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Abstract. Determining the presence and extent of surface water bodies is of 
paramount importance in order to monitor mosquito breeding habitats. With the 
availability of high spatial and temporal resolution SAR images through the 
Sentinel-1 mission, it becomes possible to map surface water on a regular basis 
in mosquitos’ prone areas. In this work the potential of Machine Learning (ML) 
algorithms is investigated for the near-real time mapping of surface water in the 
Chalastra plain in Central Macedonia in Greece, using Sentinel-1 data. Three 
ML algorithms: One-Class SVM, One-Class Self-Organizing Map, and 
Multilayer Perceptron with Automatic Relevance Determination (MLP-ARD) 
were compared to the Otsu Valley-Emphasis method, a commonly used 
approach based on histogram thresholding. All methods were automated and 
tested in the pilot area. Results show that the MLP-ARD algorithm achieves the 
highest overall accuracy (0.974) among all methods with a kappa coefficient of 
0.933.  

Keywords: inundated area; remote sensing; SAR; one-class classifier; MLP-
ARD. 

1   Introduction 

The distribution of surface water bodies varies with time and space depending on 
weather conditions, irrigation patterns, as well as different water uses. Regular 
mapping of water bodies is a good practice towards the sustainable management of 
water resources. Water ponds, wetlands, inundated rice, and flooded areas are some 
major habitats of mosquitoes’ breeding. Monitoring the presence of water helps 
identifying hotspots of mosquitoes’ larvae development, for targeted and effective 
larvicide application, in order to reduce their potential harm to human health. With a 
rational use of such larvicides the impact on water resources will be minimized. 
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Remote sensing data, both radar and optical, were widely used for monitoring 
surface water from space. Optical satellite data were used to produce surface water 
indicators (e.g. the Normalized Difference Vegetation Index - NDVI, the Normalized 
Difference Water Index - NDWI and the Modified NDWI - MNDWI) (Xu 2006,Xiao, 
et al. 2002, Du, et al. 2016) but their performance is limited to clear-sky conditions. 
Radar data have the advantage of providing information even under cloudy conditions 
thus are more appropriate for monitoring activities (Martinis, et al. 2015, Duy 
2015,Betbeder, et al. 2014,Li and Wang 2015), but terrain effects introduce errors in 
water detection (Huang, et al. 2017).  

There is also an emerging trend in the literature (Komarkova, et al. 2019,Imam, et 
al. 2020) that is using images from drones to achieve higher spatial and temporal 
resolution. However, these have very limited coverage as compared to satellites and 
are not fit for wide areas at the regional or national scale level.With the European 
Union’s Copernicus Programme, Sentinel-1 data became available every 6 days with 
a high spatial resolution (10 m), making the use of Synthetic Aperture Radar (SAR) 
data convenient for mapping water bodies’ extent over a long time period, 
independently of cloud cover. 

In order to identify pixels with water on satellite images, histogram thresholding 
was widely used with multispectral and SAR data (Duy 2015, Martinis, et al. 2009, 
Bioresita, et al. 2018, Bangira, et al. 2019). The Otsu method (Otsu 1975) is the most 
popular method for threshold identification, some revised approaches were then 
proposed such as the Valley Emphasis thresholding method (Ng 2006). 

ML combined with remote sensing techniques have been utilized widely in order to 
detect temporal and spatial alterations in small waterbodies so as to provide 
information in the field of water security, drought monitoring, and crop irrigation 
decision-making. The above combination forms a reliable, cost-effective, solution for 
surface water mapping in large and inaccessible areas. Bangira et al. (2019), proposed 
a such an approach based on the effective combination of automatic thresholding of 
NDWI using Sentinel-2 and backscatter from Sentinel-1 data with VH polarisation for 
mapping waterbodies of diverse spectral and spatial characteristics. The resulting maps 
were compared to the classification performances of five ML algorithms, namely 
decision tree (DT), k-nearest neighbor (k-NN), random forests (RF), and two 
implementations of the support vector machine (SVM), enhancing the accurate 
classification of optically complex waterbodies. 

