, as a consequence, it
is possible to break the symmetry. However, breaking the symmetry by moving
a leader robot is not a straightforward task due to the movement restrictions
as all the adjacent nodes of the leader may be occupied. It may even happen
that before obtaining the requested asymmetric configuration, most of the robots
must be moved. Due to the asynchrony of robots, this fact greatly increases the
difficulty of breaking the symmetry. We devise an algorithm called Abreak able to
solve the Symmetry Breaking problem on both the square and triangular grids.
The algorithm is proposed so that it can be also combined with other modules
(e.g., modules that are able to form some kind of pattern starting from any
asymmetric configuration).

2 Basic notation and problem definition

We denote by R = {r1, r2, . . . , rn} the set of robots forming the swarm under
consideration.1 The topology where robots are placed on is represented by a
simple, undirected, and connected graph G = (V,E), with vertex set V and
edge set E. Given a function µ : R→ V that maps each robot to the vertex in G
where the robot is placed, we call C = (G,R, µ) a configuration. A vertex v ∈ V
is said occupied if there exists r ∈ R such that µ(r) = v, unoccupied otherwise.
A multiplicity occurs in any vertex v ∈ V whenever there is more than one
robot occupying v (i.e., when µ is not injective). With mul(v) we denote the

1 We recall that robots are anonymous and such a notation is used only for the sake
of presentation, hence no algorithm can take advantage of names of elements in R.



multiplicity in v, that is the number of robots occupying v. As usual, N(v)
represents the set containing all the neighbors of the vertex v, that is all vertices
adjacent to v; concerning robots, N(r) contains all the robots “adjacent” to r,
that is N(r) = {r′ ∈ R : µ(r′) ∈ N(µ(r))}. In our algorithm, in some cases,
a robot is moved only when N(r) = ∅: accordingly, a robot r is said blocked if
N(r) 6= ∅, unblocked otherwise.

Movements of robots and execution of an algorithm. The movement
of the robots are restricted along the edges of the graph representing the en-
vironment in which robots operate, from one vertex to one of its neighboring
vertices. Traditionally in discrete domains, robot movements are assumed to be
instantaneous. This results in always perceiving robots on vertices and never on
edges during Look phases. Hence, robots cannot be seen while moving, but only
at the moment they may start moving or when they arrived.

In the Async scheduler, the activations of the robots determine specifically
ordered time instants. Let C(t) be the configuration observed by some robots
at time t during their Look phase, and let {ti : i = 0, 1, . . .}, with ti < ti+1,
be the set of all time instances at which at least one robot takes the snapshot
C(ti). Since the information relevant for the computing phase of each robot is
the order in which the different snapshots occur and not the exact time in which
each snapshots is taken, without loss of generality we can assume ti = i for all
i = 0, 1, . . .. Then, an execution of an algorithm A from an initial configuration C
is a sequence of configurations E : C(0), C(1), . . ., where C(0) = C and C(t+1) is
obtained from C(t) by moving some robot according to the result of the Compute
phase as implemented by A. Notice that this definition of execution works also
for the other schedulers. Moreover, given an algorithm A, in Async there exists
more than one execution from C(0) depending on the activation of the robots
(which depends on the adversary).

Initially robots are inactive, but once the execution of any algorithm A starts
there is no instruction to stop it, i.e., to prevent robots to enter their LCM cycles.
Then, the termination property for A can be stated as follows: once robots have
reached the required goal by means of A, from there on robots can perform only
the nil movement.

Configurations on tessellation graphs. In this work, we consider G as an
infinite graph generated by a plane tessellation. A tessellation is a tiling of a
plane with polygons without overlapping. A regular tessellation is a tessellation
which is formed by just one kind of regular polygons of side length 1 and in
which the corners of polygons are identically arranged. According to [26], there
are only three regular tessellations, and they are generated by squares, equilat-
eral triangles or regular hexagons (see Fig. 1). An infinite lattice of a regular
tessellation is a lattice formed by taking the vertices of the regular polygons in
the tessellation as the points of the lattice. A graph G is induced by the point
set S if the vertices of G are the points in S and its edges connect vertices that
are distance 1 apart. A tessellation graph of a regular tessellation is the infinite
graph embedded into the Euclidean plane induced by the infinite lattice formed



Fig. 1: Part of regular plane tessellations.

by that tessellation [28]. We denote by GS (GT and GH , resp.) the tessellation
graphs induced by the regular tessellations generated by squares (equilateral
triangles and regular hexagons, resp.). In this work we consider configurations
C = (G,R, µ) where G ∈ {GS ,GT ,GH }.

