
Using Rule Mining for Automatic Test Oracle Generation
Alejandra Duque-Torresa, Anastasiia Shalyginaa, Dietmar Pfahla and Rudolf Ramlerb

aInstitute of Computer Science, University of Tartu, Tartu, Estonia
bSoftware Competence Center Hagenberg GmbH, Hagenberg, Austria

Abstract
Software testing is essential for checking the quality of software but it is also a costly and time-consuming activity. The
mechanism to determine the correct output of the System Under Test (SUT) for a given input space is called test oracle.
The test oracle problem is a known bottleneck in situations where tests are generated automatically and no model of the
correct behaviour of the SUT exists. To overcome this bottleneck, we developed a method which generates test oracles
by comparing information extracted from object state data created during the execution of two subsequent versions of the
SUT. In our initial proof-of-concept, we derive the relevant information in the form of rules by using the Association Rule
Mining (ARM) technique. As a proof-of-concept, we validate our method on the Stack class from a custom version of the
Java Collection classes and discuss the lessons learned from our experiment. The test suite that we use in our experiment to
execute the different SUT version is automatically generated using Randoop. Other approaches to generate object state data
could be used instead. Our proof-of-concept demonstrates that our method is applicable and that we can detect the presence
of failures that are missed by regression testing alone. Automatic analysis of the set of violated association rules provides
valuable information for localizing faults in the SUT by directly pointing to the faulty method. This kind of information
cannot be found in the execution traces of failing tests.

Keywords
Software testing, test oracle, association rule mining, test oracle automation, machine learning methods in software testing

1. Introduction
Software testing is an essential activity for quality assur-
ance in software development process as it helps ensure
the correct operation of the final software [1]. However,
software testing has historically been recognised to be a
time-consuming, tedious, and expensive activity given
the size and complexity of large-scale software systems
[2]. Such cost and time involved in testing can be man-
aged through test automation. Test automation refers to
the writing of special programs that are aimed to detect
defects in the System Under Test (SUT) and to using these
programs together with standard software solutions to
control the execution of test suites. It is possible to use
test automation to improve test efficiency and effective-
ness.

Software testing, automated or not, has four major
steps: test case generation, predicting the outcomes of the
test cases, executing the SUT with the test cases to obtain
the actual outcome, and comparing the expected outcome
against the actual outcome to obtain a verdict (pass/fail)
[3]. In these steps there are two major challenges: find
effective test inputs, i.e., inputs that can reveal faults in

QuASoQ’20: 8th International Workshop on Quantitative Approaches
to Software Quality, December 1, 2020, Singapore
" duquet@ut.ee (A. Duque-Torres);
anastasiia.shalygina@gmail.com (A. Shalygina);
dietmar.pfahl@ut.ee (D. Pfahl); rudolf.ramler@scch.at (R. Ramler)
� 0000-0002-1133-284X (A. Duque-Torres); 0000-0003-2400-501X
(D. Pfahl); 0000-0001-9903-6107 (R. Ramler)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

the SUT, and determine what should be the correct output
after execution of the test cases. The second challenge
refers to the the test oracle problem. A test oracle is a
mechanism that determines the correct output of SUT
for a given input [4]. Although substantial research has
been conducted to provide test oracle automatically, apart
from model-driven testing, the oracle problem is largely
unsolved.

Motivated by the above, we developed a method to
derive test oracles based on information contained in
object state data produced during the execution of the
SUT. Object state data is the set of the values of all defined
attributes of an object at a certain point of time. We
assume that most programs have objects with a mutable
state, and the execution of methods can modify the state
of the program. The idea of using the state information
roots in the assumption that relations contained in the
state data when testing a new version of the SUT should
remain unchanged as compared to a previous version.

Our proposed method employs Association Rule Min-
ing (ARM). In our context, the purpose of ARM is to mine
interesting relations in the state data of the SUT. ARM is
an unsupervised machine learning (ML) method [5]. The
algorithms used in ARM attempt to find relationships or
associations between categorical variables in large trans-
actional data sets [6]. In particular, we were interested in
understanding whether the information provided by the
resulting model can help to verify the correct operation
of new versions of the SUT to which we normally apply
existing tests for regression testing. More specifically,
we wonder if we can detect and locate faults in new ver-

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

21

mailto:duquet@ut.ee
mailto:anastasiia.shalygina@gmail.com
mailto:dietmar.pfahl@ut.ee
mailto:rudolf.ramler@scch.at
https://orcid.org/0000-0002-1133-284X
https://orcid.org/0000-0003-2400-501X
https://orcid.org/0000-0001-9903-6107
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


sions of the SUT. We tackle our goal by answering the
following research questions:

RQ1: How effective is the rule mining approach?. This
research question investigates to what extent ARM is
able to detect failures.

