
Evaluating the Impact of Inter Process Communication
in Microservice Architectures
Benyamin Shafabakhsha, Robert Lagerströmb and Simon Hacksb

aSchool of Electrical Engineering and Computer Science,
KTH Royal Institute of Technology,
Stockholm, Sweden
bDivision of Network and Systems Engineering,
KTH Royal Institute of Technology,
Stockholm, Sweden

Abstract
With the substantial growth of cloud computing over the past decade, microservice architectures have gained significant
popularity and have become a prevalent choice for designing cloud-based applications. Microservices based applications are
distributed and each service can run on a different machine. Due to its distributed nature, one of the key challenges when
designing applications is the mechanism by which services communicate with each other. There are several approaches
for implementing inter process communication (IPC) in microservices; each comes with different advantages and trade-offs.
While theoretical and informal comparisons exist between them, this paper has taken an experimental approach to compare
and contrast the popular forms of IPC communications. Several load test scenarios have been executed to obtain quantitative
data related to performance efficiency, and availability of each method. The evaluation of the experiment indicates that,
although there is no universal IPC solution that can be applied in all cases, the asynchronous pattern offers various advantages
over its synchronous rival.

Keywords
Microservices, Inter Process Communication, IPC, Inter-Service Communication, Distributed Systems, gRPC, RabbitMQ

1. Introduction
Over the past few years, microservices have earned
enormous attention and gained popularity from the in-
dustry. They helped large organisation such as Ama-
zon and Netflix to serve millions of requests per min-
utes [1]. Microservice architecture is a style of devel-
oping software as a collection of independent services.
Each service is running on its own process that is in-
dependent from other processes and can be deployed
separately from other services [2]. Designing a soft-
ware based on microservices involves answering ques-
tions and overcoming technical challenges that often
do not exist in monolithic architecture, like inter pro-
cess communication (IPC) [3], service discovery [4],
decomposition strategy [5], or managing ACID trans-
actions [6].

Despite the growth and importance of microser-
vices in industry, there has not been sufficient research
on microservices, partly due to lacking a benchmark
system that reflects the characteristics of industrial mi-

Woodstock’20: Symposium on the irreproducible science, June 01–05,
2020, Woodstock, NY
email: bensha@kth.se (B. Shafabakhsh); robertl@kth.se (R.
Lagerström); shacks@kth.se (S. Hacks)
orcid: 0000-0003-3089-3885 (R. Lagerström); 0000-0003-0478-9347
(S. Hacks)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

croservice systems [7]. IPC is one of the important
challenges of microservice architectures [8]. In mono-
lithic based systems, components can call each other
at the language-level while in microservices each com-
ponent is running on its own process and possibly on
a different machine than other services. The choice
of IPC mechanism is an important architectural deci-
sion which can impact the software’s non-functional
requirements [8].

As of today, there are no concrete explanations or
any standardized approach that can help to decide the
right IPC method when designing microservice based
applications. Due to this reason, there is an abun-
dant confusion around the question of when to use
which method and what are the trade-offs for choos-
ing that method. Deciding between a synchronous and
asynchronous approach is an important decision to
take in regards to how services collaborate with each
other [9].

There are two questions this paper is working to-
wards answering:

1. From performance efficiency standpoint, what
are the implications for utilizing available
synchronous and asynchronous methods for im-
plementing IPC in microservice architectures?

2. How does the IPC method choice impact avail-
ability of the system?

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

55

mailto:bensha@kth.se
mailto:robertl@kth.se
mailto:shacks@kth.se
https://orcid.org/0000-0003-3089-3885
https://orcid.org/0000-0003-0478-9347
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


The motive behind selecting the performance effi-
ciency, and availability as the two criteria for this re-
search is that the choice of IPC method directly im-
pacts these two non-functional requirements in a mi-
croservices based system, while other non-functional
requirements such as security [10] and maintainabil-
ity [11] can span over few other areas and goes beyond
IPC. Being able to measure these qualities in the sys-
tem are critical in order to achieve an efficient manage-
ment of any software system [12, 13]. Moreover, the
chosen quality attributes are among the top priorities
for most modern applications [14, 15].

