CEUR-WS.org/Vol-2767/09-QuASoQ-2020.pdf

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

Detection and Correction of Android-specific Code Smells
and Energy Bugs: An Android Lint Extension

[ffat Fatima®, Hina Anwar®, Dietmar Pfahl® and Usman Qamar®

@College of Electrical and Mechanical Engineering, National University of Sciences and Technology,Islamabad, Pakistan

b Institute of Computer Science, University of Tartu, Tartu, Estonia

Abstract

Context: While Android applications suffer from code smells and energy drain issues there is still a lack of
tools that help developers improve energy consumption and maintainability of Android applications. Objective:
Our research aims to provide tool support to Android developers helping them to create greener and more
maintainable applications by eliminating Android-specific code smells/energy bugs. The proposed tool support
integrates routine code smell detection with energy bug detection so that developers can do both at the same
time. Method: We extend ‘Android Lint’ (AL) with custom rules to detect and correct 12 code smells (nine
are new and three are improved) and three energy bugs (two are new and one is improved). In addition, for
the improved and newly introduced code smells, we compared the performance of our tool with the open
version of the 'PAPRIKA’ tool. Result: We evaluated our tool on nine open-source Android applications.
Our tool detects the specified code smells and energy bugs with an average precision, average recall and F1
score of 0.93, 0.96, and 0.94, respectively. It accurately corrects 84% of selected code smells and energy bugs.
The performance of the new and improved code smell detection is better than that achieved by ‘PAPRIKA’
Conclusion: Our tool is a useful extension to the existing ‘AL’ tool with better performance than ‘PAPRIKA’.

Keywords
Green Software Development, Android, Energy Optimization, Code Smell, Energy Bug, Android Lint,

Detection, Refactoring, Static Analysis

1. Introduction

Recently, the focus of research has shifted towards
sustainable and green software development with a
focus on energy optimized programming and energy
optimization at the application level [1]. Software
is now being built not only keeping performance,
dependability, and maintainability in mind but also
the principles of green software engineering aiming
at the development of sustainable software with
less negative impact on the environment. With the
fast-paced emergence of mobile technologies in the
past decade, mobile applications are being widely
used. 3.5 billion people use smartphones around
the world [2], and Android has 75% of the market
share.

Code smells and energy bugs have been identi-
fied as causes of abnormal energy consumption in
Android applications. Significant research has been

QuASoQ 2020: 8th International Workshop on
Quantitative Approaches to Software Quality, December
1st, 2020, Singapore

Q iffat.fatima@ce.ceme.edu.pk (I. Fatima);
hina.anwar@ut.ee (H. Anwar); dietmar.pfahl@Qut.ee

(D. Pfahl); usmang@ceme.nust.edu.pk (U. Qamar)

® 0000-0002-4725-4636 (H. Anwar); 0000-0003-2400-501X
(D. Pfahl)

© 2020 Copyright for this paper by its authors. Use

permitted under Creative Commons License Attribu-

tion 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-
WS.org)

71

carried out on the impact of object-oriented smells
in Java applications [3, 4, 5, 6]. In our previous
work [1] we identified support tools that aid green
Android development. We further identified the
coverage of code smells and energy bugs by those
tools and identified their limitations. We concluded
that there is a lack of guidelines for Android devel-
opers to write sustainable software. Current state
of the art tools lack in providing complete coverage
for Android code smells and energy bugs. More-
over, they lack in usability, IDE integration and
effective refactoring approach. The aim of this re-
search is to create a tool that solves these issues by
aiding developer to solve energy related problems
during development of the application for improved
performance and maintainability.

‘Android Lint’ (AL) is the default static analysis
tool in Android Studio IDE, hence used by most
Android developers. Code smells detected and pri-
oritized by ‘AL’ tend to disappear faster from code
base as compared to other code smells detection
tools. Moreover, a lint tool integrated in Android
Studio IDE not only encourages the developers to
correct code smells on the go but also plays a role in
developer education [7]. We chose a custom imple-
mentation of ‘AL’ API to 1) maximize coverage of
Android code smells/energy bugs, 2) provide recom-
mendations to developers for refactoring, 3) provide
a preview of the detected and corrected code, and

mailto:iffat.fatima@ce.ceme.edu.pk
mailto:hina.anwar@ut.ee
mailto:dietmar.pfahl@ut.ee
mailto:usmanq@ceme.nust.edu.pk
https://orcid.org/0000-0002-4725-4636
https://orcid.org/0000-0003-2400-501X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

4) provide an interface consistent with the Android
Studio IDE.

The ’extended Android Lint’ (xAL) tool is evalu-
ated on open-source Android applications to detect
and correct code smells and energy bugs. The cur-
rent evaluation has resulted in average precision,
average recall and F1 score of 0.93, 0.96, and 0.94,
respectively. Whereas, 84% of the suggested correc-
tions applied to the applications under test, resulted
in the smooth functioning of applications. However,
results cannot be generalized based on these statis-
tics due to the small scale of the evaluation setup.
Our tool also provides better code smell/energy bug
coverage, and usability compared to ‘PAPRIKA’
tool.