RQ2:What information regarding fault localisation can
the method offer? This research question explores to what
extend the information contained in association rules
helps developers locate faults in the code.

In our experiments, we use the Stack Class of the Java
Collection framework as SUT. This class was chosen as
its state behaviour is well known and easy to manipulate.

2. Association Rule Mining
ARM is a rule-based unsupervised ML method that al-
lows discovering relations between variables or items
in large databases. ARM has been used in other fields,
such as business analysis, medical diagnosis, and census
data, to find out patterns previously unknown [6]. The
ARM process consists of at least two major steps: finding
all the frequent itemsets that satisfy minimum support
thresholds and, generating strong association rules from
the frequent derived itemsets by applying minimum con-
fidence threshold.

A large variety of ARM algorithms exist. [7]. In our
experiments, we use the Apriori algorithm from Python3
Efficient-Apriori library [8]. It is well known that the
Apriori algorithm is exhaustive, that is, it finds all the
rules with the specified support and confidence. In addi-
tion, ARM doesn’t require labelled data and is, thus, fully
unsupervised. Below we define important terminology
regarding ARM:

Itemset: Let 𝐼 ={𝑋, . . . , 𝑌, 𝑍} be a set of different
items in the dataset 𝐷. Itemset is a set of 𝑘 different
items.

Association rule: Consider a dataset 𝐷, having 𝑛
number of transactions containing a set of items. An
association rule exposes the relationship between the
items.

Support: The support is the percentage of transaction
in the dataset D that contains both itemsets X and Y. The
support of an association rule 𝑋 → 𝑌 :

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 → 𝑌 ) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪𝑌 ) = 𝑃 (𝑋 ∪𝑌 )
Confidence: The confidence is the percentage of trans-

actions in the database D with itemset X that also con-
tains the itemset Y. The confidence is calculated using
the conditional probability which is further expressed
in terms of itemset support: 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌 ) =
𝑃 (𝑌 |𝑋) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌 )/𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)

Lift: Lift is used to measure frequency 𝑋 and 𝑌 to-
gether if both are statistically independent of each other.
The lift of rule (𝑋 → 𝑌 ) is defines as 𝑙𝑖𝑓𝑡(𝑋 → 𝑌 ) =
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌 )/𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑌 ).

A lift value one indicates𝑋 and𝑌 appear as frequently
together under the assumption of conditional indepen-
dence.

3. Method
Figure 1 presents an overview of the method for rule-
mining based tests oracles generation. Overall, the pro-
posed method comprises two phases. Phase I is responsi-
ble for the ruleset generation, i.e., the rule mining part.
The output of this phase is the ruleset. Phase II is in
charge of applying the ruleset to the new SUT versions.
Thus, the output of this phase could be seen as a fault
report for new SUT versions. Below we describe them in
detail:

3.1. Phase I - Rule Set Generation
Phase I starts with the extraction of the state data. Then,
feature selection and encoding are performed so that
all the features become appropriate to use for the rule
mining. The features should be encoded as categorical if
there is a need. When all the required operations with
the raw data are performed, the state data from the first
version of SUT is received, and the rule mining process
starts. After that, one gets a set of rules. All the process
can be split into three main steps which are detailed
below:

Step 1.1 - State data acquisition: This step com-
prises two activities:

Activity 1.1.1 (Produce test) is responsible for the gen-
eration of tests. To perform this activity, we use Randoop
to generate unit tests automatically. Randoop is a popular
random unit test generator for Java1. Randoop creates
method sequences incrementally by randomly selecting
a method call to apply and using arguments from previ-
ously constructed sequences. When the new sequence
has been created, it is executed and then checked against
contracts. Two important parameters that we use in
our experiments are test limit and a random-seed. The
test limit parameter helps to limit the number of tests
in the test suite. The random seed parameter allows us
to produce multiple different test suites since Randoop
is deterministic by default. Therefore, these two param-
eters allow us to generate many test suites of different
size containing various test cases.

Activity 1.1.2 (Execute the test suite) is responsible for
state tracking and saving raw data. To track the states
of the SUT while running the test suite and save it to
the text file for later analysis, we built a special program
that helps to track and save the information of the state
of the SUT. We call this program Test Driver. The idea
behind the Test Driver is that the methods of the SUT

1https://randoop.github.io/randoop/

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

22



Figure 1: Overview of the method for rule-mining based test oracles generation

can be logically divided into two categories: methods
that change a state of the class instance of the SUT, and
methods that reflect the state. These methods are so-
called state methods. The test driver tracks and stores
the information returned by state methods if they are
called immediately after the test case execution. The
information is saved in a CSV file.

