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1 Objectives 

Within the course of the last 50 years, Artificial Intelligence has developed into a major 
field of research with a multitude of facets and application areas. While, in general, 
Artificial Intelligence research is driven by application needs, it is nevertheless a fact 
that foundational questions and theoretical insights have always been one of the driving 
forces behind its development. This includes the quest for realising intelligent behaviour 
in artificial systems as envisioned in the early days of AI research. But it also comprises 
biological inspirations, e.g., for robot design, artificial neural networks, or emergent 
intelligence, as well as logical underpinnings of automated deduction and knowledge 
representation. 

Indeed, formal and foundational aspects of AI are being studied in many sub areas in 
order to serve application needs. It lies in the nature of such fundamental research that a 
critical mass of different formal perspectives can generate a cross-fertilization of ideas 
and applications. We, therefore, brought together researchers working on foundational 
aspects of Artificial Intelligence across different communities, in order to stimulate an 
exchange of ideas and methods between them. 

The workshop is intended for researchers which contribute to the 

• mathematical, 
• logical, 
• statistical, 
• psychological, 

• linguistic, 
• cognitive, 
• philosophical, 
• biological, 

 

and other foundations of AI research. 



2 Programme 

10th of September, 2007 

14:00 – 15:20  Keynote by Wolfgang Maass, TU Graz, Austria: 
The difficult search for intelligence in neural circuits. 

15:20 – 15:40  Kai-Uwe Kühnberger, Tonio Wandmacher, Angela Schwering, 
Ekaterina Ovchinnikova, Ulf Krumnack, Helmar Gust, Peter Geibel: 
Modeling Human-Level Intelligence by Integrated Cognition in a 
Hybrid Architecture 

15:40 – 16:00 Sebastian Rudolph:  
Relational Exploration – Reconciling Plato and Aristotle   

  coffee break  

16:30 – 16:50  Matthias Knorr, Pascal Hitzler: 
A Comparison of Disjunctive Well-founded Semantics  

16:50 – 17:10  Ander Altuna: 
Imagining Contexts  

17:10 – 17:30  Pascal Hitzler, Andreas Eberhart:  
Description Logic Programs: Normal Forms 
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Modeling Human-Level Intelligence by

Integrated Cognition in a Hybrid Architecture

Kai-Uwe Kühnberger, Tonio Wandmacher, Angela Schwering,
Ekaterina Ovchinnikova, Ulf Krumnack, Helmar Gust, Peter Geibel

Institute of Cognitive Science, University of Osnabrück
D-49076 Osnabrück, Germany

Abstract. Various forms of reasoning, the profusion of knowledge, the
gap between neuro-inspired approaches and conceptual representations,
the problem of inconsistent data input, and the manifold of computa-
tional paradigms for solutions of these problems challenge AI models for
higher cognitive abilities. We propose the I-Cog architecture as a step
towards a solution for these problems. I-Cog is a modular system that is
composed of a reasoning device based on analogical reasoning, a rewrit-
ing mechanism for the ontological knowledge base, and a neuro-symbolic
interface for robust learning from noisy and inconsistent data.

1 Introduction

Since the origins of Artificial Intelligence – based on the fundamental work of
Alan Turing [44], the first architecture for neural networks by McCulloch & Pitts
[35], the development of higher programming languages like LISP [34], and finally
the creation of AI as a discipline at the Dartmouth conference – artificial intel-
ligence has (more or less) strongly been committed to interdisciplinary research
and the modeling of higher cognitive abilities.1 Several important achievements
can be identified during the last 50 years with respect to modeling (or support-
ing) cognitive challenging tasks of humans: state-of-the-art computer programs
beat world-class chess champions and intelligent programs support our daily life
in various respects, for example, when driving a car, flying a plane, creating an
engineer’s CAD constructions, or searching the web for information.

Despite these apparent examples for the success of AI, there are severe prob-
lems of AI which can provocatively be described as follows: there is not even an
idea of how human-level intelligence2 (HLI) in the large can be achieved, tak-
ing into account the various forms of capabilities of human beings, for example,

1 The term higher cognitive abilities can be identified with all forms of cognition which
essentially include a deliberative aspect like reasoning, planning, game playing, learn-
ing, problem solving etc. In particular, purely reactive behaviors or behaviors which
can be reduced to mere conditioning are not higher cognitive abilities.

2 The term human-level intelligence is used in the sense of [7], namely as the problem
to integrate many different types of representation formats, reasoning devices, com-
putational paradigms etc., in order to approximate a breadth of intelligence usually
ascribed to humans.
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concerning reasoning, problem solving, learning, adapting, acting, using natural
language etc. In the following we list three classes of such problems.

• The profusion of knowledge [7] and its constant updates.
• The variety of types of reasoning and computational paradigms for modeling

human reasoning abilities (compare textbooks in AI).
• The gap between neuro-inspired learning approaches to cognition and sym-

bolic representational approaches [4].

We think that these challenges are at the heart of achieving human-level in-
telligence, because of the following fundamental problem: The more fine-grained
the methods are in developing tools for particular (and isolated) AI applications,
the more we depart from the goal of achieving HLI and a unified model of higher
cognition.3 This paper aims to propose an architecture that provides a possible
solution to model higher cognitive abilities by integrated cognition. We think
that an integrated architecture can be considered as a device for achieving HLI.

This paper has the following structure. Section 2 discusses obvious problems
in modeling a variety of higher cognitive abilities. Section 3 presents the I-Cog
architecture consisting of a reasoning module, a background knowledge rewriting
module, and a neuro-symbolic integration module. These modules interact in a
non-trivial way described in Section 4. Finally Section 5 summarizes related work
and Section 6 concludes the paper.