Section 2 provides related work. Section 3 con-
tains the tool design and implementation details.
Section 4 presents the evaluation plan and results.
Section 5 discusses threats to validity. Section 6
concludes the study.

2. Related Work

There are several publications in which Android
application analysis tools have been presented that
detect or correct Android-specific code smells and
energy bugs. The aim of this study is to provide
a solution at the development stage hence we look
into only those tools that perform static analysis,
with the aim to optimize applications in terms of
their energy consumption.

The ‘HOT-PEPPER’ toolkit [8] (based on ‘PA-
PRIKA’ tool [9]) detected and refactored a set of
Android-specific code smells and produced a cor-
rected version of the APK without developer inter-
vention.

‘Statedroid’ tool [10] performed a taint-like anal-
ysis using specified resource protocols to detect en-
ergy leaks caused by Wakelock Bugs and Resource
Leaks.

In [11], the authors used a combination of ‘Eclipse
Refactoring APD’, ‘PMD’, and ‘AL’ to build a tool
that optimizes Android applications for CPU usage.
Their rule set covered only a limited number of
Android code smells. However, the tool offered
developers the flexibility to add their own rules.

The ‘aDOCTOR’ tool [12] detected 15 code smells
causing energy drains by traversing the abstract
syntax tree. The code smells were removed manually
by authors and correlated to energy consumption.
Energy estimation was done using ‘PETrA’. The
‘aDOCTOR’ tool has a precision and recall of 98%.

Jiang et al.[13] used ‘SAAF’ for resource leak anal-
ysis and ‘AL’ for layout defect analysis in Android

applications. They detected energy bugs like Cam-
era Leak, Memory leak, Multimedia Leak, sensor
Leak, and layout defects.

Olivier Le Goaér [14] presented an automated tool
based on ‘AL’ which detected 11 energy greedy An-
droid patterns such as Draw Allocation, Wakelock,
Recycle, Obsolete Layout Parameter, HashMap Us-
age, Member Ignoring Method, Excessive Method
Calls and some Resource Leaks. The tool ‘Au-
toRefactor’ was used for refactoring and the impact
of those refactoring on energy consumption of open-
source Android applications was measured.

The ‘E-Debitum’ [15] tool (based on ‘SonarQube’)
detected six energy code smells and calculated their
energy debt.

Comprehensive coverage of Android-specific code
smells and energy bugs within one single tool is
missing in existing tools. In the tools mentioned
above, most commonly detected code smells were
Member Ignoring Method, Internal Getter and Set-
ter methods whereas most commonly detected en-
ergy bugs were Wakelock Bug and Resource Leaks.
Existing tools have low usability due to lack of
Android Studio IDE integration. Tools in studies
[9, 8, 13] provided a command line interface while
in the study [11] integration with Eclipse IDE was
provided instead of Android Studio (which is the
official IDE for Android development [7]). Tools
compatible with Android Studio [14, 16], were not
open source. Tools in studies [9, 13, 12, 11, 16]
did not refactor applications while tools in studies
[8, 15] provided completely automated refactoring
hence reducing the control of the developer during
refactoring process.

3. Design

In this section, we describe how we selected the
baseline tool for extension and how we enhanced it.

3.1. Baseline Tool Selection

The aim of this study is to create a tool that cov-
ers the limitations of previously developed tools in
terms of providing a comprehensive coverage of the
Android code smells and energy bugs and solving
the usability issues such as IDE integration, flex-
ibility and ease of use for developer, open source
availability etc. Based on this objective, we set the
following criteria for selecting a tool for an exten-
sion:

e The tool should be open source or provide
the ability to extend or customize it to add

72

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

rules for detection and refactoring of code
smells/energy bugs.

¢ The tool should be able to perform static
analysis.

e The tool should be integrate-able with An-
droid studio IDE as it is the official IDE for
Android development [7].

e The tool should provide an inline warning
on code smell/energy bug detection inside
Android Studio code editor.

¢ The tool should provide a mechanism to list
detected code smells/energy bugs along with
their description.

The above criteria were applied on industry-
standard tools such as ‘AL’ (AL), ‘PMD’, ‘Spot-
Bugs?’ (SB), ‘SonarLint®’ (SL), ‘SonarQube®’ (SQ),
and ‘SOOT?’ (ST) (see Table 1). A similar tool,
‘FindBugs’, was not considered as its successor is
‘SpotBugs’. ‘Eclipse refactoring engine’ was also ex-
cluded as it is not integratable with Android Studio.
Tools that perform static analysis but focus on code
styling such as ‘CheckStyle’ were excluded. We also
considered detection and optimization tools identi-
fied in our previous work [1]. Even though many of
these tools were built on top of open-source static
analysis tools such as ‘SOOT’, ‘SPARK’, 'SAAF’,
‘ASM’, ‘PMD’, and ‘Lint’, we did not select them
for an extension because they were not designed to
be integrated with Android Studio IDE. The tools
using dynamic analysis were also excluded as they
require the application to be built every time. Long
average build time for Android applications is a
known and significant issue among the development
community®. Table 1 shows a comparison of tools
in terms of selection criteria. After this compar-
ison, ‘SpotBugs’, ‘SonarQube’, and ‘SOOT’ were
excluded as they built the application every time a
code smell/energy bug needs to be detected.