Step 1.2 - State data pre-processing: This data pre-
processing step is made up of three activities:

Activity 1.2.1 (Sorting, augmenting and cleaning) is re-
sponsible for ensuring that the data is correct, consistent
and useable. This activity has three main functions: sort,
aug, and clean. The sort function is responsible for sort-
ing the dataset based on the TestId and InstanceId, this is
done to find interesting sequences in the data, and be able
to model those sequences. When the dataset is ordered, it
is possible to add more information. e.g., it is possible to
add characteristics that indicate the previous state. This
is made trough aug function. The clean function removes
the rows that are no needed or inconsistent rows.

Activity 1.2.2 (Encoding) is in charge of preparing the
data according to the requirements of the rule mining
algorithm. For example, Apriori [9], which is the algo-
rithm used in this paper, works only with categorical
features. Thus, Activity 1.2.2 categorises and generalises
the numerical inputs into string representations.

Activity 1.2.3 (Feature selection) is an extra activity
which allows to explore the different performance of the
method when different features are used. For instance, in
this paper we used five different datasets which contain
different numbers of features.

Step 1.3 - Rule mining: This step is responsible for
generating the set of rules by using the Apriori ARM
algorithm.

3.2. Phase II
Phase II is in charge of applying the ruleset to the new
versions. Like Phase I, Phase II comprises three steps

Step 2.1 - State data acquisition: Unlike Step 1.1,
this step has only one activity, the test execution activity.
In phase one, we assume that the first version of the SUT
is correct; then, we build test suites using Randoop and
the test driver. In Step 2.1, the same tests generated in
Activity 1.1.1 are used to test the new versions of the
SUT.

Step 2.2 - State data pre-processing: This step per-
forms the same activities as Step 1.2 to prepare the state
dataset of the new SUT version.

Step 2.3 - Apply the ruleset to the new SUT version:
This step comprises three activities. Activity 2.3.1 is in
charge of comparing and selecting the rows that are exclu-
sively different from the first version of the SUT. Activity
2.3.2 removes duplicate rows. This is done for optimisa-
tion. If two or more rows are the same, then they will
have the same results.

Activity 2.3.3 (apply the ruleset against the new unique
rows) is responsible for applying the rule-set against the
new unique rows. A rule will have two sides, e.g., let’s
consider the rule (𝑋 → 𝑌 ), in this rule, 𝑋 is a left-hand
side (LHS) of the rule, and 𝑌 is a right-hand side (RHS).
The procedure for applying the ruleset against the new
unique rows works as follows: 𝑖) pick a rule from the
set of rules, 𝑖𝑖) use LHS, 𝑖𝑖𝑖) select values which match
LHS, 𝑖𝑣) check whether these values match the RHS, 𝑣)
save the values which don’t match, and 𝑣𝑖) repeat steps
𝑖− 𝑣 for every rule. In the end, we know that whenever
the state dataset contains values that violate rules, the
new version of the SUT is not correct. Since only those
rows in the state dataset corresponding to the modified
SUT that are different from rows in the state dataset
corresponding to the unmodified (correct) SUT have the
potential to violate rules, it makes sense to only analyze
the different rows.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

23



4. Results
The full set of data generated during our experiments
as well as all scripts can be found in our GitHub repo2.
In our experiment, we use the Stack Class of the Java
Collection framework as SUT. This class was chosen as
its state behaviour is well known and easy to manipulate.
The Stack implementation contain seven public methods:
push() which puts an item on the top of the stack, pop()
removes and returns an item from the top, clear() clears
the stack, peek() returns an item from the top of the stack
without deleting it, isEmpty() tests if stack is empty, size()
returns size of the stack and, finally, toString() returns a
string representation of the object.

The methods push(), pop() and clear() modify instances
of the Stack class when they are called. On the other hand,
peek(), isEmpty(), size() and toString() provide informa-
tion about the Stack object state when they are called
and, thus, peek(), isEmpty(), size() and toString() are state
methods. The test driver for Stack class creates an in-
stance of the Stack class and contains public methods
push(), pop() and clear() which call the original push(),
pop() and clear() using the instance of the Stack class. Ad-
ditionally, the driver implements peek(), isEmpty(), size()
and toString() but these methods are private. Further-
more, the driver has a method for writing states to the
CSV file. This method is used whenever push(), pop() or
clear() methods are called during test execution. This
set-up allows us to run Randoop test suite generation not
on the original Stack class but on the driver class, where
the public methods are the ones that modify the Stack
objects. Thus, only push(), pop(), and clear() methods are
called in the test sequences, and the state data captured
by peek(), isEmpty(), size() and toString() is saved to a
CSV file.

