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Abstract  
Mathematical modeling plays an important role in adjusting the parameters to achieve the 

desired characteristics of electrochemical biosensors. The investigation of a mathematical 

model of a potentiometric biosensor for the measurement of a-chaconine is carried out. The 

mathematical model of the investigation biosensor is presented in the form of a system of 

impulsive differential equations describing the dynamics of biochemical reactions when the 

concentration of a-chaconine is measured. In the model of the biosensor, each of the differential 

equations describes the concentrations of enzyme, substrate, inhibitor, enzyme-substrate, 

enzyme-inhibitor, enzyme-substrate-inhibitory complexes, as well as product depending on 

time simulation of mathematical model of biosensor for measurement of a-chaconine using R 

package is performed. The impulsive values of the system are the initial concentrations of the 

enzyme in the form of butyrylcholinesterase, the substrate in the form of butyryl choline 

chloride and a-chaconine as inhibitors. An existing potentiometric biosensor based on 

immobilized butyrylcholinesterase was used to verify the model and compare it with the 

experimental response. Conditions of local asymptotical stability for the inhibition stage in 

terms of corresponding eigenvalues is obtained. Nontrivial steady state of the model of 

biosensor for the measurement of a-chaconine can be numerically calculated as a positive 

solution of the system of nonlinear algebraic equations. The absolute value of the error between 

the experimental and simulated biosensor reactions for measuring α-haconin, which does not 

exceed 5.7 μA, was calculated. The root mean square error between the experimental and 

simulated biosensor reactions for measuring α-haconin is 1.6 μA, which corresponds to 5.33%. 

Based on the results of numerical simulations of the biosensor allows to adequately determine 

all major components of the compartment components of biochemical reactions when 

measuring a-chaconine concentration. The use of numerical simulation results will further 

minimize laboratory experiments with toxic and costly substances to select optimal 

concentrations of biosensor components to determine a-chaconine. 
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1. Introduction 

Application of the results of mathematical and numerical simulation based on differential equations 

is a useful tool both for understanding biochemical processes and for making extensive use of 

optimization analytical characteristics of biosensors in their design. Over the last fifty years, many 

mathematical models have been developed and applied to optimize the performance of various 

biosensors [1–3]. 

In [4, 5], mathematical models for an ammetric electrode with an immobilized enzyme based on 

nonlinear differential equations are proposed, which describe Michaelis-Menten kinetics and diffusion, 

as well as a mathematical model of amperometric and potentiometric biosensors [6]. In these models, 

the homotopy perturbation method is used to solve the system of equations under stationary conditions. 

The works [7, 8] presented mathematical models of ammetric biosensors, which improved the 

sensitivity of the developed biosensors by changing the input parameters (reagent concentrations, 

kinetic constants, and membrane thickness). In these models, the finite-difference method is used to 

solve the equation system under both steady-state and non-steady-state conditions. The vast majority of 

mathematical models developed describe enzyme biosensors for direct substrate measurement. In 

addition, in recent years there has been a tendency to increase the development of biosensors based on 

inhibitory analysis [9, 10]. To a greater extent, such biosensors are used in environmental monitoring 

for the detection of toxic substances such as pesticides, heavy metal ions, aflatoxins [11, 12]. To date, 

quite a few mathematical models of biosensors of this type have been developed. Of these, one can 

distinguish a mathematical model of the glucose oxidase biosensor for the measurement of mercury 

ions [13]. In this model, a system of equations describing diffusion and enzymatic nonlinear reactions 

is related to Michaelis-Menten kinetics, which have been refined to account for irreversible inhibition. 

This paper is devoted to the development of a mathematical model and the study of the stability of 

a previously developed butyrylcholinesterase biosensor based on ion-selective field-effect transistors 

(ISFET) for inhibitory measurement of α-chaconine [14]. 

The question is very urgent, given that α-chaconine is a very interesting biological object because 

of its toxicity and its concentration in potatoes as a food through which potatoes have a bitter taste. 