2 Problems for Modeling Higher Cognition in AI Systems

2.1 Knowledge

Knowledge representation is classically connected with coding entities in the
environment by symbolic frameworks. Although such a straightforward logical
representation is universal for most knowledge representation formalisms, and
appropriate logical calculi ensure that many types of inferences for applications
can be performed, there are non-trivial challenges for such a logical approach:

• Problem of expressive strength: For many applications first-order logic is sim-
ply too expressive. Examples are terminological hierarchies for ontological
knowledge [43] or representations of STRIPS-like plans [11]. For other appli-
cations first-order logic is simply not expressive enough. Examples are forms
of modeling common ground [6], or the usage of standard arithmetic.

• Dynamic updates of background knowledge: Whereas background knowledge
is commonly considered to be static, human agents constantly update, mod-
ify, and learn new knowledge. Furthermore, they can overwrite existing
knowledge easily without being threatened by inconsistencies.

3 This claim clearly does not mean that other difficulties for modeling cognition in
the large are simple or in some way straightforward to solve. Obviously challenges
in computer vision, the modeling of autonomous agents and motor control, or nat-
ural language processing are also hard problems. But except for natural language
processing, they concern lower cognitive abilities and are not considered here.
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Due to the first challenge a profusion of representation formalisms emerged.
Currently there is no idea how to reduce these paradigms significantly. The
second challenge seems to be recently detected as a problem [24].

2.2 Reasoning

Reasoning abilities of humans can be classified into many types: Just to mention
some of them, humans can perform deductions, inductions, and abductions. Fur-
thermore, they are able to perform analogical reasoning steps, non-monotonic
inferences, and frequency-based inferences (at least to a certain extent). Addi-
tionally, human agents are able to reason with vague and uncertain knowledge
and they have the ability to associate certain situations with other similar situa-
tions. As a natural consequence of this variety of reasoning types, AI developed
a tremendous number of frameworks for the computation of inferences. Unfortu-
nately, these computational paradigms are not fully compatible with each other.

2.3 Neuro-Symbolic Integration

The gap between robust neural learning and symbolic representation formalisms
is obvious: whereas symbolic theories are based on recursion and composition-
ality allowing the computation of (potentially) infinitely many meanings from a
finite basis, such principles are not available for connectionist networks. On the
other hand, neural networks have been proven to be a robust tool for learning
from noisy data, pattern recognition, and handling vague knowledge – classical
domains with which symbolic theories usually encounter problems. A potential
solution for achieving HLI would require an integration of both approaches.

3 The Modules of the I-Cog Architecture

3.1 Analogical Reasoning

It is a crucial hypothesis of this paper that the establishment of analogical re-
lations between a source and a target domain can be used for many forms of
classical and non-classical reasoning tasks [14]. Examples for application domains
of analogies are string domains [28], geometric figures [41], problem solving [1],
naive physics [10], or metaphoric expressions [21]. Furthermore, analogies are a
source of creativity [29] and a possibility to learn from sparse data [20]. Deduc-
tions and abductions are implicitly modeled in several systems (e.g. [13]).

In this paper, heuristic-driven theory projection (HDTP) will be used for
sketching the expressive power of analogy making [21]. HDTP represents the
source and target domains by sets of first-order formulas. The corresponding
source theory ThS and target theory ThT are then generalized using an extension
of anti-unification [40]. Here are the key elements of HDTP:

– Two formulas p1(a, b) and p2(a, c) can be anti-unified by P (a, X), with sub-
stitutions Θ1 = {P → p1, X → b} and Θ2 = {P → p2, X → c}.
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Table 1. A simplified description of the algorithm HDTP-A omitting formal details.
A precise specification of this algorithm can be found in [21].

Input: A theory ThS of the source domain and a theory ThT of the target domain
represented in a many-sorted predicate logic language L.

Output: A generalized theory ThG such that the input theories ThS and ThT can
be re-established by substitutions.

Selection and generalization of fact and rules.
Select an axiom from the target domain (according to a heuristic h).
Select an axiom from the source domain and construct a generalization
(together with corresponding substitutions).

Optimize the generalization w.r.t. a given heuristic h
′.

Update the generalized theory w.r.t. the result of this process.
Transfer (project) facts of the source domain to the target domain provided they are

not generalized yet.
Test (using an oracle) whether the transfer is consistent with the target domain.

– A theorem prover allows the re-representation of formulas.
– Whole theories can be generalized, not only single terms or formulas.

The underlying algorithm HDTP-A is computing candidates of general-
izations relative to ThS and ThT (Table 1): first, axioms are chosen from
the target according to a heuristic ordering. For these axioms generalizations
are computed relative to chosen axioms from the source (also governed by a
heuristic). If every axiom from the target is generalized, the algorithm allows a
creative transfer of knowledge from the source to the target (governed by the
computed generalizations already obtained). We consider the analogy between
a water-pipe system and an electric circuit in order to clarify the framework:

(M1) Current is the water in the electric circuit.

Figure 1 depicts the situation repre-
Charge Flowrate = Current

Pump

High

Pressure

Reservoir

Low

Pressure

Battery

High

Voltage

R R

Volume flowrate

Poiseuille‘s

Law

F =

Low

Voltage

Ohm‘s Law

I =
R

V

R

P Ground

Fig. 1. The analogy between a water pipe

system and an electric circuit in a diagram-

matic representation. The Figure contains

more information than is necessary for an

interpretation of the metaphorical descrip-

tion (1).

sented by this analogy.4 The anal-
ogy associates water-flow in a water
pipe system with the flow of current
in an electric circuit. An important
new conceptualization about electric-
ity can be learned by students using
this analogy, namely that current is
flowing in a circuit and that a bat-
tery has a function similar to a pump
in the water pipe system.