In the present work three ML algorithms are presented and tested against a classical 
method of histogram thresholding for the automatic mapping of surface water bodies 
in the Chalastra plain, Greece.  

2   Study area and field data 

The study area is the plain of Chalastra, which is the lowest part of the floodplain 
of rivers Axios and Loudias (Greece). It is intensely cultivated with irrigated annual 
crops, most predominantly with paddy rice. Numerous drainage canals, river segments, 
and their estuaries have formed a complex wetland system (Fig. 1). 
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Fig. 1. Study area where the measurements have been taken. 
 
A field campaign was conducted during summer 2019 to collect ground data of wet 

and dry polygons in the wider area around Chalastra. The samples were taken at dates 
concurrent with the overpass of Sentinel-1. Sampling locations consisted in rice fields 
(inundated during the early season and presenting different plant growth stages) and 
wetlands which are typical breeding habitats but also built areas, natural vegetation 
and dry soils which can challenge the water detection algorithms and help training the 
ML ones. The mapped polygons were characterized by different water depths and 
vegetation cover. On the date of June 12th 2019, a total of 30 polygons were collected 
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leading to a total of 16866 10-by-10m pixels labelled as wet or dry in the test area. 

 
Fig. 2. Sentinel-1 backscatter map with VV polarization for the pilot area on 12/6/2019.  

3   Methods 

A Sentinel-1 image was downloaded using Google Earth Engine (GEE) with both 
VV and VH polarizations, Ground Range Detected (GRD) type and in Interferometric 
Wide swath (IW) mode. The downloaded image was already pre-processed in GEE as 
proposed by the Sentinel-1 Toolbox and saved as Geotiff data file with the backscatter 
given in decibel. A section of the image was used for processing (2552*1102 pixels) 
(see Fig1). 

Four surface water mapping algorithms were implemented in Matlab and tested on 
the Sentinel-1 image of June 12th, 2019. In particular, three ML algorithms were 
compared to a revised histogram thresholding method. 

3.1   One Class SVM (OC-SVM) 

To achieve One Class SVM Classification, a suitable description of SVM as a model 
to describe only target data introduced by Tax and Duin (2004) in the form of Support 
Vector Data Description (SVDD) has been applied. The OC-SVM develops a model 
by being trained in using normal data conforming to the SVDD description. At the 
second stage, it allocates test data based on the occurring deviation from normal 
calibration data as being either normal or outlier (Scholkopf, 2002). 
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                      (1) 
It can be determined by considering that a sizeable spread indicates a linear class of 

target data while on the other hand, many support vectors joint with a small spread 
indicate a highly nonlinear case as is illustrated in Figure 2. A spread parameter 
equivalent to 1 yielded the best results concerning waterbodies detection. The 
threshold for accepting outliers was set at 10 %. 

3.2   One Class Self-Organizing Map (OC-SOM)  

The OC-SOM constructs a model from target data (dry areas) and progressively 
classifies new data conferring to its deviation from the target baseline condition. 
During novelty recognition, novel instances from feature combinations (in the current 
case the features from the S1 image) of not definable state validation data samples, are 
used to form the input to the network, while the SOM algorithm chooses the Best 
Matching Unit (BMU). In the current application, the BMU is defined as the most 
proximal SOM centroid vector in the weights space to the incoming data vector. In the 
occasion that the quantisation error that is the outcome from the appraisal between the 
new exemplar data (xNEW) and BMU is larger than a pre-specified threshold (d) then 
the example is considered as novel (Saunders & Gero, 2001).  