Next, we compared the three shortlisted tools:
‘ALY, ‘PMD’, and ‘SL’ for Android-specific code
smell and energy bug coverage (See Table 2 and
3). ‘AL’, ‘PMD’, and ‘SonarLint’ can cover many
different types of issues in code (code smell, bug
or error is referred to as ‘issue’ in these tools). For
example, ‘AL’ can detect 261 different types of
Android-specific issues”. Majority of these issues are
related to syntax and styling of the code. We could

Lhttp://tools.android.com/tips/lint-custom-rules
2https://spotbugs.github.io/
3https://www.sonarlint.org/features/
4https://docs.sonarqube.org/latest /extend
Shttps://github.com/Sable/soot/
Shttps://developer.android.com/studio/build /optimize-
your-build
"http://tools.android.com/lint /overview

73

Table 1

Comparison of tools in terms of selection criteria
Criteria AL PMC SB SL SQ ST
Open Source v v v v v v
Customization API v v X v v X
Source Code Analysis v v X v X X
Byte Code Analysis v X v X v v
Android Studio Integration v v v v v X
Inline issue warning/hint v X X v v X
List of detected code smells/energy bugs v v v v v v
Allows adding refactoring rules v X X X X X

AL = Android Lint, SB = SpotBugs,SL= SonarLint, SQ = SonarQube, ST= SOOT

not find any evidence in the literature about the
energy impact of the issues already covered by the
above shortlisted tools, therefore, we only compared
them for the coverage of 25 Android-specific code
smells and nine energy bugs listed in [1].

In Tables 2 and 3, ‘¥’ represents that the code
smell/energy bug is detected but based on the defi-
nition of code smell/energy bug® the detection cov-
erage has room for improvement. v'represents that
code smell/energy bug is detected, x represents that
code smell/energy bug is not covered by the tool yet.
From Tables 2 and 3, we can see that ‘AL’ already
covers 13 code smells and six energy bugs. There-
fore, an effort towards improvement in the small
number of undetected code smells/energy bugs will
result in a single tool with maximum coverage. In
addition, ‘AL’ provides offline documentation for
rules and allows the developer to choose whether
to correct a specific code smell/energy bug or not.
Based on the above data, ‘AL’ is a feasible tool for
an extension.

3.2. Android Lint Extension

In this section, we explain the ‘AL’ API and im-
plementation details of our new ’extended Android
Lint’ (xAL) tool.

API Overview. ‘AL’ provides an embedding API
that allows adding custom rules. In order to cre-
ate custom rules, the ‘AL’ embedding API pro-

8https://figshare.com/s/84ae49a21551e6302d41

Custom ‘Android Lint' Code smellVEnergy
‘ implementation |—. St v 4’{ bug Detection

ves N Mo
Code smell/Energy " Correction ™) .
Aop Source Code bug Correction ¢ Available? .~ > issue 3 warning

Figure 1: Overview of ‘AL’ API

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

Table 2
Code smell coverage by tools ‘AL’, ‘PMD’ and ‘SL’
| DTWC | DR | LIC IDFP ISQLQ IDS IGS | LT MIM | NLMR | PD | RAM | SL | UC | LC | LWS | UHA | BFU | UIO | IWR | HAT | HSS | HBR 10D | ERB
N I S A B R I B A 2 I I I S 10 S I 2 200 10 S A 10 S I AN I SO I S 0 SO 0 SO I I
PMD| X [X | x | X |v X |v |* |x |x [X | X v | v X X X |X X |X |X |[x |x [x |*
SsL | X | v | x |x |v | X Jv |* v |X | v |X v | v [X |v |X |X |X |[X |[X [|[X |v [|X |V
DTWC=Data T ion Without Compression, DR=D Release, LIC=Leaking Inner Class, IDFP=Inefficient Data Format and Parser, ISQLQ= SQL Query, IDS Data

Structure, IGS=Internal Getter and Setter, , LT=Leaking Thread, MIM=Member Ignoring Method, NLMR=No Low Memory Resolver, PD=Public Data, RAM=Rigid Alarm Manager, SL=Slow Loop,
UC=Unclosed Closeable, LC=Lifetime Containment, LWS= Long Wait State, UHA=Unsupported Hardware Acceleration, BFU= Bitmap Format Usage, UIO=UI Overdraw, IWR=Invalidate Without Rect,
HAT=Heavy AsyncTask, HSS=Heavy Service Start, HBR=Heavy Broadcast Receiver, IOD=Init ONDraw, ERB=Early Resource Binding

Table 3
Energy bug coverage by tools ‘AL’, ‘PMD’ and ‘SL’
RL WB VBS IB TMV TDL NCD UL UP
AL *vX X v v v v v
PMD * X X X X X X X X
SL XX X X X X X X