We would like to achieve a mod-
eling of metaphor (M1) using HDTP.
Table 2 specifies the corresponding
concepts in the target and the source
domains that are associated with
each other. The concepts of a closed

water system and a closed electric system generalize to an abstract concept
closed(A), where A is a variable. The terms water and current are associated

4 The figure is based on http://hyperphysics.phy-astr.gsu.edu/hphys.html.
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Table 2. Examples of corresponding concepts in the source and the target of the
analogy between water-flow and the flow of current in an electric circuit. ws1 denotes
an instance of a water pipe system and es1 an instance of an electric circuit.

Source Target Generalization
water circuit(ws1,water,p1) electric circuit(es1,current,b1) Circuit(A,C,S1)

closed(ws1) closed(es1) closed(A)
pump(p1) battery(b1) Source(S1)

pres(p1)>0→flow in c(w) pres(b1)>0→flow in c(c) pres(S1)>0→flow in c(C)
flow in circuit(water) flow in circuit(current) flow in circuit(C)

explicitly in the metaphoric expression (M1). From background knowledge a
rule is available stating that if the pressure caused by the pump p1 in a water
pipe system is different from 0, then water is flowing in the circuit (from high
pressure to low pressure). This can be projected to the target side, inferring
that due to the “pressure” of the battery b1 (realized by a positive voltage),
current is flowing in the electric circuit. Hence, we end up with the conclusion
(5 in Table 2) that current is flowing in the electric circuit (provided there is
a “pressure” source). The substitutions Θ1 and Θ2 can be summarized as follows:

Θ1/Θ2: A −→ ws1 / es1
C −→ water / current

Source −→ pump / battery

S1 −→ p1 / b1
Circuit −→ water circuit / electric circuit

The following list sketches some reasons for the major claim of this subsec-
tion, namely that a large variety of human reasoning mechanisms can be modeled
by analogies.

– Systems like HDTP allow the computation of analogical relations.

– Establishing analogical relations often requires the re-reprensentation of a
domain. HDTP achieves this by a theorem prover that is included in the
system and allows the application of rules (cf. Row 4 in Table 2).

– Learning generalizations is a first step towards an induction on given input
data [20]. In the example, a new conceptualization of the target domain is
learned.

– The fact that analogies are at most psychologically preferred, but never true
or false, allows the extension of the system to model uncertainty.

– Non-monotonicity can be considered as a special case of a re-
conceptualization of a given a domain very similar to a new conceptualization
of a domain by an analogical inference.
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3.2 Rewriting Ontological Background Knowledge

In Section 2, two major problems that are connected to knowledge represen-
tation and HLI were mentioned: first, the profusion of knowledge and second,
the fact that human beings are able to dynamically adapt background knowl-
edge on-the-fly. We sketch some ideas in this subsection, primarily addressing
the second problem: we propose a rewriting system that is constantly adapting
the ontological knowledge base (memory) focusing on the resolution of inconsis-
tencies. Although the framework was developed primarily for text technological
applications, the underlying logical basis is rather weak, and obviously not all
types of inconsistencies can be automatically resolved, we think that proposals
in this direction are crucial for achieving HLI.

Ontological knowledge is usually formalized within a logical framework, most
importantly in the framework of Description Logics (DL) [2]. In the past years,
a variety of successful systems have been developed that make use of markup
standards based on DL with varying degrees of expressiveness.5 However, the
storage of ontological information within a logical framework has an undesir-
able side-effect: inconsistency problems can occur, because items of information
may contradict each other, making the given ontology unsatisfiable and useless
for reasoning purposes. Because HLI requires permanent updates of ontological
knowledge, the problem of occurring inconsistencies becomes even more impor-
tant. In this section, we sketch some ideas of how to address dynamic updates
of ontologies leaving the problem of the profusion of knowledge aside.

Ontologies usually contain a terminological component and an assertion
component. A description logic terminology consists of a set of terminologi-
cal axioms defining concepts by formulas of the form ∀x : C(x) → D(x) or
∀x : C(x) ↔ D(x), where C is a concept name and D is a concept descrip-
tion.6 The assertion component mentioned above contains information about
the assignment of the particular individuals to concepts and relations from the
terminology. Axioms are interpreted model theoretically by an interpretation
function mapping concept descriptions to subsets of the domain. A model of an
ontology is an interpretation satisfying all axioms. An ontology is inconsistent if
it does not have a model.

There are several possibilities why inconsistencies can occur in ontologies. In
[24], structural inconsistencies, usage-defined inconsistencies, and logical incon-
sistencies are distinguished. The last type of inconsistency – potentially caused
by dynamic updates of the knowledge base – is of particular interest in our
context and is addressed by an automatic rewriting device allowing constant
learning and updates of the ontological knowledge base. One aspect of logical
inconsistency problems concerns polysemy: If an ontology is updated automati-
cally, then it is hardly possible to distinguish between word senses. Suppose, the
concept tree is declared to be a subconcept both of plant and of data structure

(where plant and data structure are disjoint concepts). Both of these two inter-
pretations of tree are correct, but it is still necessary to describe two different

5 [2] provides an overview of different versions of description logics
6 Compare [2] for an exhaustive definition of description logics.
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concepts in the ontology with different identifiers (e.g. TreePlant, TreeStructure).
Otherwise, the terminology remains unsatisfiable.