In this work, we describe a systematic approach for
selecting IPC method when designing microservices
based software. The remainder of this paper focuses
on state of the art in identifying different IPC models
in section 2. Next, in section 3, we discuss the develop-
ment of the prototypes built for the purpose of discov-
ering the relationship between each IPC method and
its impact on performance efficiency and availability.
We then run a test against each prototype to investi-
gate its outcome and discuss previous work conducted
in this domain. Finally, we draw a conclusion in sec-
tion 6.

2. State of the Art
When designing IPC mechanism, there are two type
of interaction style to choose from: synchronous and
asynchronous, which we will shortly introduce next.

2.1. Synchronous Communication
Synchronous communication is often regarded as re-
quest/response interaction style. One microservice
makes a request to another service and waits for the
services to process the result and send a response back.
In this style, it is common that the requester blocks its
operation while waiting for a response from the re-
mote server. Representational state transfer (REST)
application programming interfaces (API) [16] and
gRPC1 are the most common framework for imple-
menting Synchronous form of communication in mi-
croservices [8].

• REST API: REST is an architectural style that is
commonly used for designing APIs for modern
web services [17]. In a system that uses REST
API for its IPC communication, each service
typically has its own web-server up and run-
ning on a specific port such as 8080 or 443, and

1https://grpc.io

each service exposes a set of endpoints to enable
the interactions with other microservices and
exchange of information between them. The
server interacts directly with client through its
interface also known as Web API.

• gRPC: gRPC is an open source high perfor-
mance RPC framework designed an developed
by Google. Remote procedure call (RPC) is a
mechanism used in many distributed applica-
tions to facilitate inter process communication.
RPC was first implemented by Birrell and Nel-
son [18] and it has been regarded as a proto-
col that enables a message exchange between
two process with characteristics of low over-
head, simplicity and transparency [19]. By de-
fault, when a client sends a request to a server
it halt the process and waits for the results to be
returned. RPC is therefore considered as synch-
ronous form of communication [20]. Figure 1
presents the operational process between client
and server in gRPC. In this model, the client im-
plements the same method as its correspond-
ing server through local objects also known as
stubs.

2.2. Asynchronous Communication
The asynchronous form of communication can be im-
plemented in microservices when services exchange
messages with each other through a message broker.
In this form of interaction, the message broker acts as
an intermediary between services to coordinate the
request and responses [8]. One of the fundamental
differences in asynchronous communication as com-
pared to the synchronous mode is that in asynchro-
nous communication the client no longer makes a di-
rect call to the server and expect an immediate answer.
Instead, other services subscribe to the same broker to
pick-up the available requests and process them fur-
ther before placing them back to the message queue.

Figure 2 provides an example of the asynchronous
pattern. In this sample, when a new order is created,
the customer service publishes a request to the bro-
ker with some metadata such as customer id, customer
email address, etc. Other services such as loyalty, post,
and email service subscribe to that broker and take the
request from there without having to communicate
with Customer service directly.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

56

https://grpc.io


Figure 1: gRPC architecture [21].

Figure 2: High-level architecture of Asynchronous pattern
[9].

3. Implementation
To identify the quality attributes of each IPC method,
we have designed and developed a set of microservices
for an e-commerce scenario. In this scenario, the goal
is to simulate fetching all the information required
to display a product page of an e-commerce website.
A client requests a product page to be displayed on
his/her device and behind the scenes the following mi-
croservices work together to serve that request:

• Product Information Service: This microser-
vice is responsible for fetching the primary
metadata associated with the requested prod-
uct. Information such as product name, price,
description, color, and image are stored in this
microservice database.

• Product Review Service: This microservice is
responsible for fetching the customer reviews

associated with the requested product from its
database.

• Product Recommendation Service: This mi-
croservice is responsible for fetching the prod-
uct recommendations based on the requested
productId from its database.

• Product Shipping Service: This microservice
is responsible for fetching available shipment
options and the delivery estimates based on the
given product from its database.

