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Abstract. A huge amount of ocean observation data is available. A pur-
pose of interpreting that data in marine-geophysical applications is to
find, for instance, anomalies which are the signs of reservoirs in earth lay-
ers beneath the ocean floor. In this position paper, we compare different
machine learning methods to predict the overall trend of seismic P-wave
velocity as a function of depth for any marine location. Our study is
based on a dataset consisting of data from 333 boreholes and 38 geologi-
cal and spatial predictors. Our preliminary results indicate that random
forests provide best results on this dataset, but also suggest to apply
data augmentation for improved results with other methods.
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1 Introduction

Following the recent advancements in sensor technology and increasing use of
various sensors in different environments, huge amounts of ocean observation
data are available today. Machine learning excelled in many fields (e.g. market
prediction, cancer diagnosis, object recognition, and etc.) and promises more
accurate results in comparison to methods which were used in past. Similar
to other fields of science, the field of marine sciences is challenged with big
data, which is gathered through (expensive) expeditions and observations via
numerous different sensors.

The amount and diversity in the form of data requires specific methods such
as machine learning models to process and analyze the data. The goal of this
position paper is to compare machine learning methods on the data related to
geophysical and geological properties of rocks beneath the sea floor. We aim
to make predictions on average properties of these sub-surface materials. Our
predictions will help to detect the anomalies in data which are the signs of
reservoirs or effects of natural phenomena on earth layers beneath the ocean.
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2 Prediction of Seismic P-wave Velocities

P-wave velocity is one of the physical properties of sub-surface rocks which can
help to predict the materials beneath the ocean floor. Based on measurements
done during different drilling projects Dumke et al. [5] gathered the information
of 333 borehole logs to form a dataset which is depicted in Figure 1. They have
compared the results of prediction using Random Decision Forests (RDF) [2]
with hamiltonian functions [6], which were used in the past as a conventional
method to compute the average P-wave velocity.

2.1 Characteristics of the Dataset

Our data have been gathered during different drilling campaigns performed on a
global scale, see Figure 1. The dataset is divided into 10 folds to perform cross val-
idation. The 10 folds are separated from each other based on geographic location.
This is an important feature of the dataset to prevent overfitting. Location-wise
separation implies that the samples which have been used in training sessions
belong to different locations than the samples used for the prediction.

We compared the results of our predictions on this dataset. Some key char-
acteristics of this dataset are that,

1. the number of categories for independent variables which are usually referred
to as features is large,

2. the amount data with respect to the number of categories on each sample is
scarce for each borehole,

3. the trend in data differs in each correlation of data pairs, and

4. there are many outliers and noise in the dataset.

Figure 2 depicts the correlation of data points in a training set between 4 arbi-
trary data categories. We chose longitude, latitude, water depth, and sediment

Drilling campaigns:
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Fig. 1: Distribution of the 333 boreholes [5]. DSDP: Deep Sea Drilling Project,
ODP: Ocean Drilling Program, IODP: International Ocean Discovery Program.
The Bathymetry is from the GEBCO_-2014 grid (http://www.gebco.net)
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thickness in this pair plot. Many outliers can be detected. In addition, in each
pair of the variables there is clear change in the trend of data distribution.
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Fig. 2: Dataset pair plot

2.2 Investigated Machine Learning Methods

To achieve improved results, we have done prediction on seismic p-wave velocity
using different machine learning methods to assess the changes in prediction
accuracy. We have used scikit-learn [9], and keras [1] to implement 3 different
machine learning methods:

— Support vector regression (SVR): The kernel used in SVR [4] is a radial basis
function [11] of degree 8.
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— Polynomial regression: In polynomial regression, the degree of the polynomial
is set to 2.

— Neural networks (NN): We applied a 2-layer feed forward neural network,
each layer consists of 32 neurons. As activation function we used the relu
function, which is a widely used activation function for neural networks. In
each training iteration, a batch of 50 data samples goes through the model.
The training session contained 400 epochs and the learning rate was set to
0.001. We used the RMSProp [3] optimizer for our model.

Dumke et al [5] used a Random Forest Regressor using scikit-learn [9]. They
used 1000 decision trees in their study. The number of the predictor variables
was 38. Based on their study, using the most important 16 features results in
better predictions.

2.3 Prediction Results

We have selected the most important 16 features of the dataset as done before [5].
The importance of the features are calculated using RDF. Feature importance
can be defined as a score assigned to each category of independent variables with
respect to their influence on the performance of the prediction model. Thus, the
performance of the prediction is divided into 4 categories based on the previ-
ous work by Dumke et al [5]. Each category specifies the level of performance
compared to conventional methods (i.e., Hamiltonian curves [6]) that is used for
calculating the seismic P-wave velocity. Scores assigned to each prediction are
based on comparison of the error metrics RMSE (Root Mean Square Error),
Mean Absolute Error, and R? error metrics. In case of each prediction, the error
metrics of the machine learning algorithm is compared to the error metrics of
the conventional Hamiltonian functions [6]. Figure 3 illustrates the difference in
performance of the machine-learning methods in 4 score categories:

3: All 3 error metrics indicate a better fit than the Hamiltonian functions
2: 2 of 3 error metrics indicate a better fit than the Hamiltonian functions
1: 1 of 3 error metrics indicate a better fit than the Hamiltonian functions
0: No error metrics indicate a better fit than the Hamiltonian functions

Categories 0 and 1 are representing the bad predictions, while 2 and 3 rep-
resent the good predictions. The RDF method could drop the number of bad
predictions and increase good predictions to almost the half comparing to SVR,
polynomial regression, and neural network. These data characteristics (see Sec-
tion 2.1) makes fitting a regression model using SVR, polynomial and neural
network a challenge.

3 Summary and Future Work

In the field of ocean observation, the data can be in various forms (e.g. borehole
logs, seismic data, images, and etc.). All different data types refer to geographical
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Fig. 3: The number of predictions in each score category (0 — 3) for each machine
learning method RDF, Polynomial, SVR and NN.

locations. To have a better understanding of materials in specific locations and
interpret the data, integration of different data types is necessary. Our aim is
to find appropriate methods to integrate and adapt different forms and types of
data to form datasets, and increase the precision and accuracy of the predictions
to enhance our understanding.

Another challenge is to select the best predictor variables to get the highest
accuracy and reduce the dimensionality of data. Previously, ensemble methods
like Random Decision Forest (RDF) [2] is used in several studies. The ability of
RDF to deal with unscaled and high-dimensional data makes it popular among
the scientific community dealing with ocean observation data.

The major challenge is to make accurate predictions on global scale. This
means to predict the properties of materials in unobserved locations. Global
scale predictions would reduce the cost in terms of energy and time. Precise
predictions would reduce the need for explorations and expensive expeditions.

Data augmentation [12] is a usual performance enhancement method for
machine learning models which is used for different data types. Considering the
essence of some data types like images, modifications on existing data points
(e.g. performing transformations, adding noise, manipulating color tones, etc.)
can result in having more new data points. To increase the accuracy in our future
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attempts we are up to investigate methods for data augmentation in our field of
marine data science.

For reproducibility and reusability, we publish our software open source [10]

and the data together with the analytics service OceanTEA [7], as we did in the
past [8].
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