Concerning any graph G ∈ {GS ,GT ,GH }, it follows from the definition that
G is regular, and hence by deg(G) we denote the degree of each vertex. Notice
that deg(G) equals three, four, and six in GH , GS , and GT , respectively. Any
line parallel to an edge of G is called a canonical line, and the smallest angle
formed by the available canonical lines is called the canonical angle. According
to this notation, in GS all the canonical lines have just two orientations and the
canonical angle is of 90◦. In both GT and GH all the canonical lines have three
orientations and the canonical angle is of 60◦. In the rest of the paper, given any
tessellation graph G, by hline we mean any half-line starting from a vertex and
coincident with any canonical line.

Configuration automorphisms and symmetries. Two undirected graphs
G = (V,E) and G′ = (V ′, E′) are isomorphic if there is a bijection ϕ from V
to V ′ such that {u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E′. An automorphism
on a graph G is an isomorphism from G to itself, that is a permutation of the
vertices of G that maps edges to edges and non-edges to non-edges. The set of
all automorphisms of G, under the composition operation, forms a group called
automorphism group of G and denoted by Aut(G). If |Aut(G)| = 1, that is G
admits only the identity automorphism, then G is said asymmetric, otherwise it
is said symmetric. Two distinct vertices u, v ∈ V are equivalent if there exists
an automorphism ϕ ∈ Aut(G) such that ϕ(u) = v.

The concept of graph isomorphism can be extended to configurations in a
natural way. Two configurations C = (G,R, µ) and C ′ = (G′, R′, µ′) are isomor-
phic if there exists an isomorphism ϕ between G and G′ that can be extended to
obtain a bijection from R to R′ such that two robots can be associated by ϕ only
if they reside on equivalent vertices. Formally, if ϕ(r) = r′ then ϕ(µ(r)) = µ′(r′).
In this way, analogously to the case of graph automorphism, an automorphism of
a configuration C = (G,R, µ) is an isomorphism from C to itself, and the set of
all automorphisms of C forms a group under the composition operation that we
call automorphism group of C and denote as Aut(C). Moreover, if |Aut(C)| = 1
we say that C is asymmetric, otherwise it is symmetric. Two distinct robots r
and r′ in a configuration (G,µ) are equivalent if there exists ϕ ∈ Aut(C) such
that ϕ(r) = r′. Notice that, according to the definition, distinct robots in the
same multiplicity are equivalent and hence each configuration with a multiplicity
is symmetric. Also, note that mul(u) = mul(v) whenever u and v are equivalent.



It can be observed that if r and r′ are equivalent robots, no algorithm can
distinguish between them. Hence, no algorithm can avoid the two equivalent
Async robots start the computational cycle simultaneously at a certain time
t′. In such a case, there might be a so-called pending move (or pending robot),
that is one of the two robots performs its entire computational cycle while the
other has not started or not yet finished its Move phase. Formally, a robot r
is pending in a configuration C(t), if at time t robot r is active, has taken a
snapshot C(t′) 6= C(t) with t′ < t, and is planning to move or is moving with a
non-nil trajectory. Clearly, any other robot r′ that takes the snapshot C(t) is not
aware whether there is a pending robot r, that is it cannot deduce such a piece
of information from the snapshot acquired in the Look phase. This fact greatly
increases the difficulty to devise algorithms for Async robots, and this holds
in particular in symmetric configurations, where pending moves can be easily
generated by the adversary. It follows that each time a formal and sound proof
of the correctness of the algorithm must be provided, each algorithm must ensure
to solve a general task by providing a stationary configuration: a configuration
C(t) is called stationary if there are no pending robots in C(t).

Leader configurations and the Symmetry Breaking problem. Concern-
ing the configurations addressed in this work, it is not difficult to see that any
C = (G,R, µ), with G ∈ {GS ,GT ,GH }, admits two types of automorphisms
only: reflections, defined by a reflection axis which acts as a mirror; rotations,
defined by a center and an angle of rotation. A configuration admitting only one
reflection axis is called reflective, and a configuration admitting any rotation is
called rotational. Notice that a configuration with two or more reflection axes is
rotational.