3.3   Multilayer Perceptron with Automatic Relevance Determination (MLP-
ARD) 

MLPs are feed forward artificial neural networks, that in classification problems 
map a set of input vectors onto their respective classes. For this study, a fully connected 
MLP with a three – layer architecture (input layer, hidden layer and output layer) is 
assigned for the classification of the spectral signatures into the healthy or the intensity 
of the disease level conditions. The weights correction is performed by the scaled 
conjugate gradient back propagation algorithm and the transfer function that were 
selected were the hyperbolic tangent (tanh) for the interconnections between the input 
and the hidden layer and the logistic function for the respective interconnections 
between the hidden and the output layer. 

Apart from the first level hyperparameters, the values of which are randomly chosen 
as priors for the initialization of the MLP classifiers, Automatic Relevance 
Determination (ARD) is used in this study. In the application of the ARD technique a 
new regularization hyperparameter, alpha (α) is introduced, for every weight that is 
associated to the i input variables, in order to determine the relevance of the input data 
into the model (Pantazi et al., 2017). 

 

2 2( , ) exp{ / }x z x zK s= - -
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3.4   Otsu Valley-Emphasis (OVE) 

The Otsu Valley-Emphasis method (Ng 2006) is an improved Otsu algorithm for 
finding automatically a threshold in the SAR backscatter histogram (Otsu 1975). The 
method maximizes the inter-class variance and minimizes the weighted within-class 
variance, while giving weight to the valley points in the histogram in order to favor 
values that reside at the valley of two peaks or at the bottom rim of a single peak. Only 
VV-polarized Sentinel-1 data were used as input to the OVE method (Twele et al., 
2016). 

4   Results 

For the implementation and assessment of the ML algorithms the field survey 
dataset was split. 11806 samples were used for training and 5060 for validation, while 
the Otsu Valley-Emphasis method was validated using the whole dataset. All four 
methods were implemented using Matlab version R2019b. 

The results of the best performing ML algorithm the MLP-ARD are presented in 
Figure 3.  

Table 1.  Confusion matrix results for the four methods tested. 

Algorithm Precision Recall Overall accuracy Kappa 
OC-SOM 0.917 0.977 0.925 0.820 
OC-SVM 0.895 0.986 0.915 0.802 
MLP-ARD 0.987 0.977 0.974 0.933 
OVE 0.906 0.903 0.948 0.869 
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Fig. 3. Surface water map of the pilot area on 12/6/2019 using the MLP-ARD algorithm.  

The MLP-ARD method led to the highest overall accuracy of 0.974 with a kappa 
coefficient of 0.933. The precision and recall metrics for this method are respectively 
0.987 and 0.977, higher than for the other methods meaning that false alarms and 
missed detections are minimized. 

The other two one-class ML methods OC-SVM and OC-SOM provided a lower 
accuracy than the Otsu Valley-Emphasis method. However, in precision and recall 
OC-SOM algorithm supersedes OVE. Both OC algorithms have equal or better recall 
than the OVE. This result can be explained by the OC algorithms ‘excellent outlier 
detection capability with the recall of OC-SVM reaching a performance of 0.986. 

As shown in Fig 3. the sea, riverbed and coastal wetlands were detected by the MLP-
ARD algorithm with few missed detections. Unlike for the one-class algorithms, the 
built areas in the neighboring villages did not cause false alarms. 

The computation time required to train the OC and MLP -ARD algorithms is 
minimal and requires very few minutes. For producing a prediction map for 
waterbodies detection with a size of over 2.8 M pixels, different time was required for 
the two OC algorithms (few hours), which appeared to be a limiting factor for near-
real time application. Both the MLP-ARD and OVE methods produced maps in a 
reasonable time (few minutes). 
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5   Conclusion 

Both the Otsu Valley-Emphasis and MLP-ARD algorithms provided good accuracy 
for the detection of water bodies using high-resolution SAR images. Due to the 
generalization capability of the MLP -ARD, the trained network can be applied further 
without any retraining and can generalize over new example images acquired from 
different days and years. A more robust version of the MLP-ARD will be produced by 
training by data from different days’ time series of Sentinel-1 images will be processed 
using the MLP-ARD to monitor surface water bodies during the whole summer season 
of 2019. Results will be presented in a future communication. 
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