Another important aspect of logical inconsistency problems concerns gener-
alization mistakes. Consider the following classical example:

Example 1 Assume the following axioms are given:

∀x : Bird(x) → CanF ly(x) ∀x : CanF ly(x) → CanMove(x)
∀x : Canary(x) → Bird(x) ∀x : Penguin(x) → Bird(x) ∧ ¬CanF ly(x)

In Example 1, the statement “birds can fly” is too general. If an exception
occurs (penguin), the ontology becomes unsatisfiable, since penguin is declared
to be a bird, but it cannot fly. This type of inconsistency is the well-known
problem of non-monotonicity, extensively discussed in the relevant AI literature.

The proposed approach – formally developed in [36], [37], and [38] – treats
ontologies that are extended with additional axioms conflicting with the original
knowledge base. Given a consistent ontology O (possibly empty) the procedure
adds a new axiom A to O. If O+ = O ∪ {A} is inconsistent, then the procedure
tries to find a polysemy or an overgeneralization and repairs O+.

We will illustrate the regeneralization of the overgeneralized concepts on the
ontology in Example 2. Since the definition of the concept Bird is overgeneral-
ized, it needs to be rewritten. We wish to retain as much information as possible
in the ontology. The following solution is proposed:

Example 2 Adapted ontology from Example 1:

∀x : Bird(x) → CanMove(x)
∀x : CanF ly(x) → CanMove(x)
∀x : Canary(x) → FlyingBird(x)
∀x : Penguin(x) → Bird(x) ∧ ¬CanF ly(x)
∀x : FlyingBird(x) → Bird(x) ∧ CanF ly(x)

We want to keep in the definition of the concept Bird (subsuming the un-
satisfiable concept Penguin) a maximum of information that does not conflict
with the definition of Penguin. The conflicting information is moved to the def-
inition of the new concept Flying bird, which is declared to subsume all former
subconcepts of Bird (such as Canary for example) except Penguin.

Our algorithm (cf. [36], [37], and [38] for a detailed description) detects prob-
lematic axioms that cause a contradiction, defines the type of contradiction
(polysemy or overgeneralization) and automatically repairs the terminology by
rewriting parts of the axioms that are responsible for the contradiction. Detected
polysemous concepts are renamed and overgeneralized concepts are split into
more general and more specific ones. This approach is knowledge preserving in
the sense that it keeps as many entailments implied by the original terminology
as possible.

The sketched solution for a constant adaptation process of background knowl-
edge is a first step towards a general theory of dynamification and adaptation
of background knowledge. The framework has been developed primarily for text
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LOGIC:

Input: A 
finite set of 
first-order
formulas
given in a 
first-order
language L

TOPOS:

A set of 
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theory 
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of the form  

f g = h

represented
as real-valued 

vectors are  
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NN Learning: 
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representation 

A Prolog program 
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by the TOPOS 

In the learning phase, 
the generated equations 

are used to train the 
neural network.  

Fig. 2. The architecture for learning a first-order logical theory with neural networks.

technological applications. But the approach can straightforwardly be extended
to a wider range of applications.7

3.3 Neuro-Symbolic Integration

In order to bridge the gap between symbolic and sub-symbolic approaches we
sketch the theory presented in [19] and [22] based on the idea to translate first-
order logical formulas into a variable-free representation in a topos [17]. A topos
is a category theoretic structure consisting of objects Obj and arrows Ar having
their domain and codomain in Obj. Certain construction principles allow to
generate new arrows from old arrows. A fundamental theorem connects first-
order logic and topos theory: a topos can be interpreted as a model of predicate
logic [17]. The overall idea of learning symbolic theories with neural networks
can be summarized as follows (compare also Figure 2):

– First, input data is given by a set of logical formulas (axioms and queries)
relative to a given first-order logical language L.

– Second, this set of formulas is translated into objects and arrows of a topos.
The representation is variable-free and homogeneous, i.e. only objects and
arrows are represented combined by the operation concatenation of arrows.

– Third, a PROLOG program generates equations in normal form f ◦ g = h
identifying new arrows in the topos. This is possible because a topos allows
several construction mechanisms.

– Last but not least, these equations are used as input for the training of a
neural network. The network has a standard feedforward topology and learns
by backpropagation: the network adapts the representations of arrows in such
a way that the arrows representing “true” are approximating the arrow true.

7 The crucial algorithms for resolving overgeneralization, undergeneralization, and pol-
ysemy problems, are implemented and prototypically tested in example domains [38].
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The arrows true and false are the only hard-coded arrows, represented as
(1.0, 0.0, 0.0, . . .0.0) and (0.0, 1.0, 0.0, . . .0.0) respectively.

Learning is possible, because the topos induces constructions that can be
used for training the network. Clearly, infinitely many constructions are induced
by the topos, but as it turns out a finite number is completely sufficient.

The details of the approach are rather complicated. We do not go into details
here. The interested reader is referred to [19] and [22] for more information. The
framework was tested with simple and also complex first-order logical theories.

4 The Integration of the Modules

4.1 A Hybrid Architecture for Higher Cognition

The three modules proposed in Section 3 – the neuro-symbolic integration mod-
ule, the symbolic rewriting module, and the analogy reasoning module – attempt
to learn a robust model of ontological background knowledge using a connection-
ist learning device, to dynamically rewrite ontologies on the symbolic level, and
to perform various forms of reasoning, respectively. The task in this section is
to integrate these modules into one single architecture called I-Cog (integrated
cognition).

The integration of symbolic and sub-symbolic processes in a hybrid frame-
work can be achieved, because the neuro-symbolic learning module is trained on
symbolic data (i.e. on first-order logical expressions) and the fact that it learns
a model of a logical theory. Although it is currently not possible to directly
extract symbolic information from the neuro-symbolic learning device, an in-
teraction and competition of the two modules can be implemented by querying
both modules and evaluating their answers. Furthermore, both frameworks can
interact with each other: queries of the rewriting module can be answered by the
neuro-symbolic integration module. A similar remark holds for the integration
of the analogy engine and the neuro-symbolic integration device.