RL=Resource Leak, WB=Wake-lock Bug, VBS=Vacuous Background Services, IB= Immortality Bug,
TMV=Too Many Views, TDL= Too Deep Layout, NCD=Not Using Compound Drawables, UL=
Useless Leaf, UP=Useless Parent

vides many class APIs. In the ‘AL’ API, each code
smell /energy bug has the following properties: 1d,
summary, explanation, category, severity, priority,
and additional links®. This information is shown
to the developer when a code smell/energy bug is
detected. Each code smell/energy bug is registered
in an issue registry class and is detected by a de-
tector class. The functionalities of detector class
used by our implementation are given in additional
material'®. Fig. 1 gives an overview of the ‘AL’
APIT (version 26.5.2 is used for the implementation
of detectors). The complexity calculation for the
code smells HAA, HSS and HBR are done using
‘Metrics Reloaded’ plugin for Android Studio''.
Inclusion of New Code Smells/Energy Bugs. For
all undetected and partially covered code smells/
energy bugs (see Table 2 and 3), detection and refac-
toring rules are defined based on the definitions
provided in additional materials and Android devel-
opment best practice guides'? provided by Google.
Table 4 shows a list of Android code smells and
energy bugs that are implemented in our ’extended
Android Lint’ (xAL) tool. In 'Implementation’ col-
umn 'novel’ refer to code smells/energy bugs that
are not already present in the ‘AL’ tool. 'ITmprove-
ment’ refers to code smells /energy bugs that are
partially covered by the ‘AL’ tool and can be im-
proved by inclusion of additional APIs/conditions
in our new 'xAL’ tool. The last column of Table 4
shows whether a correction is suggested by 'xAL’
for the detected Android code smells and energy

9http://tools.android.com/tips/lint-custom-rules
LOhttps://figshare.com/s/84ae49a21551e6302d41.
Hhttps://github.com/BasLeijdekkers/MetricsReloaded
2https://developer.android.com/topic/performance

Table 4
Android code smells and energy bugs implemented in
'xAL'

Abbr. Implementation Detection Correction offered
Code smells
DTWC novel yes No, just warning is shown
LT improvement yes yes
NLMR novel yes yes
PD novel yes yes
LC novel yes yes
UHA novel yes yes
BFU improvement yes No, just warning is shown
IWR novel yes No
HAT novel yes No, just warning is shown
HSS novel yes No, just warning is shown
HBR novel yes No, just warning is shown
ERB improvement yes No, just warning is shown
Energy Bugs
RL improvement yes yes
VBS novel yes yes
1B novel yes yes

DTWC=Data Tr Without Comp , LT=Leaking Thread, NLMR=No Low

Memory Resolver, PD=Public Data, RAM=Rigid Alarm Manager, LC=Lifetime Containment,
UHA=Unsupported Hardware Acceleration, BFU= Bitmap Format Usage, IWR=Invalidate With-
out Rect, HAT=Heavy AsyncTask, HSS=Heavy Service Start, HBR=Heavy Broadcast Receiver,
ERB=Early Resource Binding, RL=Resource Leak, VBS=Vacuous Background Services, IB= Im-
mortality Bug

bugs. Table 5 shows Android code smells/energy
bugs that are partially covered by the original ‘AL’
tool and the improvements we implemented in our
new 'xAL’ tool for each of them. Pseudo-code for
implemented code smells and energy bugs are given
in additional material'®>. For most of the detected
code smells/energy bugs we offer corrections. In
cases where we do not provide corrections to the
developer, a warning is issued. Each implemented
code smell/energy bug is tested on sample classes
which contains possible variations in which a se-
lected code smell/energy bug can be present in the
code. In addition, we provide a description for each
of the detected code smell/energy bug, with the
aim to help developers in refactoring. We made
our tool open-source '°. The *xAL’ tool is compiled

13https://figshare.com/s/84ae49a21551e6302d41
16https://figshare.com/s/63c5b3e957f390432edf

74

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

Table 5
Proposed improvements in the Android Code Smells and
Energy bugs detection

CS/ API/Class already detected by
EB ‘AL’ tool

API1/Class detected by 'xAL’ tool as im-
provement

LT Detects thread class leak only. Detection of classes like an-

(Cs) droid.os.Handler and java.lang.Runnable
that can lead to a thread leak!®.
BFU Detects bitmap duplication, cre- Detection of Bitmap using
(CS) ation in onDraw() and usability ~ Bitmap.create(params. ..)".
issues.
ERB Detects creation of objects dur- Detection of heavy APIls (of type:
(CS) ing DrawAllocation which can Android .location, android.media, an-

droid.database, android.hardware) that
should be initialized in lazy fashionl.

be performed by lazy initializa-
tion

Detection of resources like Camera, Media
Player etc. [?]

RL Detects resources such as 10,
(EB) JDBC, static fields, wifi man-
ager, StringBuffer etc.

CS =Code Smell, EB =Energy Bug, LTLeaking Thread, BFU= Bitmap Format Usage,

ERB=Early Resource Binding, RL=Resource Leak

as a Jar file. The Jar file is placed in the .an-
droid/lint folder of the Android Studio installation,
typically located in USER-HOME. Android Studio
is restarted for new detectors to take effect. Ap-
plications can be analyzed for Android code smells
and energy bugs in two ways'’, i.e., in-line analysis
and whole-application analysis.

4. Evaluation

4.1. Evaluation Plan

We evaluated the 'xAL’ tool in two steps. First,
we evaluated the tool on a selection of open source
apps, then we compared the tool’s performance to
that of the ‘PAPRIKA’ tool.