Measurement of the content of α-chaconine in potatoes is performed when new varieties with reduced 

content are removed. In recent years, scientific research has been carried out, which results in the 

conclusion that mechanisms of resistance of potatoes to disease and insect action depend on the level 

of α-chaconine. Other factors that affect the level of α-chaconine and can cause a significant increase 

in its primary concentration are climatic changes, light effects, mechanical damage during potato 

harvesting and storage [15]. Methods developed to determine total α-chaconine content are based on 

the use of colorimetry, high performance liquid chromatography, thin layer and gas chromatography, 

radioimmunological analysis. These methods are characterized by high cost, long duration and 

complexity of sample preparation techniques. In order to optimize and modify existing methods for the 

analysis of harmful substances in potatoes, it is appropriate to create simple, inexpensive, highly 

sensitive methods for the measurement of α-chaconine based on biosensors. At the same time, in order 

to save time and raw material resources (enzymes, substrates and inhibitors), it is advisable and 

economically advantageous to create and study adequate mathematical models of biosensors for the 

measurement of α-chaconine with the possibility of numerical simulation. 

2. Materials and Methods 

For numerical simulation of mathematical model in the work we used previously developed 

biosensor for measurement of α-chaconine [14].  

As the bioselective element of the biosensor used the enzyme butyrylcholinesterase (BuChE). In a 

real experiment, -310  mol butyricoline chloride (BuChCl) was used for working substrate 

concentration. As potentiometric transducers a pair of identical ion-selective p-type field-effect 

transistors with a sensitivity of 35-40 μA/pH placed on a single crystal has been used. 



3. Modeling of Mathematical Model of Biosensor for Measurement of A-
chaconin Baed on the Impulsive Differential System 

The impulsive differential equation system, which describes the mathematical model of the 

functioning of the biosensor for the measurement of α-chaconin, was solved by the R package. 

The program also built model responses from biosensors that are comparable to experimental data. 

Using the literature data [14] for the inhibitory measurement of α-chaconine using a BuChE-

biosensor based on ion-selective field-effect transistors, the measurement process of the biosensor is 

attributed to a mixed type of inhibition, which can be schematically depicted in Fig.1. 

In Fig. 1 sk  and sk-  are the constants of the rate of forward and reverse reaction of the formation 

of the complex (ES), 
pk  is the constant of the rate 

p  of formation of the product (P), ik  and ik-  are 

the rate constants of the direct and reverse reaction of the formation of the complex (EI). 

 
Figure 1: Schematic representation of the enzymatic reaction in a potentiometric biosensor based on 
BuChE-ISFET in the inhibitory measurement of α-chaconine (E – enzyme, S – substrate, I – inhibitor) 

 

Therefore, measuring with the help of such type of biosensor includes three stages related to the 

injection of different substances. Namely, the “rest” stage ( ),0[ stt ), when only some amount of 

enzyme is injected; enzyme reaction ( ),[ is ttt ), when some amount of substruct is injected; the reaction 

of enzyme inhibition ( ],[ fi ttt ). Here fis ttt 0  are the corresponding instances of time. 

At 0t , },{ is ttt  this system can be described by the following system of differential equations: 
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where sk , sk- , ik , ik-  and 
pk  are the corresponding rate constants of the reactions of complex 

formation; 
wk  is washout constant;   is a constant whose numerical value determines the inhibition 

or activation of the enzyme; )(tne , ),(tns  ),(tni  ),(tn p
 ),(tnes  ),(tnei  )(tnesi  are concentrations of 



enzyme, substrate, inhibitor, product, as well as enzyme-substrate, enzyme-inhibitory and enzyme-

substrate-inhibitory complexes, which change over time. The change in product concentration )(tn p
 

time is directly proportional to the response of the biosensor. 

The initial conditions are: 
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whereas impulsive influences are: 
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Note that since the right-hand sides of (1-7) are locally Lipschitz continuous with respect to initial 

conditions and impulses at fixed times st  and it , there is a unique solution of the initial value 

problem (1–10). 