Figure 3 depicts the overall architecture of the system. The architecture
consists of the following modules (in the following paragraphs we will use the
shortcuts ORD for the symbolic Ontology Rewriting Device, NSLD for the neural
network-based Neuro-Symbolic Learning Device, AE for the Analogy Engine, and
CD for the Control Device):

– The input may originate from various sources: input may be collected from
resources based on structured data, unstructured data, or semi-structured
data. The input needs to be available in an appropriate (subset) of a first-
order language L, in order to be in an appropriate format for the other mod-
ules. Therefore ORD generates appropriate logical formula from hypotheses.

– The input is used for feeding, updating, and training ORD.
– An important aspect is the interaction of ORD and NSLD : on the one hand,

ORD trains NSLD, on the other hand ORD queries NSLD. Although NSLD
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Fig. 3. The I-Cog architecture for an integration of the different modules. Whereas
the modules ORD and NSLD are adapting new ontological axioms to an existing
ontology, the analogy engine AE computes analogical relations based on background
knowledge provided by the other two modules. The control device CD is intended to
choose answers from all three modules.

can only give a tentative (or better approximate) answer in terms of a classi-
fication, this can improve the performance of the dynamic rewriting module
in time-critical situations.

– With respect to the interaction of AE and ORD, ontological knowledge can
naturally be used to constrain the computation of possible analogies [18].
Furthermore, newly generated analogies can be used to update and therefore
rewrite background knowledge [23].

– Similarly to the relation between ORD and NSLD, AE is used to train
NSLD, whereas query answering can be performed in the other direction.

– The control device CD of the two learning modules is intended to implement
a competition of the feedback of the three modules with respect to queries.
Feedback may be in accordance to each other or not. In the second case, the
ranking of the corresponding hypotheses is decided by CD (see below).

We exemplify the interaction between AE and ORD in more detail (cf. [18],
[23]): the establishment of an analogical relation of AE, if successful, provides
a new conceptualization of the target domain. The example sketched in Sub-
section 3.1 results in a new conceptualization, where current is flowing in an
electric circuit (triggered by a source). With respect to the ontological back-
ground knowledge ORD this means an update has to be performed, resulting in
the introduction of a new (perhaps polysemous) concept, the update of a known
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concept using new relational constraints (flowing in an electric circuit), or even
the generation of a conflict in the knowledge base (which has to be resolved).
Additionally, the generalized theory of the anti-unification process introduces a
new concept specifying an abstract circuit, where an entity is flowing caused by
a source. On the other hand, ORD can be used to restrict possible analogical
relations computed by AE : Due to the fact that AE can generalize arbitrary
concepts, fact, rules etc., ontological knowledge may be used to restrict cer-
tain undesirable generalizations. For example, for a physics domain containing
concepts like time-point, real number, force, electric charge, pressure etc., it is
undesirable to generalize force with real number or pressure with time-point. But
it is desirable to generalize different types of force, or different types of pressure.
Such restrictions can be implemented by specifying an upper-level ontology in
ORD which blocks certain (logically possible) generalizations.

A crucial problem of the presented approach concerns the control device CD.
This module needs to assess possible answers of the three main modules and
needs to implement a competition process. The natural way to realize such a
control mechanism is to learn the behavior of the systems, based on certain
heuristics. We exemplify possible situations with respect to ORD and NSLD :
with respect to underdetermined situations, ORD is not able to answer queries,
simply because the reasoning engine will not be able to prove anything with-
out sufficient knowledge. In contrast to ORD, NSLD will be able to give an
answer in any case. In such cases the usage of NSLD is clearly preferred by
the heuristic. On the other hand, if ORD is able to prove a particular fact, for
example, that a certain subsumption relation holds between two concepts A and
B, then this result should be tentatively preferred by CD in comparison to the
output of NSLD. In cases where time-critical reactions are necessary and ORD

is not able to compute an answer in time, the natural heuristic would be to use
NSLD instead. Finally, it could happen that the answers of ORD and NSLD

are contradicting each other. In this case, CD cannot base the decision on a

priori heuristics. A natural solution to this problem is to implement a reinforce-
ment learning mechanism on CD itself, namely the learning of preferred choices
(dependent on the particular domain) of the knowledge modules involved.

4.2 The Added-Value of a Hybrid Approach

The added-value of the overall architecture (as depicted in Figure 3) can be
summarized as follows:

– The architecture is robust due to the fact that the trained neural network
can give answers to queries even though noise might be contained in the
training data.

– Even in time-critical situations the proposed framework is able to react
and to provide relevant information, because the neural network can an-
swer a query immediately without any processing time, although the sym-
bolic rewriting module may be busy with computation tasks. This can be
achieved by a heuristic governing the behavior of CD in cases of time-critical
situations.
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– The architecture gives a first idea how an interaction between a symbolic
level and a sub-symbolic level of computation can be achieved. The crucial
issue is the fact that NSLD is able to learn from highly structured training
data on a neural level.

– The architecture is cognitively more plausible than pure symbolic or sub-
symbolic approaches. Although the hard problem of cognitive science,
namely how a one-to-one translation from the symbolic level to the cor-
responding neural correlate and vice versa can be defined is not resolved, at
least a particular direction of communication between such devices can be
achieved.