• Customer Shopping Cart Service: This mi-
croservices is responsible for fetching the exist-
ing items in the customer’s shopping cart in or-
der to display them to the customer.

All the microservices have been developed using
NodeJS2. A non-relational database system, Mon-
goDB3, has been used as the database solution for all
the microservices except for the service responsible for
providing shipment information. Due to the nature
of data required by shipping service, the shipping ser-
vice uses MYSQL4. Docker5 has been utilized to con-
tainerize all the microservices. In order to run the test
system, the services have been deployed to Microsoft
Azure Kubernetes Cluster Service6. Table 1 shows the

2https://nodejs.org/en/
3https://www.mongodb.com/
4https://www.mysql.com/
5https://www.docker.com/
6https://azure.microsoft.com/sv-se/services/kubernetes-

service/

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

57



Table 1
Kubernetes Cluster specification of the test system.

Instance Type Azure DS2-v2
vCPU 2
Memory 7 GiB
Storage 8 GiB, SSD, 6400 IOPS
Kubernetes Version 1.14.8
Node Count 3

hardware specification of the testing system used for
this research.

In the synchronous mode both REST API, and gRPC
have an identical architecture; in both methods, there
is a direct communication between API Gateway7 and
each microservice. Each microservice acts as server,
and the API Gateway acts as a client of those server.
The key difference between REST API and gRPC is the
underlying communication protocol as well as the for-
mat of the messages they exchange. gRPC has adopted
protocol buffer8 as its proprietary message format,
while the REST API uses JSON [22] format to exchange
data.

The asynchronous architecture uses RabbitMQ as
message broker. In this pattern, the communication
between API gateway and other services does not take
place directly, rather it goes through a mediator also
known as message queue. In both synchronous and
asynchronous methods, the API Gateway is the entry
point to the system, which receives a request with spe-
cific product id from client’s device such mobile app or
web browser over HTTPS protocol. The gateway then
communicates back and forth with each microservice
depending on the IPC method the system uses.

4. Results and Evaluation

4.1. Performance Efficiency
Three test cases have been designed and executed us-
ing Apache JMeter9. All test cases aim to measure
the throughput of each IPC method. Throughput is
an essential attribute for calculating performance effi-
ciency. In all three test experiments, the test duration
was 180 seconds, while the number of concurrent vir-
tual users that continuously send requests to the sys-
tem and wait for response has been varied. The motive
behind having test duration as a constant variable and
number of virtual users as the controlled variable is

7https://microservices.io/patterns/apigateway.html
8https://developers.google.com/protocol-buffers
9https://jmeter.apache.org/

to understand how each IPC method reacts differently
when the concurrent requests and traffic to the system
increase or decrease.

Throughput is calculated by the total number of re-
quests and responses the method managed to make
within the specified duration of 180 seconds; the
higher the number, the higher the throughput and the
better it is.

The results are presented in figure 3. The data in-
dicates that gRPC has outperformed REST API, and
RabbitMQ in the first case with 50 users by being
able to process 43 requests higher than REST API, and
147 requests more than RabbitMQ; this signifies that
synchronous form of communication can offer higher
throughput than the asynchronous method in the sit-
uation when the load to the system is relatively low.
Meanwhile, the result of the first case also reveals
that synchronous form of communication can process
requests slightly faster than asynchronous form and,
therefore, has lower latency when the number of con-
current threads10 in the system is low.

The second case has double the number of virtual
users as compared to the first one. Increasing the num-
ber of virtual users causes the number of concurrent
threads in the system to grow and results in longer
processing time. The same data imply that gRPC has
the highest throughput by processing a higher num-
ber of requests compared to RabbitMQ and REST API;
however, the gap between gRPC and RabbitMQ is now
more narrowed than in the first case. In this test, gRPC
managed to score the best average response time than
REST API and RabbitMQ by 200 milliseconds. The
processing time between REST API and RabbitMQ are
equal to each other; however, RabbitMQ managed to
process extra 25 requests than its synchronous rival.