4.1. Phase I - Rule Set Generation
Step 1.1 - State data acquisition: Two different re-
ports are the output of this step, Test Report (pass / failed)
and State Report. The regression testing generates the
Test Report . Test Driver generates the State Report. The
State Report provides seven main features testID, intan-
ceID, size, isEmpty, peek_obj_type, pushInput, and called-
Method. The features testID and instanceID provide an
identification of the test generate by Randoop. One test
can have multiples instances. Thus, instanceID is the
identification of those instance belonging to the same
test. The feature size tells the size of the Stack, and is a
numerical feature. isEmpty feature contains the values
"True" or "False". isEmpty is "True" when the Stack is
empty, otherwise it will be "False". peek_obj_type tells us

2https://github.com/aduquet/Using-Rule-Mining-for-
Automatic-Test-Oracle-Generation

the element at the top of the Stack. calledMethod tells us
which method was called, i.e., push, pop, or clear.

Table 1
Summary of the support and lift metrics of the rule-set ex-
tracted from the Stack class data using ARM with different
number of feature

DS† NR∤ Support Lift
Max Mean Min Max Mean Min

FS-3 14 0.403 0.381 0.283 2.539 2.391 1.946
FS-4 36 0.337 0.273 0.225 2.539 2.475 2.243
FS-8 439 0.269 0.227 0.205 3.808 3.404 2.545
FS-9 676 0.305 0.231 0.201 4.392 3.237 2.169
FS-10 1450 0.279 0.225 0.203 4.404 3.492 2.442
†Data Set, ∤Number of rules

Step 1.2 - State data pre-processing: In this step, we
sorted the dataset based on the testID and intanceID, this
is done to find the sequence of Stack size, and be able
to model those sequences. When the dataset is ordered,
it is possible to add more information. For example, it
is possible to add characteristics that indicate the previ-
ous state. To distinguish from the original features, we
add a _𝑝 at the end of the feature name, this means "pre-
vious". Then, the previous states are named as: size_𝑝,
isEmpty_𝑝, peek_obj_type_𝑝, calledMethod_𝑝. Then, we
removed the unnecessary rows, this is, rows whit not
state information. For instance, the Test Driver writes a
rows with the name "Constructor" in the feature called-
Method which indicates that a new Stack was created.
This information it is not related to the state, thus, should
be dropped. Finally, we encoded the features should be
encoded as categorical if there is a need. In the context
of our data, we encoded the feature size, and size_𝑝 since
they are not categorical features.

We create five different datasets which contain dif-
ferent numbers of features. The created dataset are
named with the prefix 𝐹𝑆, which stands for Feature Se-
lection. To distinguish the different dataset, they have
been named with the number of characteristics that were
used, i.e., FS-X where X is the number of features. The
datasets created are the following: FS-3 comprises the
features size, isEmpty, and peek_obj_type. FS-4 contains
the features used in FS-3 plus called_Method. FS-8 com-
prises the features used in FS-4 and their previous val-
ues, which are size_𝑝, isEmpty_𝑝, peek_obj_type_𝑝, and
calledMethod_𝑝. FS-9 uses the FS-8 features and the fea-
ture pushIputh. Finally, FS-10 uses all the features.

Step 1.3 - Rule mining: We apply the Apriori algo-
rithm with minimal support and maximum confidence
thresholds, i.e., 0.2 and 1, to each dataset. Table 1 pro-
vides a comparison between the number of rules, support
and lift values for each dataset. As per Table 1, we can
observe that the average support ratio decrease when
the number of features used is increased. The average is
closer to the threshold value set up. Table 1 also shows

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

24



the number of rules that can be generated does not have
linear behaviour since it depends on the number of items
belonging to each feature. From Table 1 column lift, we
can observe that the lift ratio is increasing when the num-
ber of features used is increased. This is the opposite of
the support ratio. A lower lift ratio means that the prob-
ability of occurrence of a determinate rule is weak since
the LHS and RHS are near to be independent between
themselves.

4.2. Phase II
Step 2.1 - State data pre-processing: In this step, we
created new versions of the Stack class. We introduce
defects to the class under test. For example, in the
Stack class we use three state methods: peek(), size() and
isEmpty(). We modify each of them individually and also
make all possible combinations of these modifications.
Table 2 summarises the main modifications made to the
SUT, and it provides the meaning of the terminology
used to refers to the different version of the SUT. These
modifications are done on purpose and manually, as we
want to understand the potential of ARM to detect and
locate faults using the state information of the SUT.