Besides the mentioned advantages of such an architecture for automatically
learning and adapting ontologies, covering many aspects of different reasoning
paradigms, and providing a hybrid architecture, there is the chance to integrate
various forms of cognitive capacities into one framework that are often considered
to be incompatible. Perhaps this provides an idea of how to bridge the obvious
gap between symbolic and subsymbolic processes, as well as the corresponding
differences in computing paradigms and capacities. Models of conceptual theories
(in our case of logical theories) can be coded on the neural level in a trained neu-
ral network. Additionally, this is complemented by a symbolic representation of
the semantic knowledge of the environment, allowing classical (and non-classical)
deductions and reasoning processes. In total, we think that the proposed hybrid
architecture seems to be cognitively more plausible than isolated approaches that
are purely based on one computational reasoning mechanism and representation
paradigm.

5 Related Work

Some application domains for analogical reasoning were already mentioned in
Section 3. Concerning underlying methods for modeling analogies algebraic [29],
graph-based [10], and similarity-based approaches [15] can be found.

A collection of approaches that aims at resolving inconsistencies in knowledge
representation is related to non-monotonicity. Some examples are extensions
by default sets [25] or by belief-revision processes [12]. In [9], inductive logic
programming techniques are proposed to resolve ontological inconsistencies. A
family of approaches is based on tracing techniques for detecting a set of axioms
that are responsible for particular contradictions in an ontology [3], [30].

With respect to the problem of representing symbolic data structures with
neural means, we mention as examples sign propagation [32], dynamic localist
representations [5], tensor product representations [42], or holographic reduced
representations [39]. Furthermore, researchers tried to solve the so-called infer-
ence problem: whereas symbolic approaches allow one to draw inferences from
given representations, there is no neural correlate to this capacity. An example
to solve this problem is described in [27] in which a logical deduction operator
is approximated by a neural network. Another approach is [26], where category
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theoretic methods are used for neural constructions. In [8], tractable fragments
of predicate logic are learned by connectionist networks.

Recently, some endeavor has been invested to approximate a solution to
human-level intelligence. [7] proposes a so-called cognitive substrate in order
to reduce higher cognition and the profusion of knowledge to a basis of low com-
putational complexity. [13] propose to explain cognitive diversity of reasoning
methods as a reduction to the well-known structure mapping theory [16]. Due to
the combination of large knowledge bases, efficient retrieval, an analogy engine
and learning modules, [13] is quite similar in spirit to the proposed architecture
in this paper. Further approaches that resemble the integration idea presented
here follow the tradition of cognitive architectures. Examples are the hybrid
AMBR/DUAL model [31], which is modeling neuro-symbolic processing and
analogical reasoning, the ICARUS architecture [33], which is focusing primarily
on learning, or the NARS architecture [45], which is intended for integrating
many different types of reasoning and representation formats.

6 Conclusions and Future Research

The paper proposes a hybrid architecture, based on analogical reasoning, an on-
tology rewriting device, and a module for neuro-symbolic integration, in order to
model HLI. Although each module has been proven to be successfully applicable
in theory and practice to the respective domains, many challenges remain open.
Besides the fact that the overall architecture needs to be implemented and care-
fully evaluated, there are several theoretical questions that need to be addressed.
One aspect concerns the control architecture, in particular, the question on which
basis competing answers from the different modules are evaluated. Another is-
sue concerns the interaction of the particular modules: for example, whereas
the training of the NSLD module by ORD is more or less well-understood, the
other direction, i.e. the input from NSLD to ORD is (at present) rather un-
clear. Consequently, it is currently only possible to query the neural network,
because a direct extraction of symbolic knowledge from the trained network is
an unsolved problem. Additionally, the problem of the profusion of knowledge
and representation formalisms needs to be addressed. It may be a possibility to
restrict ontological knowledge practically to hierarchical sortal restrictions that
can be coded by relatively weak description logics, but in the long run, this is
probably not sufficient. Last but not least, it would be desirable to add further
devices to the system, e.g. planning systems and action formalisms.

The ultimate test scenario for the I-Cog architecture, as well as for HLI in
general, would be a modified version of the Turing test: assume a robot operates
an avatar in a virtual environment like “Second Life”, where real humans operate
their avatars, too. If a human cannot decide whether an avatar is controlled by
a robot or a human, the robot shows HLI and higher cognition in the sense of
this paper. It is essential that such systems are built for humans to interact with
and not for robots. It is obvious that no isolated AI tool like a theorem prover, a
knowledge base, a neural network, a planning system etc. is able to control the
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behavior of an avatar in a reasonable way in such a scenario. Although we do
not claim that the presented architecture is sufficient to pass this type of “grand
challenge”, we believe that only integrated cognitive architectures like I-Cog will
have a chance at all.
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Relational Exploration –
Reconciling Plato and Aristotle⋆
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Abstract. We provide an interactive method for knowledge acquisitioncombin-
ing approaches from description logic and formal concept analysis. Based on
present data, hypothetical rules are formulated and checked against a description
logic theory. We propose an abstract framework (Logical Domain Exploration)
for this kind of exploration technique before presenting a concrete instantiation:
Relational Exploration. We give a completeness result and provide an overview
about some application fields for our approach: machine learning, data mining,
and ontology engineering.

1 Introduction

A plethora of research fields is concerned with the question of finding specifications for
a given domain. Research areas like machine learning, frequent pattern discovery, and
data mining in general aim at extracting these description on the basis of (examplary or
complete) data sets – following the Aristotelian paradigm,that every conceptualization
has to start from entities actually present. Other approaches intend to deduce these
specifications from pre-specified theories – being somehow more Platonic by assuming
the primacy of abstract ideas. The latter is the usualmodus operandie.g. in description
logic or theorem proving.

