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Abstract
A major aspect of maintaining the quality of software systems is the management of bugs. Bugs are commonly fixed in
a corrective manner; detected after the code is tested or reported in production. Analyzing Fix-Inducing Changes (FIC) —
developer code that introduces bugs — provides the opportunity to estimate these bugs proactively. This study analyzes
the evolution of FICs to visualize patterns associated with the introduction of bugs throughout and within project releases.
Furthermore, the association between FICs and complexity metrics, an important element of software evolution, is extracted
to quantify the characteristics of buggy code. The findings indicate that FICs become less frequent as the software evolves
and more commonly appear in the early stages of individual releases. It is also observed that FICs are correlated to longer
Commit intervals. Lastly, FICs are found to be more present in codes with fewer lines and less cyclomatic complexity, which
corresponds with the law of growing complexity in software evolution.
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1. Introduction
Software projects evolve over time [1] to introduce new
features while fixing bugs [2] that appear in parallel. The
conventional way of handling the bugs is by detecting
faulty codes with test cases [3] based on user reports and
writing patches [4] that eliminate the fault. In this way,
a bug is fixed only after it is written. Another way of
managing bugs is proactively understanding how bugs
occur in systems. In this preventive process, Fix-Inducing
Changes (FICs) — code that introduces bugs which in-
duce a later fix [5] — are analyzed. FICs can be tracked
from a project’s change history by looking for instances
of bug fixes and the code changed in these fixes. An FIC
provides information about the code changes, the devel-
oper writing the bug, and the state of the development
process at the time of introducing the bug. These can
unveil important characteristics of the project, processes
and developers that potentially cause bugs.

Studies analyzing FICs have observed how these are
related to or affected by properties of the software devel-
opment lifecycle. For instance, Sliwerski et al. [5], apart
from coining the term, related FICs with two developer
activities: the day of coding and the amount of code in
a single Commit. Yin et al. [6] observed how bug fixes
themselves can introduce new bugs. Other studies in-
clude relations with code smells[7], code coupling [8],
developer sentiment [9, 10] and more.

Since FICs are a component of the software’s history,
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these hold information about the software’s evolution.
As software evolves, so does its management, personnel,
design and code. This changing environment can affect
the introduction of bugs and vice versa. The existence
and properties of such correlations can be established by
analyzing the evolution of FICs. Observing the evolution
of FICs can also help uncover its relation with other evo-
lutionary factors, for instance, the system’s complexity
[11]. With this aim, this study answers the following
Research Questions (RQs):

RQ1: Howdo FICs evolvewith the software? This
RQ observes how FICs change in frequency and ratio
as the software system evolves. The evolution of the
software is measured with its releases.

RQ2: How do FICs exist within releases? A sin-
gle release depicts the software team’s complete flow of
activities. The flow starts with the team taking in new re-
quirements to update the features of the software to their
finalization, testing and deployment. This RQ observes
how FICs appear and change in this flow.

RQ3: How do FICs relate to Commit interval?
The interval between Commits signify the amount of
tasks assigned to developers, along with gaps between
activities. This RQ answers whether FICs behave differ-
ently than regular Commits in terms of these intervals.

RQ4: How do FICs relate to system complexity?
According to Lehman’s law of evolution, system complex-
ity is a vital part of a software’s evolution [11]. The law
dictates that complexity increases as the software evolves.
Since FICs are instances where bugs are introduced, and
bugs can be affected by system complexity, this RQ ob-
serves the relation between the two entities. Specifically,
in this RQ, FIC is correlated to Lines of Code (LoC) and
Cyclomatic Complexity (CC) as commonly used metrics
to quantify complexity [12, 13].
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For this study, eight Java repositories from GitHub
with a total of 142,555 Commits have been analyzed.
From the Commits, FICs are detected, release information
are extracted and relevant metrics are calculated. The
findings show that FICs decrease as the software evolves,
while remaining more prevalent early in release cycles.
Statistically analyzing the data shows that FICs contain
larger intervals and their code reduced LoC and CC than
regular Commits.