The number of virtual users in the third case has
increased four times as compared to the first case.
The outcome of the third testing experiment im-
plies considerable difference between synchronous
versus asynchronous form of communication both in
throughput and latency when the number of paral-
lel requests increases. In this test, asynchronous form
of communication using RabbitMQ has outperformed
the other two methods by being able to process a
total of 4480 requests within the given period while
gRPC managed to process 132 requests lower than
RabbitMQ, and REST API processed 146 less requests
than its asynchronous rival. What makes the asynch-
ronous pattern to operate better in the third test case
is that, in asynchronous form the performance decline
take place more gradually while in the synchronous

10Each virtual user occupies one thread in the system.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

58



Figure 3: Throughput comparison.

pattern the performance begins to drop radically as
soon as the load to the system intensifies.

4.2. Availability
There are variety of parameters that can affect avail-
ability of a system –even hardware components can
play a role in determining the availability rate of a sys-
tem. For this measurement, all the parameters out-
side IPC has been ignored. The availability of each
IPC method has been calculated by using the following
equation [23]:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇 𝑇𝐹

𝑀𝑇 𝑇𝐹 +𝑀𝑇 𝑇𝑅
,

with MTTF standing for "Mean Time to Failure," and
MTTR for "Mean Time to Recovery." MTTF represents
the duration that the system is expected to last in op-
eration before failure occurs. In contrast, MTTR rep-
resents the duration the system requires to return to
operation after a failure has occurred. The higher the
MTTR, the longer it takes for the system to recover
from a failure, which consequently reduces the avail-
ability of the system.

Based on this formula, three other tests were exe-
cuted using Apache Jmeter against all the three differ-
ent IPC methods to discover which one offers higher
availability. Unlike the previous test cases that had a
fixed duration, these test cases had no specific dura-
tion. They ran as long as the services became unavail-
able due to the high number of requests coming to the
system. Further, in this test, the average response time,

and the number of requests/responses were not been
tracked since they do not contribute to determining
the availability of the method. The first case ran with
200 virtual users, the second with 300 virtual users,
and third with 400 virtual users. Without having a
high number of parallel users measuring availability
becomes more challenging as the system remains op-
erational for a significantly longer duration.

Figure 4 provides a summary of the conducted tests.
During the first test, it took about seven minutes for
the services to become unavailable using RabbitMQ,
while gRPC went down after about five minutes, and
the REST API took approximately four and a half
minutes. These numbers were then dropped in each
method in the subsequent tests as the number of par-
allel requests were doubled. After the services became
unavailable, the Kubernetes cluster has been manu-
ally restarted. From that moment, both gRPC and
REST API took about 20 seconds only to become avail-
able again, while RabbitMQ took ten extra seconds.
The main reason behind RabbitMQ taking longer than
synchronous form to return back to operation is the
fact that it has an extra component known as a mes-
sage broker that requires to be refreshed and establish
a new connection with each service. From this exper-
iment, it is possible to infer that an asynchronous ap-
proach offers higher availability than its synchronous
opponents.

Consequently, if microservices use a synchronous
based communication both client and server must be
responsive at all time, otherwise the request will fail
after a specific duration depending on the configura-

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

59



Figure 4: Availability comparison.

tion. In contrast, a temporary outage of the server in
an asynchronous setting causes minimal to no impact
to the consumer, since the consumer is loosely coupled
with the server. The requests can stay in the message
queue and be processed at the later timing when the
server is back to operation. The asynchronous pattern
offers capabilities that can help the system to improve
its availability and resiliency from outage. It allows
continuous operation even if there is a failure in one of
the system’s components without compromising the
availability of the entire system.

4.3. Discussion and Threats to Validity
In addition to the two non-functional requirements
that have been evaluated throughout this work, it is
important to take into account the functional require-
ments for which microservices are being developed
for. It is essential to distinguish whether the scenario
requires an immediate response back from services or
not. To elaborate further on this, in the proof of con-
cept scenario that was built during this work, display-
ing a product page for an e-commerce was simulated.
In this scenario, the client sends a request to load the
product page and expects an immediate result back.
The result of the request can either be the product page
or an error that indicating the request was failed. The
key point in this scenario is that the client expects an
immediate result. In such scenarios the synchronous
form of communication can be more suitable as these
scenarios cannot take advantage of the features that
an asynchronous form can offer.