We reconcile these two antagonistic approaches by combining techniques from two
fields of knowledge representation: description logic (DL)and formal concept analysis
(FCA).

In our work, we use DL formalisms for defining FCA attributes and FCA explo-
ration techniques to obtain or refine DL knowledge representation specifications. More
generally, DL exploits FCA techniques for interactive knowledge acquisition and FCA
benefits from DL in terms of expressing relational knowledge.

In most cases, the process of conceptually specifying a domain cannot dispense of
human contribution. However, although all information needed in order to describea
domain is in general implicitly present in an expert’s knowledge, the process of explicit
formal specification may nevertheless be tedious and overstraining. Moreover, it might
remain unclear whether a specification is complete, i.e., whether it covers all valid state-
ments about the domain that can be expressed in the chosen specification language.

⋆ This work has been supported by the European Commission under contract IST-2006-027595
NeOn, and by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project.



Hence, we provide a method – called Relational Exploration (RE) – that organizes
and structures the specification process by successively asking single questions to the
domain expert in a way which minimizes the expert’s effort (in particular, it does not
ask redundant questions) and guarantees that the resultingspecification will be com-
plete in the sense stated above. To present our work, which generalize the results from
[1] and [2], we will proceed as follows: Section 2 provides a general framework for
this kind of procedure, called Logical Domain Exploration.In Section 3, we shortly
sketch the FCA basics necessary for our work and give an overview about attribute ex-
ploration. Section 4 introduces the notions from description logics needed in this work.
In Section 5, we establish the correspondence between DL models and certain formal
contexts, which enables us to apply FCA to DL. In Section 6, the RE algorithm is de-
scribed in detail. Section 7 shows certain completeness properties of the knowledge
acquired via RE. Section 9 displays direction for further work. In Section 8, we discuss
our results and consider in which fields the presented technique could be applied.

2 The Epistemic Framework:
Logical Domain Exploration

Before engaging into the technical details, we sketch the overall setting for our ap-
proach, which helps conveying the underlying idea and identifying the contributing
components. Doing this on an abstract level, we also give an opportunity to relate alter-
native approaches. This framework will be called Logical Domain Exploration.

Let ∆ be the considered domain of interest the elements of which wewill call
(DOMAIN ) INDIVIDUALS . LetL be a language the elements of which are calledFOR-
MULAE . We write∆ |= ϕ in order to state for a formulaϕ that it is valid in the domain.
Moreover let the setting be well-behaved in the way that whenever∆ |= ϕ is not true,
there is a finite individual setΓ ⊆ ∆ witnessing this (we then writeΓ † ϕ and sayΓ
SPOILSϕ).

– The EXPERT is supposed to be “omniscient” wrt. the described domain andthus
able to answer any question about it. In particular, he knowsfor all ϕ ∈ L and
Γ ⊆ ∆ whether∆ |= ϕ and whetherΓ †ϕ. Mostly, a human or a group of humans
will take the role of the expert.

– The TERMINOLOGY consists of a theoryTh ⊆ LT about the domain consisting
of axioms in some languageLT ⊇ L and a reasoning functionality, i.e. for any
statementϕ ∈ LT it can be decided whetherTh entailsϕ.1

– TheDATA consists of a set of known or recorded individualsD ⊆ ∆ and is endowed
with a special querying capability, i.e., a procedure providing for anyϕ ∈ L a set
Γ ⊆ D with Γ † ϕ if there exists one.

– The SCHEDULER can be conceived as an automated procedure initiating and co-
ordinating the ”information flow”. It links the other systemcomponents by asking
questions, processing answers, and assuring that in the endall knowledge is ac-
quired to quickly decide for anyϕ ∈ L whether∆ |= ϕ.

1 Hereby, entailment is as usual defined in a model-theoretic way: Th is said to entailϕ if any
domain∆′ wherein all formulae ofTh are valid also satisfies∆′ |= ϕ.



The system will operate as follows: We start with a (correct but in general incom-
plete) terminological theoryTh ⊂ {ψ ∈ LT | ∆ |= ψ} and dataD ⊆ ∆. The scheduler
now comes up with hypothetical formulae. Every such hypothetical formulaϕ ∈ L is
passed both to the terminology and the data. The reasoning service of the terminology
component checks whetherϕ is entailed byTh. The data is queried for a spoiler ofϕ.
Since – due to the starting conditions – the theory is consistent with the data, we get
three disjoint possible results:

– ϕ is entailed byTh . In this case,ϕ is valid in ∆, which will be responded to the
scheduler.

– Γ ∈ D spoilsϕ. Then,ϕ is not valid in∆ and the scheduler will be provided with
this negative answer.

– Neither of the previous cases occurs. Then, the current specification leaves room
for either possibility and the domain expert will have to be asked this aboutϕ’s
validity in question. If he confirms the validity ofϕ in ∆, it will be added toTh . If
he denies it, he has to provide a spoilerΓ for ϕ, which is then added to the data.

Note that querying the data and questioning the terminologycan be done in either order
or even in parallel. After finishing the procedure every formula ϕ ∈ L will either be
a consequence of the resulting (updated) terminology or canbe excluded via a spoiler
present in the data (updated) data. The distinction betweenL (theEXPLORATION LAN-
GUAGE) andLT (theTERMINOLOGICAL LANGUAGE) is motivated by the assumption
that in most cases not all terminologically expressible axioms will be of interest but
only those of a certain shape.

In the next chapters, we come down to an instance for the previously described
framework for logical domain exploration: Relational Exploration.