It is well-known (e.g., see [31]) that no algorithm can break a symmetry
among a group of two or more pairwise equivalent robots if it acts on that
group only, even in the synchronous setting. In fact, since the algorithm cannot
distinguish between them, any strategy defined by the algorithm will be applied
by the adversary to all the considered robots. As a final result, the moved robots
will remain symmetric in any possible obtained configuration. This implies that
it is worth to address the problem of designing symmetry breaking algorithms
only for special cases of symmetric configurations, as defined in the following.

Definition 1 (leader-configuration). A configuration C = (G,R, µ), with
G ∈ {GS ,GT ,GH }, is a leader configuration if one of the following cases holds:
(1) C is reflective, and there are one or more robots on the axis of reflection;
(2) C is rotational, and there is one robot on the center of rotation.

Notice that in any leader configuration there exists a robot which is equivalent
to itself. In principle, this means that there could exist an algorithm that can
move one of such robots to create an asymmetric configuration. We can now
formalize the main problem addressed in this work.

Definition 2 (initial-configuration). A configuration C = (G,R, µ), with
G ∈ {GS ,GT ,GH }, is an initial configuration if both the following conditions



hold: (1) each robot is idle and placed on a different vertex, that is mul(v) ≤ 1
for each v ∈ V ; (2) C is a leader configuration.

The set containing all the initial configurations is denoted by I. The goal of
the Symmetry Breaking (SB , for short) problem is to design any distributed
algorithm A that, starting from any configuration C ∈ I, guides the robots to
form an asymmetric configuration C ′. Formally, an algorithm A solves the SB
problem for any configuration C ∈ I if, for each possible execution E : C =
C(0), C(1), . . . of A, there exists a finite time instant t∗ > 0 such that C(t∗) is
asymmetric and no robot moves after t∗, i.e., C(t) = C(t∗) holds for all t ≥ t∗.

3 Concepts and notation used by algorithm Abreak

Here we introduce some concepts and notation used in the proposed algorithm
Abreak . They refer to any configuration C = (G,R, µ), with G ∈ {GS ,GT}.

Bounding parallelogram. We introduce the concept of bounding parallelo-
gram bp(R), defined as any parallelogram enclosing all robots, with sides parallel
to two of the available grid line orientations, and with each pair of parallel sides as
close together as possible. Since GT or GH admit canonical lines along three ori-
entations, it can be observed that the bounding parallelogram of R is not unique
on such topologies. In fact, there are up to three possible bounding rectangles
(e.g., see Fig. 2). On GS , bp(R) is unique and corresponds to the well-known
concept of minimum bounding rectangle. We denote by h(bp(R)) and w(bp(R))
the width and height of any bp(R), respectively. Without loss of generality, we
assume h(bp(R)) ≤ w(bp(R)).

Binary strings associated to a configuration. Any algorithm addressing
the SB problem needs to elect a leader among the robots in any initial configu-
ration. If C is rotational, such a leader can be naturally identified with the robot
occupying the center of rotation. Less obvious is how to identify a specific robot
in reflective configurations. To this aim, in the following, we associate a binary
string to any configuration so that from that string it is possible to elect a leader
also in the case of initial reflective configurations.

Given any bp(R), we associate a binary string to each canonical corner of
bp(R) (a canonical corner is a corner of the parallelogram that forms a canonical
angle, e.g., corners A and C in Fig. 2). The string associated with a canonical
corner A is defined as follows. Scan the finite tessellation enclosed by bp(R)
from A along h(bp(R)) (say, from A to B) and sequentially all canonical lines
parallel to AB in the same direction. For each vertex v, put a 0 or 1 according
to whether it is empty or occupied. Denote the obtained string as s(AB). Being
h(bp(R)) = w(bp(R)) in the example, from A it is also possible to obtain the
string s(AD), and hence four strings can be defined in total, two for the corner
A and two for the corner C. Notice that if any two of these strings are equal,
then the configuration is reflective or rotational.
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Fig. 2: Visualization of some notation used in the paper. An initial reflective configuration C defined on GT :
circles represent robots. It shows the three possible bounding parallelograms. They have all the same size. LSS(R) =
0011000111011010 and it is generated in both the red and blue parallelograms. In the blue one, LSS(R) is generated
from the corner A along the side AD. Robot r is the pivot of the configuration.