Furthermore, our research incorporates some

threats to validity. First, we performed our experi-
ments just with single technologies as representatives
for certain principles (synchronous vs. asynchro-
nous). Therefore, our results can just indicate certain
advantages of these principles. Second, we simulated
no complete system but just a small part of a bigger
system, e.g., there is no communication between the
microservices during our requests. However, this
ensures that we are not testing other effects, but
only the interaction between the gateway and the
microservices. Third, we were using technologies that
are highly configurable, thus a completly different
configuration could lead to other results. However, as
we just changed configurations where necessary, we
assume that others can reproduce our results, espe-
cially as they are in accordance with our theoretical
expectations.

5. Related Work
Sufficient work has been done to benchmark the per-
formance of microservices, and compare and contrast
it with other architectures such as service oriented ar-
chitecture (SOA) [24], or with the monolithic architec-
ture [25, 26, 27, 28, 29].

Ueda et al. [30] conducted research at IBM that
aimed to design an infrastructure that is optimized for
running microservice architectures. The team built
two versions of the sample application. One based on
monolithic and the other based on microservices. The
team discovered a significant performance overhead
and higher hardware resource consumption in the mi-

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

60



croservices version of the application as compared to
monolithic one. The paper has marked poor design
of process communication in microservice architec-
tures as one of the significant performance degrada-
tions, and, therefore, unleashed the potential for fur-
ther research and improvements in this topic. The pa-
per has also pointed out that network virtualization
techniques, which are often used in a microservice ar-
chitectures, is another non-negligible reason behind
the performance gap of monolithic versus microser-
vice architecture. The paper, however, has not pre-
scribed any specific solution or suggestion as to how
to overcome these challenges but rather pointed out
the potential future work for it.

Fernandes et al. [31] compared REST API per-
formance versus advanced message queuing proto-
col (AMQP) [32], which is one of the protocols used
in message-based communication that falls under
asynchronous category. The study has been done by
measuring the averaged exchanged messages for a pe-
riod of time using the REST API and AMQP. The au-
thors performed the experiments by setting up two in-
dependent software instances that constantly received
messages for a 30 minutes period with an average 226
request per second. Each instance processed the re-
ceived input message and stored them into a persis-
tent database. After executing the experiments, the
authors concluded that for scenarios where there is a
need to receive and process-intensive amount of data,
AMQP performs far better than REST API as it has
a better mechanism for data loss prevention, better
message organization, and utilize lower hardware re-
sources.

In contrast to Fernandes et al., check we in our work
the behavior of the systems with different loads. We
recognize that synchronous approaches perform good
with low loads while asynchronous approaches scale
better at higher loads.

Meanwhile, Dragoni et al. [28] have conducted a
migration for a real-world mission-critical case study
in the banking industry by transforming a monolithic
software into a microservice architecture. They ob-
served how availability and reliability of the system
changed as a result of the new architecture. The so-
lution consists of decomposing several large compo-
nents to which some of them requires to communicate
with third-party services. The services in the new ar-
chitecture use message-based asynchronous commu-
nication as its IPC model to exchange data with each
other. The authors believe that aiming to have a simple
and decouple integration between services and follow-
ing principle to handler failure will eventually lead to
higher reliability in microservice architecture.

Further, the authors argue that microservice archi-
tectures lead to a higher availability as the new system
is broken down into several components and decou-
pled from each other, which makes it possible to load-
balance individual services as needed. This was par-
ticularly not possible in the legacy monolithic based
system. At the same time, the new architecture of-
fers higher reliability and can better cope with fail-
ures. This is due to the fact that in the new system the
communication relies on a message-broker that can be
configured to ensure all messages get delivered even-
tually.