Evaluation on Open Source Apps. The evaluation
includes testing on nine real-world applications'®
chosen from the F-Droid'? repository. The appli-
cations were chosen if the source code was in Java
and the number of line of code was less than 30,000
(for ease of manual verification). We checked that
each application can be compiled and executed on
a device without errors.

Comparison with ‘PAPRIKA’ We considered
state of the art tools such as ‘PAPRIKA’, ‘aDOC-
TOR’, ‘SAAD’, ‘Chimer’ and ‘AL’ (implementation
by Goaér [14]) as possible comparison candidates.
"’Chimer’ and the AL’ tool presented in [14] were
not available in open source. We chose ‘PAPRIKA’
as it had the largest number of overlapping code
smells/energy bugs with our 'xAL’ tool. These
are Heavy Async Task (HAT), Heavy Broadcast

L7https://figshare.com /s/84ae49a21551e6302d41
Tool Walk-through)

I8https://figshare.com/s/84ae49a21551e6302d41 (See Ta-
ble 1)

9https://f-droid.com

(See

Receiver (HBR), Heavy Start Service (HSS), Invali-
date without Rect (IWR), No Low Memory Resolver
(NLMR) and Unused Hardware Acceleration (UHA)
and Resource Leak (RL). JAR file for Paprika was

downloaded from their open-source repository?’.

4.2, Evaluation Results

This section presents the results of testing the tool
on open source projects and compares its coverage
with PAPRIKA tool.

4.2.1. Evaluation on Open Source Apps

The tool was tested on the nine applications selected
from the F-Droid repository. Table 6 shows the
results of the evaluation on open source applications.
It lists the application name against the code smells
detected in it, true positives (TP), false positives
(FP), false negatives (FN), precision (P), recall (R),
total corrections available (TCA) and total applied
correction (TAC) .

Some of the code smells/energy bugs (such as
"Early Resource Binding’ (ERB), "Heavy Async Task’
(HAT) and 'Heavy Broadcast Receiver’ (HBR)) did
not appear in any of the applications under test.

In the case of application ‘Kolabnotes’ two false
negatives were detected, i.e. two instances of code
smell 'Lifetime Containment’ (LC) code smell. A
possible reason could be declarations of interfaces in
non-lifecycle classes, which were not included in the
LC code smell definition. In the case of application
‘Sound Recorder’ two false negatives were detected,
i.e. two instances of code smells 'No Low Mem-
ory Resolver’ (NLMR). A possible reason could be
that the class used by this application is deprecated,
hence not covered by the implementation of our
'xAL’ tool. In the case of applications ‘Kolabnotes’
and ‘Camera Roll’ one false positive (i.e., one in-
stance of the 'Data Transmission without Compres-
sion” (DTWC) code smell) was detected for each ap-
plication. In the case of application ‘Calorie Scope’
one false positive was detected, i.e., one instance of
"‘Resource Leak (RL) for a camera instance energy
bug. In the case of application, ’CameraColorPicker’
five false positives (i.e. Lifetime Containment (LC)
code smell (4 instances) and Resource Leak (RL)
energy bug (1 instance)) were detected. In the
case of application, ‘Privacy- Friendly Weather’ two
false positives (i.e. two instances of Lifetime Con-
tainment (LC) code smell) were detected. In the
case of code smell Lifetime Containment (LC), a
possible reason for false positive could be that it
flags abstract classes as interfaces as well. In the

20https://github.com/GeoffreyHecht /paprika

75

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

Table 6
Results of evaluation on open source app using ‘xAL’ tool

| Detection Results | |

| |
D | App | CS/EE Detected

[TP | FP[EN P | R | TCA | TAC
1| Odyssey UHA, NLMR, HSS, LC, IWR 11 0 0 1 1] 6 6
2 | Kolabnotes UHA, BFU, LT, DTWC, 18 1 2 1 09] 7 7
IWR, NLMR
3 | Calorie Scope LC, NLMR, RL, VBS 2 1 0 09 1| 13 13
4 | Camera Roll UHA, BFU, DTWC, IWR, LC, | 21 1 0 1 1| 16 6
NLMR, PD
5 | Bipol Alarm | UHA,HSS,DTWC,NLMR | 4 0 0 1 1| 4 | a4
6 | Sound Recorder | UHA, PD | 7 o 2 1 08| 7 | 7
7 | CameraColorPicker| UHA, BFU, NLMR, IWR, 12 5 0 07 1] 17 12
LC, RL
8 | Privacy-Friendly | UHA, LT, LC, NLMR 13 2 0 09 1| 15 13
Weather
9 | Reminders | UHA, DTWC, NLMR | s o 0o 1 1| 5 | 5

TOTAL J103 10 4 - - | 9% | 73

CS = Code Smell, EB = Energy Bug, TP = True Positive, FP = False positive, FN = False Negative, P=
Precision, R= Recall, TCA = Total Corrections Available, TAC= Total Applied Corrections

case of code smell Data Transmission without Com-
pression (DTWC), a possible reason could be that
the 'xAL’ tool does not track instances that were
compressed in another class. In the case of energy
bug Resource Leak (RL), a possible reason for false
positives could be that code smell/energy bug was
handled pro-actively by the developer. For exam-
ple, for Resource Leak (RL), if the camera instance
was closed proactively by the developer in a method
other than onStop(). In this case, check on onStop()
method is no longer required.