Definition 3 (LSS (R)). Let C = (G,R, µ) be a configuration, with G ∈ {GS ,GT},
and let S be the set containing all the binary strings associated to each canonical
corner of bp(R), for each bp(R) with minimum height and, in case of ties, with
minimum width. LSS (R) denotes the lexicographically smallest string in S.

It follows from the definition that LSS (R) is unique, even when it is computed
on symmetric configurations, where multiple bp(R)’s must be considered (cf.
Fig. 2). By using LSS (R), it is now possible to elect a leader, called pivot, in any
initial reflective configuration C = (G,R, µ): the pivot is the median robot on
the reflection axis of C (in case of ties, i.e. when the number of robots on the axis
is even, the pivot is the median robot having the smallest position in LSS (R)).
Concerning the example in Fig. 2, the represented configuration is reflective with
two robots on the axis of reflection, the pivot is the robot denoted as r since its
position in LSS (R) is 8 whereas the position of the other is 10.

Strings generated from a robot. Given a robot r, the strings generated from
r are the binary strings obtained in three steps, in order, as follows:

1. scan a hline that starts from the vertex v = µ(r) and stop when the last
occupied vertex is reached: for each encountered vertex (v excluded) put 0
or 1 according to whether it is empty or occupied; if no occupied vertices are
encountered, the empty string is returned;

2. repeat the previous step for each hline starting from the vertex v = µ(r),
and insert all the obtained strings into a multiset S(r) - let Γ be the length
of the longest string in S(r);

3. modify each string in S(r) by adding to the right of each string as many 0’s
as necessary to make the length of each string equal to Γ + 1.

Concerning configuration C2 in Fig. 3, S(r) contains six strings, three equal to
110 and three equal to 010. Elements in S(r) are considered again as lexico-
graphically ordered.

Definition 4. Let S be a multiset containing some strings of S(r), and let
min(S) and max(S) be the largest and smallest strings of S, respectively: we
say that the strings in S are almost-equal if both the following conditions hold:
(1) each string s ∈ S is either equal to min(S) or max(S), and (2) min(S) can



C1 C2 C3

rrr

Fig. 3: Examples about notation Compact() and Reduce(): C2 = Reduce(C1, r) and C3 = Compact(C2, r) =
Compact(C1, r).

be made equal to max(S) by just reversing one occurrence of the substring 01 in
min(S).

Given a robot r, if S(r) contains strings without any 1 we say that r has free
paths. When r has no free paths, there could exist partitions of S(r) defined as
follows:
• {S1, S2, . . . , Sk} is a rotational-partition of S(r) if: (1) there exists an integer
q > 1 such that, for each set Si, |Si| = q and the hlines corresponding to the
string in Si partition the plane into sectors of 360/q degrees each; (2) for each
set Si, the strings in Si are almost-equal; (3) k is minimum.
• {S1, S2, . . . , Sk} is a reflective-partition of S(r) if: (1) there exists a line L such
that, for each set Si, |Si| = 2 and L is the bisector of the hlines corresponding
to the strings in Si or L is coincident with both the hlines corresponding to
the strings in Si; (2) for each set Si, the strings in Si are almost-equal; (3) k is
minimum.

As an example, consider robot r in configuration C1 represented if Fig. 3:
{S1, S2} with S1 = {1100, 1100, 1100} and S2 = {0100, 0100, 0010} is a rotational-
partition of S(r). Notice that, in the previous definition the value k ranges from
one to three, and the latter occurs in the tessellation graph with the largest
degree, i.e. GT . If the strings in S(r) form a rotational-partition or a reflective-
partition {S1, S2, . . . , Sk}, then by notation Reduce(C, r) we denote the configu-
ration obtained from C by replacing, for each set Si, each string s ∈ Si with the
largest string max(Si). By Compact(C, r) we denote the configuration obtained
from C by replacing each string s ∈ S(r) with its “compact version”, that is the
largest binary string containing the same number of 1’s as s. Examples about
notation Compact() and Reduce() are provided in the caption of Fig. 3.

4 Formalization of Abreak

In this section, we formalize the proposed algorithm Abreak designed to solve the
SB problem for any initial configuration C = (G,R, µ), with G ∈ {GS ,GT},
composed of n Async robots endowed with all the minimal capabilities recalled
in the Introduction. We assume n ≥ 3, since for n = 1 the SB problem is trivial
and for n = 2 we get that C cannot be a leader configuration.