6. Conclusion
When developing a microservices based system, the
choice of IPC method is an important decision to
make. In this paper, we compared synchronous and
asynchronous IPC methods with regards to perfor-
mance efficiency and availability. The outcome of
our evaluation indicates that on average asynchro-
nous approach provides better performance efficiency
and higher availability. We also discussed a scenario
where synchronous methods are more suitable to be
utilized. Therefore, both synchronous and asynchro-
nous type of communication has to be adopted accord-
ing to the functional and non-functional requirements
of the specific components.

References
[1] J. Thönes, Microservices, IEEE software 32 (2015)

116–116.
[2] D. Namiot, M. Sneps-Sneppe, On micro-services

architecture, International Journal of Open In-
formation Technologies 2 (2014) 24–27.

[3] L. L. Peterson, N. C. Buchholz, R. D. Schlicht-
ing, Preserving and using context information
in interprocess communication, ACM Trans.
Comput. Syst. 7 (1989) 217–246. doi:10.1145/
65000.65001.

[4] S. Haselböck, R. Weinreich, G. Buchgeher, Deci-
sion guidance models for microservices: service
discovery and fault tolerance, in: Proceedings of
the Fifth European Conference on the Engineer-
ing of Computer-Based Systems, 2017, pp. 1–10.

[5] J. Fritzsch, J. Bogner, A. Zimmermann, S. Wag-
ner, From monolith to microservices: A clas-
sification of refactoring approaches, in: J.-M.
Bruel, M. Mazzara, B. Meyer (Eds.), Software En-
gineering Aspects of Continuous Development

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

61

http://dx.doi.org/10.1145/65000.65001
http://dx.doi.org/10.1145/65000.65001


and New Paradigms of Software Production and
Deployment, Springer International Publishing,
Cham, 2019, pp. 128–141.

[6] C. K. Rudrabhatla, Comparison of event choreog-
raphy and orchestration techniques in microser-
vice architecture, Int J Adv Comput Sci Appl 9
(2018) 18–22.

[7] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji,
W. Zhao, Poster: Benchmarking microservice
systems for software engineering research, in:
2018 IEEE/ACM 40th International Conference
on Software Engineering: Companion (ICSE-
Companion), IEEE, 2018, pp. 323–324.

[8] C. Richardson, Microservices patterns: with ex-
amples in Java, Manning Publications, 2019.

[9] S. Newman, Building microservices : designing
fine-grained systems, first edition.. ed., 2015.

[10] P. Johnson, D. Gorton, R. Lagerström, M. Ekst-
edt, Time between vulnerability disclosures: A
measure of software product vulnerability, Com-
puters & Security 62 (2016) 278–295.

[11] R. Lagerström, P. Johnson, M. Ekstedt, Architec-
ture analysis of enterprise systems modifiability:
a metamodel for software change cost estima-
tion, Software quality journal 18 (2010) 437–468.

[12] P. Närman, P. Johnson, R. Lagerström, U. Franke,
M. Ekstedt, Data collection prioritization for sys-
tem quality analysis, Electronic Notes in Theo-
retical Computer Science 233 (2009) 29–42.

[13] M. Ekstedt, U. Franke, P. Johnson, R. Lagerström,
T. Sommestad, J. Ullberg, M. Buschle, A tool
for enterprise architecture analysis of maintain-
ability, in: 2009 13th European Conference on
Software Maintenance and Reengineering, IEEE,
2009, pp. 327–328.

[14] U. Franke, M. Ekstedt, R. Lagerström, J. Saat,
R. Winter, Trends in enterprise architecture
practice–a survey, in: International Workshop
on Trends in Enterprise Architecture Research,
Springer, 2010, pp. 16–29.

[15] P. Johnson, R. Lagerström, P. Närman, M. Simon-
sson, Extended influence diagrams for system
quality analysis, Journal of Software 2 (2007) 30–
42.

[16] R. T. Fielding, R. N. Taylor, Architectural styles
and the design of network-based software ar-
chitectures, volume 7, University of California,
Irvine Irvine, 2000.