Corrections were available for 66.3% of the de-
tected Android code smells and energy bug in-
stances, out of which 84% of corrections were ap-
plied. 16% corrections were not applied, which
include false positives and instances of Public Data
(PD) code smell (correction of this code smell al-
tered the functionality of the application under test).
These numbers are dependent on the type of code
smell/energy bug and the frequency of its instances
in the application.

4.2.2. Comparison with PAPRIKA

The ‘PAPRIKA’ tool did not work on applications
1 to 4 that had AndroidX*' dependencies. Due
to this inherent limitation of ‘PAPRIKA’, it was
only tested on applications 5 to 9. Refactoring of
code smells/energy bugs was not applied in any test
application as the accessible version of ‘PAPRIKA’
tool does not offer to refactor.

Table 7 shows the results of the evaluation on
open source applications using ‘PAPRIKA’. It lists
the application name against the code smells de-
tected in it, true positives (TP), false positives (FP),
false negatives (FN), precision and recall. ‘PA-
PRIKA’ was able to detect three types of code
smells namely: No Low Memory Resolver (NLMR),

21https://developer.android.com/jetpack /androidx

Heavy Start Service (HSS), Heavy Broadcast Re-
ceiver (HBR). For these smells, no false positives
were detected. ‘PAPRIKA’ did not detect any in-
stance of the code smells/energy bugs Unused Hard-
ware Acceleration (UHA), Resource Leak (RL) and
Invalidate without Rect (IWR), which could be seen
in ‘FN’ column.

Table 8 shows a comparison of the code smells de-
tected by both 'xAL’ and ‘PAPRIKA’. v'represents
that a code smell is detected in a test application, x
represents that a code smell was not detected in a
test application and empty cells show that the code
smell was not present in a test application. Code
smell Heavy Async Task (HAT) was not present
in any of the test applications hence not detected
by ‘PAPRIKA’ and our 'xAL’ tool. 'xAL’ was able
to detect almost all the code smell instances that
were detected by ‘PAPRIKA’ tool. However, two in-
stances of 'No Low Memory Resolver’ (NLMR) code
smells were missed in application ‘Sound Recorder’
(as they used a deprecated class API). The 'Heavy
Broadcast Receiver’ (HBR) code smell was also
missed by our tool as the value for an upper limit
of computational complexity is set to five in ‘PA-
PRIKA’ and ten (as per McConnel [17]) in our 'xAL’
tool.

‘PAPRIKA’ detected seven instances of false neg-
atives for the code smells: Unused Hardware Accel-
eration (UHA) (5 instances) and Invalidate with-
out Rect (IWR) (1 instance) and energy bug Re-
source Leak (RL) (1 instance). As compared to
‘PAPRIKA’, our tool was able to detect Invalidate
without Rect (IWR) code smell and Resource Leak
(RL) energy bug in ‘CameraColorPicker’ test appli-
cation. Unused Hardware Acceleration (UHA) code
smell was also detected in all five applications by
our tool. Table 9 shows a compatibility comparison
between ‘PAPRIKA’ and 'xAL’ to gain a better
understanding of the support offered by both tools
as well as their limitations.

The average precision, recall and F1-score for our
'xAL’ were 0.93, 0.96 and 0.94, respectively. The av-
erage precision, recall and F1-score for ‘PAPRIKA’
were 1.0, 0.74 and 0.85, respectively. Hence, our
'xAL’ tool not only provides better Android code
smell/energy bug coverage but also improves upon
the usability aspects of the tool in comparison to
‘PAPRIKA’ tool.

5. Threats to Validity

Our 'xAL’ tool only performs static source code
analysis of Android applications. Since static source
code analysis could be done during development re-

76

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

Table 7
Results of evaluation on open source apps using ‘PA-
PRIKA’
ID Test App CS/EB detected TP FP FN Precision Recall
5 Bipol Alarm NLMR, HSS 2 0 1 1 0.67
6 Sound Recorder NLMR 2 0 3 1 0.67
7 CameraColor Picker NLMR 6 0 1 1 0.67
8 PrivacyFriendly Weather NLMR 11 0 1 1 0.92
9 Reminders NLMR, HBR 4 0 1 1 0.8
TOTAL 2% 0 7 , _

CS = Code Smell, EB = Energy Bug, TP = True Positive, FP = False positive, FN = False Negative,
NLMR=No Low Memory Resolver, SS=Heavy Service Start, HBR=Heavy Broadcast Receiver

Table 8
Code smell detection comparison between ‘PAPRIKA’
and 'xAL’

App ‘Bipol Sound ‘CameraCoIor PrivacyFriendly | Reminders
Alarm Recorder Picker Weather

CS | P |xAL| P | xAL |P | xAL | P | xAL | P | xAL

HAT

HBR v X

HSS v v

IWR X '