Algorithm: Abreak

Input: Leader configuration C = (G,R, µ), with G ∈ {GS ,GT} and R composed of n ≥ 3
Async robots; external procedures IModule and FModule.

1 Call IModule ;
2 if C ∈ aRot then
3 let r be the robot that makes C a-rotational (cf. Definition 5) ;
4 let P = {S1, S2 . . . , Sk} be the rotational-regular partition of S(r) ;
5 call MakeSpace(r,P)

6 else if C ∈ uRot then
7 the central robot r of C moves on one of its neighbors; if possible, r selects a neighbor

not belonging to an axis of reflection
8 else if C ∈ fRot then
9 the central robot r of C moves on a neighbor belonging to any free path; if possible, r

selects a neighbor not belonging to an axis of reflection
10 else if C ∈ aDia then
11 let r be the robot that makes C a-diagonal (cf. Definition 7) ;
12 let P = {S1, S2 . . . , Sk} be the diagonal-regular partition of S(r) ;
13 call MakeSpace(r,P)

14 else if C ∈ uRef then
15 let r be the robot on the axis of C, with N(r) = ∅, and having smallest position in

LSS ;
16 r moves on one of its neighbors not belonging to the axis of reflection

17 else if C ∈ fRef then
18 let r be the robot on the axis of C with free paths, and having smallest position in

LSS ;
19 r moves on a neighbor belonging to any free path

20 else if C is asymmetric then
21 call FModule

Algorithm Abreak makes use of three distinct procedures:2 (1) Procedure
MakeSpace, which is a procedure used in Abreak “to make space around the cen-
tral robot” by moving the robots that lie on the axes of symmetry so as to push
them away from the center. (2) Procedure IModule, an external module taken as
input. If Abreak is simply used to solve the SB problem, then it corresponds to
an empty procedure (e.g., no instructions contained). In case Abreak is used as
a breaking symmetry module for obtaining some more general algorithm A, it
can be used to check the termination property of A. (3) Procedure FModule, an
external module taken as input. If Abreak is used to solve the SB problem, then it
contains the following simple instruction: each robot performs the nil movement.
Conversely, in case Abreak is used as a breaking symmetry module for solving
some general problem Π defined for leader or asymmetric configurations, then
FModule corresponds to any algorithm for Π but for asymmetric configurations
only.

Basically, algorithm Abreak determines which class the input configuration
belongs to, with respect to some classes that are formalized in what follows.

Definition 5 (a-rotational configuration). A configuration C = (G,R, µ),
with G ∈ {GS ,GT}, is called almost-rotational (a-rotational, for short) if there
exists a robot r ∈ R such that all the following conditions hold: (1) r is blocked

2 According to the LCM model, we assume that each robot terminates the execution
of any algorithm or procedure as soon as it detects the move to be performed.



Procedure: MakeSpace
Input: Robot r and a partition P = {S1, S2 . . . , Sk} of S(r).

1 if there exist a multiset Si ∈ P having different strings then
2 foreach Si ∈ P : min(Si) 6= max(Si) do
3 foreach s ∈ Si : s = max(Si) do
4 let r be the robot corresponding to the bit 1 in the substring “10” to be

reversed in order to make s equal to min(Si) ;
5 r moves so that s becomes equal to min(Si)

6 else // for each Si, the strings in Si are all the same
7 foreach s ∈ Si that starts with 1 do
8 let r′ be the robot corresponding to the 1 in the first occurrence of the substring

“10” of s;

9 r′ moves away from r along the hline corresponding to s

in C; (2) all strings in S(r) form a rotational-regular partition; (3) Reduce(C, r)
is rotational and r is central in Compact(C, r).

Definition 6 (diagonal configuration). An initial configuration C = (G,R, µ),
with G ∈ {GS ,GT}, is called diagonal if it is reflective and its reflection axis
does not coincide with any canonical line.

Definition 7 (a-diagonal configuration). A configuration C = (G,R, µ),
with G ∈ {GS ,GT}, is called almost-diagonal (a-diagonal, for short) if there
exists a robot r ∈ R such that all the following conditions hold: (1) r is blocked
in C; (2) all strings in S(r) form a reflective-regular partition; (3) Reduce(C, r)
is diagonal and r is pivot in Compact(C, r).