[17] M. Masse, REST API Design Rulebook: Design-
ing Consistent RESTful Web Service Interfaces, "
O’Reilly Media, Inc.", 2011.

[18] A. D. Birrell, B. J. Nelson, Implementing remote
procedure calls, ACM Transactions on Computer

Systems (TOCS) 2 (1984) 39–59.
[19] J.-K. Lee, A group management system anal-

ysis of grpc protocol for distributed network
management systems, in: SMC’98 Conference
Proceedings. 1998 IEEE International Conference
on Systems, Man, and Cybernetics (Cat. No.
98CH36218), volume 3, IEEE, 1998, pp. 2507–
2512.

[20] R. A. Olsson, A. W. Keen, Remote Procedure
Call, Springer US, Boston, MA, 2004, pp. 91–105.
doi:10.1007/1-4020-8086-7_8.

[21] S. G. Du, J. W. Lee, K. Kim, Proposal of grpc as
a new northbound api for application layer com-
munication efficiency in sdn, in: Proceedings of
the 12th International Conference on Ubiquitous
Information Management and Communication,
2018, pp. 1–6.

[22] C. Severance, Discovering javascript object no-
tation, Computer 45 (2012) 6–8.

[23] P. Johnson, R. Lagerström, M. Ekstedt, M. Öster-
lind, It management with enterprise architecture,
KTH, Stockholm (2014).

[24] T. Erl, Service-oriented architecture: concepts,
technology, and design, Pearson Education India,
1900.

[25] T. Cerny, M. J. Donahoo, J. Pechanec, Dis-
ambiguation and comparison of soa, microser-
vices and self-contained systems, in: Proceed-
ings of the International Conference on Research
in Adaptive and Convergent Systems, RACS
’17, Association for Computing Machinery, New
York, NY, USA, 2017, p. 228–235. doi:10.1145/
3129676.3129682.

[26] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, mo-
tivations, and issues for migrating to microser-
vices architectures: An empirical investigation,
IEEE Cloud Computing 4 (2017) 22–32.

[27] R. Chen, S. Li, Z. Li, From monolith to microser-
vices: A dataflow-driven approach, in: 2017
24th Asia-Pacific Software Engineering Confer-
ence (APSEC), 2017, pp. 466–475.

[28] N. Dragoni, S. Dustdar, S. T. Larsen, M. Mazzara,
Microservices: Migration of a mission critical
system, arXiv preprint arXiv:1704.04173 (2017).

[29] Z. Kozhirbayev, R. O. Sinnott, A performance
comparison of container-based technologies for
the cloud, Future Generation Computer Systems
68 (2017) 175 – 182. doi:10.1016/j.future.
2016.08.025.

[30] T. Ueda, T. Nakaike, M. Ohara, Workload char-
acterization for microservices, in: 2016 IEEE in-
ternational symposium on workload characteri-
zation (IISWC), IEEE, 2016, pp. 1–10.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

62

http://dx.doi.org/10.1007/1-4020-8086-7_8
http://dx.doi.org/10.1145/3129676.3129682
http://dx.doi.org/10.1145/3129676.3129682
http://dx.doi.org/10.1016/j.future.2016.08.025
http://dx.doi.org/10.1016/j.future.2016.08.025


[31] J. L. Fernandes, I. C. Lopes, J. J. Rodrigues, S. Ul-
lah, Performance evaluation of restful web ser-
vices and amqp protocol, in: 2013 Fifth Interna-
tional Conference on Ubiquitous and Future Net-
works (ICUFN), IEEE, 2013, pp. 810–815.

[32] S. Vinoski, Advanced message queuing protocol,
IEEE Internet Computing 10 (2006) 87–89.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

63


	1 Introduction
	2 State of the Art
	2.1 Synchronous Communication
	2.2 Asynchronous Communication

	3 Implementation
	4 Results and Evaluation
	4.1 Performance Efficiency
	4.2 Availability
	4.3 Discussion and Threats to Validity

	5 Related Work
	6 Conclusion