2. Related Work
Sliwerski et al.[5] introduced the term Fix-Inducing Changes
(FIC), providing a process that detects FICs in version
history from Concurrent Versions System (CVS) with
bug reports from Bugzilla. Moreover, they showed a
relation between FICs and number of files changed. An-
toniol et al.[14] showed that FICs create adverse effect
and produce unexpected results. They presented a robust
approach to detect groups of co-changing files in CVS
repositories.

Yin et al.[6] identified and analyzed incorrect bug fixes
which introduce new ones instead. They analyzed the
code of operating systems namely, FreeBSD, Linux and
OpenSolaris. This approach also combined version con-
trol systems and bug repository to categorize changes.
They proved that Fix Inducing Fix (FIF) can cause crashes,
hangs, data corruption or security problems.

Bavota et al.[7] showed that 15% refactoring tasks in-
duce bugs, analyzing 52 kinds of refactoring on 3 Java
projects. They detected inheritance related refactoring
as the most error-prone refactoring.

In order to analyze FICs, various works focused on dif-
ferent properties of change that would induce the bugs.
Levin et al.[15] and Menzies et al.[16] focused on source
code changes of affected files. Fukushima et al. [17] intro-
duced developer experience, time of day, time interval of
commit and some other properties of change that would
induce bugs. Sadiq et al. [8] related FICs with change
couplings to find that recent change couples provide bet-
ter insight on new errors. Huq et al. [9] showed that
developer sentiment is related with FICs, where positive
comments and reviews in Pull Requests can lead to buggy
Commits.

Weicheng et al.[18] explored the relation between de-
veloper Commit patterns in GitHub and software evo-
lution. They used four metrics to measure the Commit
activity of developers and code evolution: changes, inter-
val, author and source code dependency. Moreover, this
paper showed techniques to visualize these metrics for
a given project. They developed a tool named Commits
Analysis Tool (CAT) that finds that the changes in previ-
ous versions can affect the file which is dependent on it
in the next version.

Osman et al.[19] extracted bug-fix patterns by mining
change history of 717 open source projects. They man-
ually inspected the patterns to retrieve the context and
reasons that cause those bugs.

So far, FICs have been analyzed to derive relationships
with different project metrics. While the evolution of
Commits has been observed, the evolutionary properties
of FICs have yet been studied.

3. Methodology
This study observes how Fix-Inducing Changes (FIC)
evolve throughout the lifetime of software projects and
how these relate to complexity metrics. The methodol-
ogy of the study is divided into three parts, described as
follows.

3.1. Fix-Inducing Change (FIC) Detection
FICs are changes to code that causes problems to the
software system. FICs are the introduction of bugs or
errors to the software, inducing fixes in the future. Hence,
these can be detected from the changes that fix bugs and
errors.

This study utilizes Commits, the documented changes
in software projects that are managed through version
controlling. Commits contain the exact lines and files
where changes are made along with information of and
message from the developer who posted these. The de-
tection of FICs through Commits is conducted in the
following steps, influenced by the process of [7]

1. All Commits are fetched from GitHub reposito-
ries.

2. Commit messages are extracted to detect terms
such as “bug”, “fix” or “patch”. These terms sig-
nify that the aim of the Commit is related to the
management of bugs.

3. Now the changes in these Commits are analyzed.
Since the study deals with Java projects, it is first
checked whether the changes occur in “.java” files.
Commits with no changes to such files indicate
that the Commits dealt with non-code entities of
the software (configuration files, documentation
etc.). Furthermore, the changes made in “.java”
files are analyzed to seewhether the changeswere
code comments, which also signifies the absence
of code entities.

4. Then, the type of the edit made by the Commit
is checked. There are three types of edit: Insert,
Delete and Replace. An Insert edit means that a
patch code is added onto the existing code base.
However, it does not help to track which part of
the previous code was buggy. There is no way
of tracking back to a Commit that introduced a
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Figure 1: The methodology for identifying FICs from Com-
mits

bug. Hence, Commits with Insert edit types are
discarded from further consideration.