4. Investigation of Steady States of the Biosensor Model 

Steady states of the system (1-10) can be found as a solution of the algebraic system: 

0-- **
-

*
-

**** =+++ espeiiessieises nknknknnknnk      (11) 

0-- *
-

*
-

**** =++ esisessseisses nknknnknnk      (12) 

0--- **
-

***
-

** =+ espesiiiesiessses nknknnknknnk       (13) 

0-- *
-

*
-

**** =++ esiieiiiesiiei nknknnknnk      (14) 

0-- *
-

***
-

** =+ esisseiseiiiei nknnknknnk       (15) 

0-- *
-

***
-

** =+ esisseisesiiiesi nknnknknnk      (16) 

0- ** =pwesp nknk         (17) 

Clearly, the system (11–17) has trivial solution .)0,0,0,0,0,0,0(   Nontrivial solutions ,( **
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esin  
)*

pn can be calculated numerically. Rate parameters and initial values of the model 

(1-10) are presented in Table 1.  

 

Table 1 
Rate parameters and initial values of the model of biosensor for the measurement of  -chaconine 

Model parameters Numerical value Unit of measurement 

sk  410*5  L/(mol*s) 

ik  410*2  L/(mol*s) 

sk-  25 1/s 

ik-  0.0187 1/s 

pk  0.05 1/s 

wk  1.42 1/s 

  20 - 
0
en  5-10*2  mol/L 
0
sn  3-10*4  mol/L 
0
in  6-10*2.3  mol/L 



Further stability research is restricted to the stage of inhibition itt  . For the parameter values of 

Table 1 we get the steady state of the model (1–7) presented in the form of Table 2.  

 

Table 2 
Steady state of the model biosensor for the measurement of  -chaconine. 

Variable Numerical values Unit of measurement 
*
en  

7-10*415,1  mol/L 

*
sn  

3-10*4  mol/L 

*
esn  

-610*129,1  mol/L 

*
in  

6-10*27,1  mol/L 

*
ein  

7-10*146,2  mol/L 

*
esin  

6-10*715,1  mol/L 

*
pn  

-810*977,3  mol/L 

 
Stability research is based on the linear model 
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where ))(( txJ  is Jacobian of the system (1) – (7), which can be presented in the form 
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For the values of parameters in Table 1 and steady state in Table 2 we get the following matrix  

 

 
 

We get all eigenvalues of *)(
))((

ntn
tnJ


 as the numbers with negative real part, namely: 

 02+-1.759682e1  ,  01+3.517811e- 2  , 01-1.420000e- 3  , 01-1.116629e- 4  , 

04-9.815916e- 5  ,  05-3.437626e- 6  , 15-3.865944e- 7  . 

Thus, using Hartman–Grobman theorem [16], we conclude that the stationary state *n  of the system 

(1)–(7) at the rate parameters’ values from the Table 1 is locally asymptotically stable at the inhibition 

stage itt  . 

It is also taken into account that the system maintains a constant total concentration of the enzyme 

0E , so at any given time the sum of the concentrations of free (E)  and bound (ES), (EI),  (ESI)  enzyme 

is equal to 0E(ESI)(EI)(ES)(E) =+++ . To simulate the operation of the biosensor, the system 

described above was decoupled using package R.  

The numerical simulation results are shown in Fig. 2. 
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Figure 2: Numerical simulation of the enzymatic reaction in the BuCHE-ISFET membrane of the 
biosensor using kinetic equations (1–7) and the parameters presented in table 1 

At the zero stage of the simulation, the following initial conditions are set 

0)0()0()0()0()0()0( ====== pesieiesis nnnnnn , that is, when there is no substrate and inhibitor in 

the system, but only the initial enzyme concentration in the working membrane of the biosensor is 

entered. Under the given initial conditions and given parameters, there are solutions of the system. In 

the first stage, the system is decoupled under the initial conditions given by the zero-phase system 

junctions and the initial substrate concentration is added to the working cell. 

In the second step, the response to the inhibitor is simulated by substituting the previous solutions 

and the initial concentration of the inhibitor )(tni  known under the conditions of the experiment. The 

results of numerical simulation of the response of the biosensor at different values of the concentration 

of inhibitor is presented in Fig. 3. 
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Figure 3: Numerical simulation of the response of the biosensor at different values of the 
concentration of inhibitor 



In Fig. 3 are presented results of numerical simulation of the response of the biosensor for the 

measurement of  -chaconine at values of the concentration of inhibitor 6-10*1 mol/L, 6-10*2  mol/L, 
6-10*5  mol/L, 6-10*10  mol/L. It should be noted that the concentration of the inhibitor used are 

measuring levels of  -chaconine. Analyzing the results of numerical simulation obtained in Fig. 3 we 

can conclude that the higher the concentration of the inhibitor, the smaller the amplitude of the response 

of the investigation model of the biosensor. The simulated responses of the biosensor at different 

concentrations of the inhibitor are fully consistent with the principle of inhibition. 