NLMR vV v x v v v v v v

UHA X v X v X v v X v

RL X v

CS= Code smell P="PAPRIKA’, xAL= 'extended Android Lint’, HAT=Heavy AsyncTask,
HSS=Heavy Service Start, HBR=Heavy Broadcast Receiver, IWR=Invalidate Without Rect,
NLMR=No Low Memory Resolver, UHA=Unsupported Hardware Acceleration, RL=Resource
Leak

Table 9
Compatibility comparison between 'PAPRIKA’ and 'xAL’
Compatibility criteria PAPRIKA xAL
Java version support Java 7 only versions >= Java7
Support for apps with Android X No Yes
In-line warnings in Code Editor No Yes
Navigation to LOC in Code Editor No Yes
Individual code smell analysis No Yes
Disabling detection of CS/EB No Yes

LOC=Line of code, CS/EB=CodeSmell/EnergyBug, xAL="extended Android Lint'

peatedly, the support provided by our tool could
benefit developers. Implementation of a function-
ality may vary based an application’s architec-
ture/design and the coding style of a developer.
Hence, our definitions of code smells/energy bugs
might not cover every scenario related to a particu-
lar code smell, leading to false positives and false
negatives in the results. For example, we only con-
sider lifecycle classes, i.e. Activity and Fragment
for lifecycle dependent issues like Resource Leak
and Leaking Thread. However, depending on the
application architecture, lifecycle dependent compo-
nents might be called in non-lifecycle classes which
may go undetected. Moreover, some corrections
for code smells, and energy bugs might clash with
the functional requirements of the application. For

example, correction for Public Directory (PD) code
smell changes public directory to a private directory.
However, for an application that requires access to
a public directory like Gallery, if it is changed to a
private directory, the functional requirement will be
in contradiction. But as the corrections can only be
applied after the developer’s consent, such issues are
less likely to occur. Correction/recommendations
are offered for 66% of detected code smells/energy
bugs. For the rest of 34% code smells/energy bugs,
only a warning is shown with hints for correction
(cf section 3.2.2). The decision of applying the sug-
gested correction is left for the developers. Our tool
does not cover third-party libraries used in Android
applications. During development, we tested our
tool against sample classes, which were injected
with code smells/energy bugs by the authors of this
study. Hence there might be researcher bias in the
introduction of those code smells/energy bugs (in
terms of coding style, location and variety), lead-
ing to higher accuracy in results. To mitigate this
threat, the tool was evaluated on nine open-source
applications that already contained some of the
code smells and energy bugs. During the evalua-
tion, we did not physically measure the changes
in energy consumption of the applications under
test due to refactoring of code smells/energy bugs.
The assumption that refactoring the selected code
smells/energy bugs lead to energy optimization of
Android applications is based on the related work
such as [11, 14, 16].

6. Conclusion

We extended the tool ‘AL’ to detect and correct
Android-specific code smells and energy bugs that
may lead to energy optimization in Android appli-
cations. On top of the 261 issues already covered by
‘AL’; our extended tool 'xAL’ provides coverage for
12 Android-specific code smells (nine new and three
improved) and three energy bugs (two new and one
improved). Moreover, 'xAL’ integrates directly in
Android Studio IDE and gives control to the devel-
oper for refactoring code smell/energy bugs, which
was missing in other state of the art tools. We
evaluated 'xAL’ on nine open-source applications; it
detects code smells and energy bugs with an average
precision, average recall and F1 score of 0.93, 0.96,
and 0.94 respectively. It accurately corrects 84%
of selected code smells and energy bugs. Our tool
offers better code smell and energy bug detection
coverage as compared to ‘PAPRIKA’. In the future,
we aim to evaluate 'xAL’ on a large data set of
applications, which will also help in analyzing the

77

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

correlation between the frequency of occurrences
of code smells/energy bugs, and impact on energy
consumption due to their refactoring.

Acknowledgments

This work is supported by the Estonian Center of
Excellence in ICT research (EXCITE), and group
grant PRG887 funded by the Estonian Research
Council.

References

[1] I. Fatima, H. Anwar, D. Pfahl, U. Qamar,
Tool Support for Green Android Development:
A Systematic Mapping Study, in: 5th Int.
Conf.on Softw. Technologies - ICSOFT, 2020,
pp. 409-417.

[2] A. Turner, How many people have
smarphones worldwide (Apr 2020), 2020.
URL: https://www.bankmycell.com/blog/
how-many-phones-are-in-the-world.

[3] R. Verdecchia, R. Aparicio Saez, G. Procac-
cianti, P. Lago, Empirical Evaluation of the En-
ergy Impact of Refactoring Code Smells (2018)
345-365. doi:10.29007/dz83.

[4] H. Anwar, D. Pfahl, S. N. Srirama, Evaluating
the Impact of Code Smell Refactoring on the
Energy Consumption of Android Applications,
in: 45th Euromicro Conf.on Softw. Eng. and
Advanced Applications, SEAA, 2019, pp. 82—
86. doi:10.1109/SEAA.2019.00021.

[5] A. V. Rodriguez, C. Mateos, A. Zunino,
M. Longo, An analysis of the effects of
bad smell-driven refactorings in mobile ap-
plications on battery usage, in: Mod-
ern Softw. Eng. Methodologies for Mobile
and Cloud Environments, 2016. doi:10.4018/
978-1-4666-9916-8.ch009.