5. After the filtering process, the remaining Com-
mits are labeled as “Fixing Commits” or “Fixes”.
These are the Commits that removed buggy code.

6. Next, origin of each legitimate change in the Fix
is tracked using the blame function, which re-
turns the Commit where a specified changed line
was last added or modified. These Commits are
labeled as FICs.

3.2. Evolution Analysis
To understand the evolution of FICs, the projects’ re-
lease tags are analyzed. Release tags define iterative final
versions of the software in the project’s lifetime. Since
Commits are assigned these tags, it is possible to catego-
rize Commits based on releases.

To analyze releases, first non-release tags are filtered
out based on naming structures. Usually the release tags
in most projects abide by the pattern: “v #.#.#”. The
rest are tags depicting other information like branches
or experiments. However, the structure of naming tags
can vary with projects. For instance, patterns in projects
like ElasticSearch or Commons-lang are “Elasticsearch
#.#.#” and “commons-lang-#.#.#” respectively. Hence, tags
are manually analyzed for each repository. Additionally,
versions that are release candidates are discarded since
these do not depict final releases.

Figure 2: The methodology for extracting complexity metrics
from Commits

Next, Commits are labeled based on their assigned tags.
However, since Commits are automatically assigned all
future tags, the labeling was conducted in two parts. First,
Commits are extracted from all tags. Then, for every tag,
only those Commits that were posted after the previous
release tag are assigned to the current one.

As Commits are segmented into releases, analysis for
Research Question (RQ) 1 is conducted. For each release,
the number of FIC and non-FIC is calculated based on
section 3.1. This segmentation is further elaborated for
RQ2, by dividing each release into three equal parts. The
three divisions are extracted to better understand the
early, middle and late stages of a single release.

3.3. Metrics Extraction
To analyze the relation between FICs and complexity
metrics — Line of Code (LoC) and Cyclomatic Complex-
ity (CC) — first the changes to code are extracted. This
includes the content of the changed files and numbers
of lines which are modified or deleted. In the case of file
contents, along with that of the current Commit, con-
tents of its parent Commit are also extracted. Parent
Commit is referred to the Commit directly prior to the
current Commit. The contents of the parent Commit
provides information of the state of code before the cur-
rent Commit’s changes. For FICs, their parents retains
the properties of the code where the bug was introduced.
With the contents of the current and parent Commits,
the two metrics are calculated in the following manner:

1. LoC: To calculate the line of code, without consid-
ering comments, first the Abstract Syntax Tree
(AST) [20] of a program is generated from the

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

15



changed files using JavaParser1. It is verified
whether the changes have been conducted on
executable code or not. Therefore, blank spaces
are eliminated. Next, the modified lines in the
current content are checked to identify whether
these are comments based on the AST. If none of
the changed lines are executable code, then the
file is not further considered. Otherwise, the LoC
of the parent content is calculated.

2. CC: To calculate cyclomatic complexity, themethod
in which change was introduced is first identified.
This is done by taking each changed line of the
current content and tracing its state back in the
parent content. The generated AST of the parent
content is traversed for each line. Each changed
line of executable code is individually assessed
and provided an associated method. This pro-
vides a list of changed methods for a single file.
Each of their cyclomatic complexities are calcu-
lated, aggregating all possible paths (If-else, loops,
switch statements).

4. Experimentation and Findings
Description of the dataset and the results observed for
the 4 Research Questions (RQs) are described as follows.

4.1. Dataset
To conduct this research, eight well known Java projects
are chosen fromGitHub’s repositories. These projects are
open source and use GitHub as their primary medium of
code storage and version control, enabling the extraction
of all necessary Commits. Details of the repositories are
displayed in Table 1. The projects comprise of a total
of 142555 Commits to analyze. All eight repositories
are used to analyze Research Questions (RQ) 1, 2 and 3.
RQ4, which requires the source code, utilizes the first
five repositories.