Table 2
Summary of the modifications injected to the Stack class

Modification 𝑝𝑒𝑒𝑘() 𝑖𝑠𝐸𝑚𝑝𝑡𝑦() 𝑠𝑖𝑧𝑒()

Mod1−𝑝 ✓ – –
Mod2−𝑒 – ✓ –
Mod3−𝑠 – – ✓
Mod4−𝑝𝑒 ✓ ✓ –
Mod5−𝑝𝑠 ✓ – ✓
Mod6−𝑒𝑠 – ✓ ✓
Mod7−𝑝𝑒𝑠 ✓ ✓ ✓

Some of the modifications affect the state such that
it will be quite easy to detect that something is wrong.
For example, isEmpty() method is modified such that it
returns isEmpty=True in the cases when size of the Stack
class instance is 2 or 0. Thus, we would get an obviously
faulty state size="2.0", is_empty="true". The modification
of peek() will not return the object on the top of a Stack
class instance but the previous one in the cases when
stack size is greater or equal than 2. Modification of size()
would return incorrect size for the Stack class instances
that contain one or more objects. Thus, the states would
look like the correct ones, and the dataset would not
contain faulty-looking rows.

Step 2.2 - State data pre-processing: In this step, the
same process of Step 1.2 was performed on the new data.

Step 2.3 - Apply the rule-set to the new SUT ver-
sions: We applied the ruleset against the state data of
new versions by following the activities described in Sec-
tion 3.2.

4.3. RQ1: How effective is the rule
mining approach?

Table 3 summarises the not modified version and the
seven modifications of the Stack class regarding the re-
sults obtained by the regression test, columns Regression
test (pass / failed), and the information obtained during
the test execution generated by the Test Driver, i.e., the
State Data. We notice from Table 3 that some datasets
that correspond to modifications, e.g., Mod2−𝑒, Mod4−𝑝𝑒,
Mod6−𝑒𝑠, and Mod7−𝑝𝑒𝑠, do not have the same number
of rows as in the No-Mod dataset. This is because some
tests from the test suite are failed during the test execu-
tion the state in these cases will not be written to the CSV
file. When no tests from the suite are failed, all the states
will be written to the file. Therefore, the number of rows
will be equal to the Not-Mod data since we execute the
same test suite both for the Not-Mod and for the modified
data extraction, e.g., Mod1−𝑝, Mod3−𝑠, and Mod5−𝑝𝑠.

As Table 3 column "Regression test" shows, only four of
seven modifications have failed tests (Mod2−𝑒, Mod4−𝑝𝑒,
Mod6−𝑒𝑠, and Mod7−𝑝𝑒𝑠). We see that the number of
failed tests is the same for Mod2−𝑒 and Mod4−𝑝𝑒 datasets.
Also, the number of failed tests are the same for Mod6−𝑒𝑠

and Mod7−𝑝𝑒𝑠. The state data columns also shows the
same behaviour, but regarding the number of rows gen-
erated. The common aspect between all these datasets
is isEmpty method modification. In particular, Mod2−𝑒

and Mod4−𝑝𝑒 have 1452 failed test. The Mod4−𝑝𝑒 modi-
fication is the combination of the modified methods peek
and isEmpty. However, it seems that the regression test
spots the fault related to "isEmpty" only. Furthermore,
the Mod1−𝑝, which is the modification of Peek, none
regression tests failed. This fact confirms the regression
tests failed of Mod4−𝑝𝑒 are belonging to isEmpty modifi-
cation only.

Same as Mod1−𝑝, none regression test failed in
Mod3−𝑠. In this modification "size" method is modified.
The number of tests failed in Mod7−𝑝𝑒𝑠 and Mod6−𝑒𝑠

are different from Mod2−𝑒 and Mod4−𝑝𝑒. Are the regres-
sion tests spotting faults in the other modified methods, i.e.,
"peek" and "size" when combined in this way? The modi-
fication of size() returns the incorrect size for the Stack
class instances that contain one or more objects, i.e., when
the size of the Stack is greater than 0, the modification
would return the correct size plus one. For instance, if
the 𝑠𝑖𝑧𝑒 = 1, the modified version will return 𝑠𝑖𝑧𝑒 = 2.
That is why Mod6−𝑒𝑠 increase the number of failed tests
because the size modified method increases the number
of 𝑠𝑖𝑧𝑒 = 2, then triggers the modified isEmpty() when
the size of the Stack class is 2 or 0. From the Table 3
we can ask ourself, why the regression tests are failing
only in the isEmpty() method? When analysing in detail
the report provided by regression test, we can find that
during the execution of the test, there is an exception

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

25



Table 3
Summary of the no modified version and the seven modifications of the Stack class regarding the results obtained by the
regression test, and the information obtained during the test execution generated by the test driver

Dataset

Regression test State data

Pass Failed

Total Total
Total # of UR† Total # of new UR† Total # of new UR† that violate rules# of # of

rows new
rows FS-3 FS-4 FS-8 FS-9 FS-10 FS-3 FS-4 FS-8 FS-9 FS-10 FS-3 FS-4 FS-8 FS-9 FS-10