[6] C. Sahin, L. Pollock, J. Clause, How do code
refactorings affect energy usage?, Int’l Sym-
posium on Empirical Softw. Eng. and Mea-
surement - ESEM (2014) 1-10. doi:10.1145/
2652524 .2652538.

[7] S. Habchi, R. Rouvoy, N. Moha, On the sur-
vival of android code smells in the wild, Pro-
ceedings - 2019 IEEE/ACM 6th Int’l Conf. on
Mobile Softw. Eng. and Systems, MOBILESoft
2019 (2019) 87-98. doi:10.1109/MOBILESoft.
2019.00022.

[8] A. Carette, M. A. A. Younes, G. Hecht,
N. Moha, R. Rouvoy, Investigating the energy
impact of Android smells, 24th IEEE Int’l Conf.
on Softw. Analysis, Evolution, and ReEng. -

78

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

SANER (2017) 115-126. doi:10.1109/SANER.
2017.7884614.

G. Hecht, R. Rouvoy, N. Moha, L. Duchien,
Detecting Antipatterns in Android Apps, 2nd
ACM Int’l Conf. on Mobile Softw. Eng. and
Systems - MOBILESoft (2015) 148-149. doi:10.
1109/MobileSoft.2015.38.

Z. Xu, C. Wen, S. Qin, State-taint analysis for
detecting resource bugs, Science of Computer
Programming (2018) 93-109. doi:10.1016/j.
scico.2017.06.010.

V. N. Huynh, M. Inuiguchi, B. Le, B. N.
Le, T. Denoeux, Improve the Performance
of Mobile Applications Based on Code Opti-
mization Techniques Using PMD and Android
Lint, LNCS (including subseries LNAI and
LNB) 9978 LNAI (2016) V-VI. doi:10.1007/
978-3-319-49046-5.

F. Palomba, D. Di Nucci, A. Panichella,
A. Zaidman, A. De Lucia, Lightweight de-
tection of Android-specific code smells: The
aDoctor project, SANER 2017 - 24th IEEE
Int’l Conf. on Softw. Analysis, Evolution, and
ReEng. (2017) 487-491. doi:10.1109/SANER.
2017.7884659.

H. Jiang, H. Yang, S. Qin, Z. Su, J. Zhang,
J. Yan, Detecting Energy Bugs in Android
Apps Using Static Analysis, LNCS (including
subseries LNATI and LNB) 10610 LNCS (2017)
192-208. doi:10.1007/978-3-319-68690-5_
12.

O. L. Goaér, Enforcing green code with an-
droid lint, in: 34th IEEE/ACM Int. Conf. on
Automated Softw. Eng. Workshop - ASEW,
2019. doi:10.1109/ASEW.2019.00018.

D. Maia, M. Couto, J. Saraiva, E-Debitum :
Managing Softw. Energy Debt (2020) 162-169.
M. Couto, J. Saraiva, J. P. Fernandes, En-
ergy Refactorings for Android in the Large
and in the Wild (2020) 217-228. doi:10.1109/
saner48275.2020.9054858.

S. McConnell, Code Complete: A Practical
Handbook of Softw. Construction 9 (2011).

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
http://dx.doi.org/10.29007/dz83
http://dx.doi.org/10.1109/SEAA.2019.00021
http://dx.doi.org/10.4018/978-1-4666-9916-8.ch009
http://dx.doi.org/10.4018/978-1-4666-9916-8.ch009
http://dx.doi.org/10.1145/2652524.2652538
http://dx.doi.org/10.1145/2652524.2652538
http://dx.doi.org/10.1109/MOBILESoft.2019.00022
http://dx.doi.org/10.1109/MOBILESoft.2019.00022
http://dx.doi.org/10.1109/SANER.2017.7884614
http://dx.doi.org/10.1109/SANER.2017.7884614
http://dx.doi.org/10.1109/MobileSoft.2015.38
http://dx.doi.org/10.1109/MobileSoft.2015.38
http://dx.doi.org/10.1016/j.scico.2017.06.010
http://dx.doi.org/10.1016/j.scico.2017.06.010
http://dx.doi.org/10.1007/978-3-319-49046-5
http://dx.doi.org/10.1007/978-3-319-49046-5
http://dx.doi.org/10.1109/SANER.2017.7884659
http://dx.doi.org/10.1109/SANER.2017.7884659
http://dx.doi.org/10.1007/978-3-319-68690-5_12
http://dx.doi.org/10.1007/978-3-319-68690-5_12
http://dx.doi.org/10.1109/ASEW.2019.00018
http://dx.doi.org/10.1109/saner48275.2020.9054858
http://dx.doi.org/10.1109/saner48275.2020.9054858

	1 Introduction
	2 Related Work
	3 Design
	3.1 Baseline Tool Selection
	3.2 Android Lint Extension

	4 Evaluation
	4.1 Evaluation Plan
	4.2 Evaluation Results
	4.2.1 Evaluation on Open Source Apps
	4.2.2 Comparison with PAPRIKA

	5 Threats to Validity
	6 Conclusion