4.2. RQ1: Evolution of FICs
The 1st RQ aims to understand how FICs evolve, in terms
of frequency and ratio, throughout the lifetime of soft-
ware projects. The graphs in Figure 3 showcase the evo-
lution of FICs in the eight software repositories analyzed.
The different repositories show different types of patterns.
In the majority of patterns, as seen in Figures 3(b, c, d, g,
h) for projects Guava, Mockito, Commons-lang, Elastic-
search and Spring-framework respectively, FICs appear
in the early stages of the projects’ lifetime and decrease
in newer versions. This indicates that earlier changes

1https://javaparser.org/

Table 1
Repository description of the eight projects

Project Name Commits Lifetime
(Years)

Contri-
-butors

Apache Tomcat 19360 8.5 21
Google Guava 4798 5 187
Mockito 5019 6.7 155
Commons-lang 5396 10 115
Apache Hadoop 21435 4.8 191
Selenium 23550 9.3 435
Elastic Search 44975 8.5 1216
Spring Framework 18022 6.4 369
Total 142555 59.1 2689

to the system tend to contain more instances of bug in-
troduction. This can be due to a rapidly changing and
volatile initial requirement, formative and incomplete
development processes, lack of collaborative experience
among the developers, or an insufficiency of reviewing
and testing resources. But as the software evolves, the
FICs get reduced, as an indication of bolstered testing
and quality assurance processes, and project maturity.

On the other hand, projects Tomcat and Hadoop in
Figures 3(a, e) show the opposite trend, where FICs are
more predominant in later versions. This could happen
due to a decreased level of scrutiny in reviewing efforts,
a overhaul of new requirements, or other project and
personnel related events. Only Figure 3(f) showcases
a slightly more uniform pattern of FICs for the project
Selenium. Although there are spikes of FICs occurring
in specific versions, there is no apparent progression in
the appearance of FICs.

Such visualizations of the evolution of FICs help in
observing the history of the project in terms of buggy
changes. This can be related to other aspects of projects
that coincide with the decrease and increase of FICs to
understand what affects the introduction of bugs from a
high level perspective.

4.3. RQ2: FICs in Releases
In RQ2, the pattern of FICs within individual releases
is observed. In Figure 4, the appearance of FICs within
releases is displayed as black circles, where the size of
the circle is determined by the proportion of FIC on the
total number of Commits in that stage. The releases are
divided into three stages: early, middle and late, and for
some projects, versions are merged for visibility.

It can be seen that for almost all the projects, FICs are
more predominant in early and middle stages of releases
compared to late ones. The exceptions are Tomcat and
Spring framework, where FICs are similarly or more pre-
vailing in the late stages. The high level of appearance of
FICs in early and middle stages of a release can be con-
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(a) Project: tomcat

(b) Project: guava

(c) Project: mockito

(d) Project: commons-lang

(e) Project: hadoop

(f) Project: selenium

(g) Project: elasticsearch

(h) Project: spring-framework

Figure 3: Evolution of FICs: FIC frequency, Non-FIC frequency and FIC ratio
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Figure 4: FICs in releases: early, middle and late stages
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tributed to a higher emphasis on adding and updating
features in those stages. The late stages are more focused
on debugging and deployment efforts.

4.4. RQ3: FIC Interval
The 3rd RQ deals with the relation between Commit in-
tervals and FICs. Table 2 shows that, on average, the
interval (in minutes) for FICs is longer than that for reg-
ular Commits. The p-value of < 2.2𝑒−16 solidifies this
difference as significant. This indicates that either a large
amount of work relates to FICs (as shown by [5]), or that
the developer introduces bug when they are away from
the code for a long time.

The finding can help in preemptively detecting buggy
code. Commits posted after a longer period than average
can be given extra emphasis in reviews. Additionally,
developers should be suggested not to disassociate from
the code for a long time.