No-Mod 2037 0 71604 0 47 76 320 320 320 0 0 0 0 0 0 0 0 0 0
Mod1−𝑝 2037 0 71604 11882 45 73 232 308 398 28 43 97 166 189 0 0 0 38 38
Mod2−𝑒 585 1452 37786 6390 25 33 108 108 108 1 2 20 20 20 1 2 20 20 20
Mod3−𝑠 2037 0 71604 43405 47 76 320 320 320 46 74 237 237 237 0 0 19 19 19
Mod4−𝑝𝑒 585 1452 37786 7792 26 33 106 119 133 14 20 46 59 66 1 2 31 42 49
Mod5−𝑝𝑠 2037 0 71604 43405 44 73 232 308 398 44 71 156 232 279 0 0 19 50 57
Mod6−𝑒𝑠 25 2012 7160 5497 5 9 17 17 17 5 7 8 8 8 1 2 6 6 6
Mod7−𝑝𝑒𝑠 25 2012 7160 5497 3 7 14 16 17 3 5 6 8 8 1 2 4 7 7
†Unique rows

that checks if the Stack is empty or not. By making the
modification in the IsEmpty() method, we generate the
situation where the exception is generated, thus allow-
ing the test to not finish its execution and report it as a
failure.

Table 4
Percentage of new unique rows (among all-new unique rows)
that violate at least one rule

Dataset % of new unique rows that violate rules
FS-3 FS-4 FS-8 FS-9 FS-10

No-Mod - - - - -
Mod1−𝑝 0 0 0 22.89 20.11
Mod2−𝑒 100 100 100 100 100
Mod3−𝑠 0 0 8.02 8.02 8.02
Mod4−𝑝𝑒 7.14 10 67.39 71.19 74.24
Mod5−𝑝𝑠 0 0 12.18 21.55 20.43
Mod6−𝑒𝑠 20 28.57 75 75 75
Mod7−𝑝𝑒𝑠 33.33 40 66.67 87.50 87.5

In Table 3, the column "Total # of unique rows" indi-
cates that the number of unique rows increases when the
number of features increases. This is because by adding
more features, we increase the heterogeneity in the data.
The number of new unique rows refers to those rows
that are different from the unmodified SUT version. The
idea of using state information is based on the assump-
tion that the relationship in state when testing a new
version of the SUT must remain unchanged or must not
change significantly. Therefore, we can conclude that
the rows of the modified versions that are different from
the unmodified version are failures. Up to this point our
method is capable of detecting failures without the need
to use ARM.

We are interested in understanding whether the in-
formation provided by the resulting ARM model would
have confirmed the failure detection that is already given
when identifying new rows in the state dataset of a modi-
fied SUT. Therefore, we measured the proportion of rules
that are violated by new rows. In Table 3, the column
"Total # of new unique rows that violate rules" shows the

total number of new unique rows that violate at least one
rule. It turns out that only for the isEmpty() modification
always all rows also trigger a rule violation. It is less
often the case when other methods are modified (either
individually or in combination). Only when the largest
feature sets (FS-9 and FS-10) are used, there is always at
least one new row in the dataset that also violates at least
one rule. This result is weaker than what we can already
see by just looking at new rows but, recalling that none
of the regression tests failed when only methods size()
and peek() were modified, rule violations seem to occur
in a more balanced way. This let us hope that we might
be able to exploit this when answering research question
RQ2.

4.4. RQ2: What information regarding
fault localisation can the method
offer?

Regarding the first research question, we concluded that
failure detection effectiveness improves by comparing
state data even without using ARM. However, neither
analyzing the traces of failing tests (all of them failed
when executing the pop() nor inspecting the information
provided in the new unique rows provided any helpful in-
formation that would guide fault localization. Therefore,
we set our hopes in a systematic analysis of the rules that
are violated by new unique rows.

As a starting point for fault localization, it is necessary
that at least one rule be violated by at least one new
single row. Table 5 summarises the total number of rules
generated per dataset, and the number of rules violated
among all the rules generated. As Table 5 shows, from FS-
8 to FS-10, more than a hundred rules need to be analysed
to be able to localise the fault. To reduce and optimize
the number of rules, we construct a rule hierarchy. Let
us consider the following set of rules: (i) 𝐴,𝐵,𝐶 → 𝐷
(ii) 𝐴,𝐵 → 𝐷 (iii) 𝐶,𝐵 → 𝐷, and (iv) 𝐶 → 𝐷. The
rule (i) contains the same items of rules (ii), (iii), (iv) in
implicitly. Therefore, having only rule (i) is sufficient for

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

26



Table 5
Total number of rules generated per-each dataset, and the number of rules violated among all the rules generated