 

 
а) 

 
b) 

Fig. 4. Comparison of biosensor responses for the determination of α-chaconine (1 - experimental 
response; 2 - simulated system response) (a); absolute value of error between experimental and 
simulated feedback (b) 

 

In Fig. 4 (b) shows the absolute value of the error between the experimental and simulated responses 

of biosensor for the measurement of α-chaconine, which does not exceed 5.7 µA. The root mean square 

error between the experimental and simulated responses of biosensor for measuring α-chaconine is 1.6 

µA, which corresponds to 5.33%. 



 

5. Conclusion 

As a result of numerical simulation of the functioning of the biosensor, the concentrations of the 

enzyme, substrate, inhibitor, product, as well as enzyme-substrate, enzyme-inhibitory and enzyme-

substrate-inhibitory complexes, which change over time, are obtained to determine α-chaconine. 

The results obtained from the study of the stability of the biosensor model for measurement of α-

chaconine should be used for the design of new biosensors. The use of numerical simulation results will 

further minimize laboratory experiments with toxic and costly substances to select optimal 

concentrations of biosensor components to determine α-chaconine. 

The model is the system of impulsive differential equations, where impulsive effects describes 

injection of substruct and inhibitor. Here we obtained the local stability conditions at the stage of 

inhibition, which were checked for the developed mathematical model of potentiometric biosensor 

based on butyrylcholinesterase for inhibitory determination of α -chaconine in accordance with [17, 

18]. We evidenced that the nontrivial steady state is locally asymptotically stable at this stage. Stability 

condition is reduced to analyzing of corresponding eigenvalues. The numerical simulation results of the 

biosensor model of impulsive differential equations for measurement of α-chaconine should be used in 

research, design organizations, medical and laboratory centers in the development and testing of cyber-

physical systems of medical and biological processes. In further researches for the analysis of numerical 

modeling intermediate results the cyber-physical system of medico-biological processes with use expert 

estimation [20, 21] will be developed. 

6. Acknowledgements 

This research was partially supported by the state research project: “Development of specialized 

telemedicine equipment and treatment and rehabilitation techniques for remote rehabilitation of patients 

with injuries and diseases of the musculoskeletal system” (research project no. 0119U000608, financed 

by the Government of Ukraine); “Cyber-physical modeling in research of medical and biological 

processes” (research project no. 0119U000509). 

7. References 

[1] S. Bayle, D. Benimelis, J. Chopineau, B. Roig, D. Habauzit, Critical parameters in surface plasmon 

resonance biosensor development: The interaction between estrogen receptor and estrogen 

response element as model, Biochimie 171–172 (2020) 12–20. 

[2] H. Aris, S. Borhani, D. Cahn, C.O'Donnell, E. Tan, P. Xu, Modeling transcriptional factor cross-

talk to understand parabolic kinetics, bimodal gene expression and retroactivity in biosensor 

design, Biochemical Engineering Journal 144 (2019) 209–216. 

[3] M. R. Romero, A. M. Baruzzi, and F. Garay, Mathematical modeling and experimental results of 

a sandwich-type amperometric biosensor, Sensors Actuators, B Chem. 162(1) (2012) 284–291.  

[4] S. Loghambal and L. Rajendran, Mathematical modeling of diffusion and kinetics in amperometric 

immobilized enzyme electrodes, Electrochim. Acta 55(18) (2010) 5230–5238.  

[5] S. Loghambal and L. Rajendran, Mathematical modeling in amperometric oxidase enzyme-

membrane electrodes, J. Memb. Sci. 373(1–2) (2011) 20–28.  

[6] A. Meena, L. Rajendran, Mathematical modeling of amperometric and potentiometric biosensors 

and system of non-linear equations – Homotopy perturbation approach, J. Electroanal. 

Chem. 644(1) (2010) 50–59.  