4.5. RQ4: FIC and Complexity Metrics
The last RQ observes whether FICs are related to the
complexity metrics of software evolution: Line of Code
(LoC) and Cyclomatic Complexity (CC). It can be seen in
Table 2 that the average LoC of code where FICs occur
is lower than that of regular Commits, with a p-value of
< 2.2𝑒−16, making this difference significant. The result
says that a lower LoC relates to buggy code. Hence the
smaller, less busy components need to be given more
emphasis in coding correctly and reviewing for bugs.

Next, as seen in Table 2, FICs occur in methods with
significantly less CC than regular Commit, based on the
6.48𝑒−10 p-value. A lower CC means that the tasks in
methods are logically simpler. And yet, bugs, as statis-
tically shown, tend to be introduced in such methods.
Similar to LoC, this result prompts for a higher level of
scrutiny when dealing with smaller and simpler methods.

Both of these findings support the evolution of FICs
compared to complexitymetrics. As described by Lehman’s
law of evolution[11], complexity rises as software evolves,
hence increasing LoC and CC. Similarly, based on RQ1,
FICs decrease in ratio in most cases, which is solidified
by its inverse relation with the complexity metrics.

5. Result Discussion
From the findings generated in this study, the following
interpretations and applications can be estimated:

1. Early bugs: From both Research Questions (RQs)
1 and 2, it can be seen that bugs appear mostly
in the early stages of versions and release cy-
cles. This finding solidifies the intuition that early
code tends to cause more bugs than later ones

Table 2
Results for RQ3 and RQ4

Metric Commit
Type Average Standard

Deviation P-value

Interval
FIC 285.54 2027.59 < 2.2𝑒−16
Regular 177.13 1113.37

LoC
FIC 508.63 507.94 < 2.2𝑒−16
Regular 636.6 760.61

CC
FIC 3.49 3.64 6.48𝑒−10
Regular 4.04 4.42

whenmaintenance starts to outrank development,
and the software stabilizes. With this intuition
proven through data, the finding can be applied
to change the way software is developed. A more
test-driven approach can be adopted in software
projects from the beginning to mitigate the large
influx of bugs.

2. Comparative history: By graphically extract-
ing the evolution of FICs in software projects, the
appearance of bugs can be historically analyzed.
This history can unearth valuable insight, for ex-
ample periods of time or certain releases where
FICs peaked in number. These exceptions can
be comparatively analyzed with other metrices
related to the project. The metrices can range
from code properties like components developed,
design patterns used etc, or project aspects like
type of assignment, assigned developer, developer
turnover etc. The proponents may vary from
project to project, hence the historical data of
FICs can be used as a constant reference to such
differing metrices.

3. Intervals and bugs: RQ3 provides insight into
the correlation betweenCommit interval and FICs,
showing the tendency of larger intervals causing
bugs. This finding can be applied in project man-
agement, by monitoring the absences of develop-
ers. Developers who have been absent from the
development process for longer periods should
be assigned to tasks that are less sensitive and
their work be reviewed more intensely. Further-
more, as also observed by Sliwerski et al. [5],
large amount of changes in a single Commits that
cause higher time for completion should be regu-
lated for FICs.

4. Software evolution and complexity: The last
finding demonstrates how FICs are correlated
with line of code (LoC) and cyclomatic complex-
ity (CC). These metrices, referred to as complex-
ity metrices in the domain of software evolution,
are important in understanding the evolution of
FICs. As graphically shown in RQ1, FICs tend to
decrease as the software evolves. On the other
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hand, complexity increases with the software’s
age [11]. This indicates an inverted relationship
between the two metrices, which is proven in
RQ4 where FICs are found to be related with a
larger LoC and CC in the code.

6. Conclusion
This study analyzes GitHub repositories to extract Fix-
inducing Changes (FICs) — changes that introduce buggy
code— and observes its evolution and characteristics. It is
seen that FICs tend to occur in earlier versions and stages
of releases. There is also a significant delay in posting
FICs than regular Commits. Lastly, when relating with
complexity metrics, FICs show up in code with less LoC
and less CC than regular Commits. This corresponds
with the decreasing FIC and increasing complexity of
software evolution.
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