DS RG† Total # of rules Violated (the row match with LHS but NOT with RHS)
Mod1−𝑃 Mod2−𝑒 Mod3−𝑠 Mod4−𝑝𝑒 Mod5−𝑝𝑠 Mod6−𝑒𝑠 Mod7−𝑝𝑒𝑠

RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆

FS-3 14 0 0 3 - 0 0 3 - 0 0 3 - 3 -
FS-4 36 0 0 4 - 0 0 4 - 0 0 4 - 4 -
FS-8 439 0 0 73 16 95 95 73 56 95 95 113 98 113 98
FS-9 676 12 10 142 61 95 95 224 191 307 297 297 269 297 272
FS-10 1450 12 10 224 65 285 285 236 191 297 397 314 269 325 272
†Rules generated, ⊥ Number of rules violated ⋆ Optimal set of rules

interpretation purposes.
Once the number of rules is reduced, we can analyse

them more efficiently. The key to being able to anal-
yse the set of rules violated is to answer the follow-
ing question: Which item is violating the rule?; A rule
violation occurs when some items in a row match the
LHS of the rule, but at least one items in the same row
do not match the RHS of the same rule. Based on the
above, the item that generate the violation of the rule
must be present more frequently in the RHS than in
the LHS of the set of violated rules. Then, to locate the
fault, we quantify the occurrence of the main methods in
the LHS with respect to their occurrence in RHS. If the
𝐿𝐻𝑆/𝑅𝐻𝑆 ratio approaches zero, the fault has been
located. Let’s consider Table 6 the set of rules violated
by Mod1−𝑝 of FS-9, the total number of rules violated
are 10. Please note the following nomenclature: A: peek,
B: isEmpty, C: size. D: calledMethod, and E: inputPush.
Let’s compute the relation 𝐿𝐻𝑆/𝑅𝐻𝑆 per each item,
i.e., A, B, D and E. 𝐴 = 3/7 = 0.428, 𝐵 = 2/2 = 1,
𝐷 = 6/2 = 3, and 𝐸 = 6/3 = 3. The value closest
to zero is 𝐴 = 3/7 = 0.428, which corresponds to the
peek method. We can conclude that the fault has been
located, and that it corresponds to the peek method.

Table 7 reports modifications located using our ap-
proach. According to the results shown in the table, six
out of seven modifications could be located when using
nine or ten features. An interesting aspect that stands
out from the results is the localization of the modifica-
tions where the isEmpty method is involved. When using

Table 6
Set of violated rules of Mod1−𝑝 with FS-9

LHS RHS

D = push, E = objType A = objType
E = objType D = push, A = objType
B = True, E = objType A = objType
D = push B = True, A = objType
D = push, B = False, E = objType A = objType
E = objType D = push, B = False, A = objType
D = push, A = objType E = objType
D = push, B = False, A = objType E = objType
D = push, A = objType E = objType, B = False
E = objType A = objType

Table 7
Fault localised using ARM approach

Modification Modification localised by ARM
"Bug" FS-3 FS-4 FS-8 FS-9 FS-10

Mod1−𝑝 ✗ ✗ ✗ 𝑝 𝑝
Mod2−𝑒 - 𝑒 𝑒 pushInput pushInput
Mod3−𝑠 ✗ ✗ 𝑠 𝑠 𝑠
Mod4−𝑝𝑒 ✗ 𝑒 method 𝑝 𝑝
Mod5−𝑝𝑠 ✗ ✗ 𝑠 𝑠 𝑠
Mod6−𝑒𝑠 - 𝑒 𝑠 𝑠 𝑠
Mod7−𝑝𝑒𝑠 - 𝑒 𝑠 𝑠 𝑠

fewer features, e.g., FS-4, the isEmpty modification is al-
ways located, which is not the case when using more
features.

Note that our method can only point out one fault
per analysis. Therefore, one must apply the analysis
repeatedly. Once a fault has been located, it must be
removed, the tests must be run again, and if there are
still new unique rows in the state dataset, we must try to
spot the next fault. Thus, if we had started out with the
case where all three methods were modified, and we had
used models with 8, 9, and 10 features, we would have
first located the fault in (with all feature sets), then in
peek() (with FS-9 and FS-10), and then in isEmpty() (with
FS-8).

5. Threats to Validity
In the context of our proof-of-concept validation, two
types of threats to validity are most relevant: threats to
internal and external validity.

With regards to internal validity, it is not fully clear in
which situations the iteratively applied heuristic that we
propose to localize faults is successful, i.e., points to a rule
element that carries useful information. It is clear that
our method only can capture behaviour of the program
that has not been changed and, thus, behaves equal at
the level of granularity at which we capture object states.
In addition, our positive results might depend on the
number and type of faults injected. A more systematic
and more comprehensive analysis is required to explore
the limitations of our method with regards to both failure
exposure and fault localization.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

27



With regards to external validity our study is rather
limited since we only use one well-understood class in
our experiments. Thus, the actual scope of effectiveness
of our proposed method for object-oriented programs is
yet to be determined.