[7] V. Ašeris, E. Gaidamauskaitė, J. Kulys, and R. Baronas, Modelling glucose dehydrogenase-based 

amperometric biosensor utilizing synergistic substrates conversion, Electrochim. Acta (146) 

(2014) 752–758.  

[8] V. Ašeris, R. Baronas, and J. Kulys, Modelling the biosensor utilising parallel substrates 

conversion, J. Electroanal. Chem. 685 (2012) 63–71.  



[9] F. Arduini, A. Amine, Biosensors Based on Enzyme Inhibition, Adv. Biochem. Eng. Biotechnol. 

140 (2014) 299–326.  

[10] L. S. B. Upadhyay, N. Verma, Enzyme Inhibition Based Biosensors: A Review, Anal. Lett. 46 

(2012) 225–241. 

[11] M.K.L. da Silva, H. C. Vanzela, L. M. Defavari, I. Cesarino, Determination of carbamate pesticide 

in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme, 

Sensors and Actuators B: Chemical 277 (2018) 555-561. 

[12] V. Dhull, A. Gahlaut, N. Dilbaghi, V. Hooda, Acetylcholinesterase biosensors for electrochemical 

detection of organophosphorus compounds: A review, Biochem. Res. Int. 2013 (2013) 1–18.  

[13] F. Achi, S. Bourouina-Bacha, M. Bourouina, A. Amine, Mathematical model and numerical 

simulation of inhibition based biosensor for the detection of Hg(II), Sensors Actuators B Chem. 

207 (2015) 413–423.  

[14] V. N. Arkhypova, S. V. Dzyadevych, A. P. Soldatkin, A. V. El’skaya, C. Martelet, N. Jaffrezic-

Renault, Development and optimisation of biosensors based on pH-sensitive field effect transistor 

and cholinesterase for sensitive detection of solanaceous glycoalkaloids, Biosensors & 

Bioelectronics 18 (2003) 1047–1053. 

[15] M. Friedman, N. Kozukue, H.-J. Kim, S.-H. Choi, M. Mizuno, Glycoalkaloid, phenolic, and 

flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel 

powders from commercial gold, red, and Russet potatoes, Journal of Food Composition and 

Analysis 62 (2017) 69–75. 

[16] D. K. Arrowsmith, C. M. Place, The Linearization Theorem. Dynamical Systems: Differential 

Equations, Maps, and Chaotic Behaviour, London: Chapman & Hall, 1992, pp. 77–81. 

[17] V. P. Martsenyuk, A. Klos-Witkowska, A. S. Sverstiuk, Stability, bifurcation and transition to 

chaos in a model of immunosensor based on lattice differential equations with delay, Electronic 

Journal of Qualitative Theory of Differential Equations 2018(27) 1–31. 

[18] V. P. Martsenyuk, I. Ye. Andrushchak, P. M. Zinko, A. S. Sverstiuk, On Application of Latticed 

Differential Equations with a Delay for Immunosensor Modeling, Journal of Automation and 

Information Sciences 50(6) (2018) 55–65. 

[19] V. P. Martsenyuk, А. S. Sverstiuk, I. S. Gvozdetska, Using Differential Equations with Time Delay 

on a Hexagonal Lattice for Modeling Immunosensors, Cybernetics and Systems Analysis 55(4) 

(2019) 625–636. 

[20] I. Kovalenko, Y. Davydenko and A. Shved, Formation of Consistent Groups of Expert Evidences 

Based on Dissimilarity Measures in Evidence Theory, in: Proceedings of the 14th International 

Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, 2019, 

pp. 113–116. 

[21] A. Shved, I. Kovalenko, Y. Davydenko, Method of Detection the Consistent Subgroups of Expert 

Assessments in a Group Based on Measures of Dissimilarity in Evidence Theory, in: Shakhovska 

N., Medykovskyy M. (Eds.), volume 1080 of Advances in Intelligent Systems and Computing. 

Springer, Cham, 2020, pp. 36–53. 

http://www.dl.begellhouse.com/journals/2b6239406278e43e,5157b39e78fe0c7d.html
https://link.springer.com/search?facet-creator=%22I.+S.+Gvozdetska%22
https://link.springer.com/article/10.1007/s10559-019-00171-2
https://link.springer.com/article/10.1007/s10559-019-00171-2
http://link.springer.com/journal/10559