Robot r as in Definition 5 (Definition 7, resp.) is said the robot that makes
C a-rotational (a-diagonal, resp.). Symbols aRot and aDia denote the classes
containing all the a-rotational and a-diagonal configurations, respectively. Addi-
tional classes of configurations managed by Abreak are the following:

– fRot denotes the class containing all the free-rotational (f-rotational, for
short) configurations. A configuration C is free-rotational if it is rotational
and its central robot r has free paths;

– uRot denotes the class containing all the unblocked-rotational (u-rotational,
for short) configurations. A configuration C is u-rotational if it is rotational
and its central robot r has no free paths, but N(r) = ∅;

– fRef denotes the class containing all the free-reflective (f-reflective, for short)
configurations. A configuration C is free-reflective if it is reflective and there
exists a robot r on the axis of C with free paths;

– uRef denotes the class containing all the unblocked-reflective (u-reflective, for
short) configurations. A configuration C is u-reflective if it is reflective and
each robot on its axis has no free paths, but there exists a robot r on the
axis such that N(r) = ∅.

It can be observed that the above definitions give rise to sets that cover all the
initial configurations in I. In fact, (1) I can be partitioned into rotational and
reflective configurations by definition; (2) rotational configurations are further



partitioned into those with the central robot having free paths (i.e., f-rotational)
and those with the central robot having no free paths - the latter are further di-
vided into those with central robots unblocked (i.e., u-rotational) and those with
central robot blocked (i.e., a-rotational); (3) similarly, reflective configurations
are partitioned into the three classes of f-reflective, u-reflective, and a-reflective
configurations. It is worth to note that Abreak checks the membership of the
input configuration C to the defined classes in a specific order, and this order is
important for the correctness of the algorithm.

Theorem 1. Algorithm Abreak is able to solve the SB problem with respect to
any initial configuration C = (G,R, µ) such that G ∈ {GS ,GT}.

Sketch of the Proof. If C ∈ fRef ∪ uRef ∪ fRot ∪ uRot it is possible to select just
one robot to break the symmetry. In some cases, one move is enough, whereas
in other cases several moves are necessary (e.g., C ∈ uRot, the central robot
moves to a neighbor, and the obtained configuration is in fRef). In these cases,
the algorithm produces an asymmetric configuration without pending moves.
Assume there exists a robot r that makes C a-rotational: both r and a rotational-
regular partition of S(r) are passed as input to MakeSpace. Let C(1) be any
configuration generated according to the execution of MakeSpace. According to
the hypothesis and to the move performed by the algorithm, it can be observed
that C(1) results to be in aRot too, and in particular the same robot r that
was central in C(0) is now the robot that makes C(1) a-rotational. Hence, when
Abreak processes C(1), the procedure moves exactly those robots that were not
activated in C(0) or pending in C(1). This implies that all such robots are
moved so that they will become stationary. Repeated calls to MakeSpace will
finally push the robots forward until the robot r - the central one in C(0) -
becomes unblocked in an obtained configuration C(t), for a finite t > 0. If
C ∈ aDia, the same analysis applies, but here the key property of the algorithm
is that MakeSpace may produce an a-rotational configuration C(1). We are able
to show that in such a case the robot r that was pivot in C becomes the central
robot in C(1). Again, Abreak correctly processes all the pending robots. ut

5 Conclusion

We investigated the Symmetry Breaking problem in grid graphs. In this envi-
ronment, breaking the symmetry by moving some leader robot is not a straight-
forward task due to the movement restrictions as all the adjacent nodes of the
leader may be occupied. We have shown that it is possible solve the problem
on both GS and GT graphs. The algorithm is proposed so that it can be also
combined with other modules.

The most obvious open problem is to extend the proposed algorithm Abreak

to work also in the hexagonal grid GH . Abreak uses few geometric concepts, such
as: bounding parallelogram, grid line, shortest path, and “moving along a line”.
Moving to hexagonal grids, GH can be considered as a sub graph of GT in which
the center of the hexagons correspond to removed vertices. However by simply



assuming the “presence” of the missing nodes and edges with respect to GT ,
most of the geometric concepts introduced are still valid with the exception of
“movement along a line”. In fact, in GH a robot cannot move along a line but
it needs to move along the edges of successive hexagons.

As another possible future investigation, it would be worth to test whether
it is possible to combine the proposed algorithm with that proposed in [2] to
solve the Arbitrary Pattern Formation problem. This would bring us closer to
characterizing such a problem on square grids. An advancement in this direction
is presented in a very recent work [14].
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