6. Related Work
A good overview of methods proposed to automatically
generate test oracles can be found in [2] and [4]. As
far as we know, ARM has not yet been used for this
purpose by other researchers. A field that has recently
received attention in the context text oracle generation
is metamorphic testing as metamorphic relations can be
used as test oracles[10].

7. Conclusion
We presented a new ARM-based method for the detection
and localization of faults using the state data from SUT
executions. In our proof-of-concept, we used the Stack
class from the Java collection framework as the SUT. To
test our method, we generated seven faulty versions of
the SUT. The results obtained have shown that our ap-
proach is capable of detecting failures and locating faults.
The ARM-approach mainly benefits fault localization.

An advantage of our method is that our method tested
not on the SUT with only integer inputs and outputs but
on the class under test where we can have any type of
inputs, and the state data consequently is also of mixed
types of data. Thus, our method can be generalized for
inputs of any type, not only for integers. It removes some
limitations on the type of SUT that can be analyzed.

One of the weaknesses of our method is the need of
a test driver that we use to extract state data during the
test suite execution. To generate the test driver for the
SUT, we have to identify the state extracting methods
manually. For efficiency reasons, it would be better to
have an automatic identification of state extracting meth-
ods. Unfortunately, there is no simple way to do this.
Also, in the case of the manual identification, for some
classes, it may not be so clear what methods should be
marked as state extracting methods.

Given the limitations of our study, more experiments
have to be conducted to empirically test our proposed
method for fault detection and localization. We are cur-
rently focusing on extending our experiments in two
directions. First, we will add more kinds of fault injec-
tions to test the sensitivity of our method with regards to
the type of faults in a program. We will systematize this
by using mutation. Second, we will apply our proposed
method to more classes in the Java collections framework
and beyond.

Acknowledgments
This research was partly funded by the Estonian Center
of Excellence in ICT research (EXCITE), the IT Academy
Programme for ICT Research Development, the Austrian
ministries BMVIT and BMDW, and the Province of Up-
per Austria under the COMET (Competence Centers for
Excellent Technologies) Programme managed by FFG,
and by the group grant PRG887 of the Estonian Research
Council.

References
[1] T. M. Abdellatif, L. F. Capretz, D. Ho, Software ana-

lytics to software practice: A systematic literature
review, in: 2015 IEEE/ACM 1st Int’l Workshop on
Big Data Software Engineering, 2015, pp. 30–36.

[2] R. Braga, P. S. Neto, R. Rabêlo, J. Santiago, M. Souza,
A machine learning approach to generate test or-
acles, in: Proc. of the XXXII Brazilian Symp. on
Softw. Eng., SBES ’18, Association for Computing
Machinery, New York, NY, USA, 2018, p. 142–151.

[3] K. Patel, R. M. Hierons, A partial oracle for uni-
formity statistics, Softw. Quality Journal 27 (2019)
1419–1447.

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz,
S. Yoo, The oracle problem in software testing: A
survey, IEEE Trans. on Softw. Eng. 41 (2015) 507–
525.

[5] L. Zhou, S. Yau, Efficient association rule mining
among both frequent and infrequent items, Com-
puters and Mathematics with Applications 54 (2007)
737 – 749.

[6] S. K. Solanki, J. T. Patel, A survey on association
rule mining, in: 2015 Fifth Int’l Conf. on Advanced
Computing Communication Technologies, 2015, pp.
212–216.

[7] R. Agrawal, R. Srikant, Fast algorithms for mining
association rules in large databases, in: Proc. of the
20th Int’l Conf. on Very Large Data Bases, VLDB ’94,
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1994, p. 487–499.

[8] G. McCluskey, Efficient-apriori documentation,
2018.

[9] A. Bhandari, A. Gupta, D. Das, Improvised apriori
algorithm using frequent pattern tree for real time
applications in data mining, Procedia Computer
Science 46 (2015) 644 – 651.

[10] B. Zhang, et al., Automatic discovery and cleans-
ing of numerical metamorphic relations, in: Proc.
35th IEEE International Conference on Software
Maintenance and Evolution (ICSME 2019), 2019, pp.
235–245.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

28


	1 Introduction
	2 Association Rule Mining
	3 Method
	3.1 Phase I - Rule Set Generation
	3.2 Phase II

	4 Results
	4.1 Phase I - Rule Set Generation
	4.2 Phase II
	4.3 RQ1: How effective is the rule mining approach?
	4.4 RQ2: What information regarding fault localisation can the method offer?

	5 Threats to Validity
	6 Related Work
	7 Conclusion