3 Formal Concept Analysis

In our instantiation, the scheduler’s task will be carried out by an extension of the at-
tribute exploration algorithm well established in FCA. This necessitates to briefly intro-
duce some basic FCA notions. We mainly follow the notation introduced in [3] being
thereference for FCA theory.

The basic notion FCA is built on is that of a formal context. Itis a common claim
in FCA that any kind of grounded data can be represented in this way.

Definition 1. A FORMAL CONTEXT K is a triple (G, M, I) with an arbitrary setG
(calledOBJECTS), an arbitrary setM (calledATTRIBUTES), and a relationI ⊆ G×M
(called INCIDENCE RELATION). We readgIm as: “objectg has attributem.” Further-
more, letgI := {m | gIm}.

The central means of expressing knowledge in FCA is via implications. Thus, in
terms of the general framework from Section 2 the underlyinglanguage consists of
implications on a fixed attribute set of atomic propositions.

Definition 2. LetM be an arbitrary set. AnIMPLICATION onM is a pair (A, B) with
A, B ⊆ M . To support intuition, we writeA�B instead of(A, B). A�B HOLDS in



a formal contextK = (G, M, I), if for all g ∈ G we have thatA ⊆ gI impliesB ⊆ gI .
We then writeK |= A�B.

For C ⊆ M and a setI of implications onM , let CI denote the smallest set with
C ⊆ CI that additionally fulfills

A ⊆ CI implies B ⊆ CI

for every implicationA�B in I.2 If C = CI, we callC I-CLOSED. We sayI ENTAIL S

A�B if B ⊆ AI.3

An implication setI will be calledNON-REDUNDANT, if for any (A�B) ∈ I we
have thatB �⊆ AI\{A�B}.

An implication setI of a contextK will be calledCOMPLETE, if every implication
A�B holding inK is entailed byI.

I will be called anIMPLICATION BASE of a formal contextK if it is non-redundant
and complete.

Note that implication entailment is decidable in linear time ([4]). Therefore, know-
ing a domain’s implication base allows fast handling of its whole implicational theory.
Moreover, for every formal context, there exists a canonical implication base ([5]).

The attribute exploration algorithm our work is based on wasintroduced in [6]. Due
to space reasons, we omit to display it in detail and refer thereader to the literature.

Essentially, the following happens: the domain to explore is formalized as a formal
contextK = (U, M, I). Usually, it is not known completely in advance. However, pos-
sibly, some entities of the universeg ∈ U are already known, as well as their associated
attributesgI .

The algorithm now starts presenting questions of the form

“Does the implicationA�B hold in the contextK = (U, M, I)?”

to the human expert. The expert might confirm this. In this case, A � B is archived
as part ofK’s implicational baseIB. The other case would be thatA � B does not
hold in (U, M, I). But then, there must exist ag ∈ U with A ∈ gI andB �∈ gI . The
expert is asked to input thisg andgI .4 The procedure terminates when the implicational
knowledge of the universe is completely acquired, i.e., theimplications of the formal
context built from the entered counterexamples coincide with those entailed byIB.

In the approach presented here, we will exploit the capability of attribute exploration
to efficiently determine an implicational theory. Notwithstanding, we extend the under-
lying language5 from purely propositional to certain DL expressions being introduced
in the next section.

2 Note, that this is well-defined, since the mentioned properties are closed wrt. intersection.
3 Actually, this is a syntactic shortcut. Yet, it can be easilyseen that this coincides with the usual

entailment notion.
4 Referring to the general framework we mention that in this special case the spoiler (called

counterexample) is always a singleton set:{g} † A�B.
5 There exist already other language extensions, e.g. to Horn-logic with a bounded variable set,

see [7].



4 Description Logic

We recall basic notions from DL, following (and recommending for further reading)
[8].

Unlike the way DL is normally conceived, we use DL expressions to describe or
specifyone particular, fixeddomain.

Thus, we will start our considerations by formally defining the kind of relational
structure that we want to “talk about.”

Definition 3. An INTERPRETATION for a setA of (PRIMITIVE) CLASS NAMESanda
setR of ROLE NAMES is a pair I = (∆I , (.)I) where∆I is some set and(.)I is a
function mapping class names to subsets of∆I and role names to subsets of∆I ×∆I .

Verbally, for some primitive class nameA, AI provides all members of that class
and for some role nameR, RI yields all ordered pairs “connected” by that role.

The DL languages introduced here provide constructors for defining new concept
descriptions out of the primitive ones. Table 1 shows those constructors, their interpre-
tation (as usual defined recursively), and their availabilities in the description logics
considered here.

name interpretation F
L

0

E
L

F
L
E

A
L
E

A atomic concept AI × × × ×

⊤ universal concept ∆I × × × ×
⊥ bottom concept ∅ × × × ×

¬A atomic negation ∆I \ AI ×

C ⊓ D conjunction CI ∩ DI × × × ×

∀R.C value restriction {δ | ∀ǫ : (δ, ǫ) ∈ RI → ǫ ∈ CI} × × ×

∃R.C existential quantification{δ | ∃ǫ : (δ, ǫ) ∈ RI ∧ ǫ ∈ CI} × × ×
Table 1.syntax and semantics of the DLs considered in this paper

In the sequel, we will in general speak of a description logicDL if the presented
result or definition refers to anyDL ∈ {FL0, EL,FLE ,ALE}.

Definition 4. LetI be an interpretation andC, D beDL concept descriptions. We say
C IS SUBSUMED BYD in I (written: C ⊑I D) if CI ⊆ DI . This kind of subsumption
statements is also calledGENERAL CONCEPT INCLUSION AXIOM(GCI). Moreover, we
sayC andD are EQUIVALENT in I (written: C ≡I D) if CI = DI .

5 Subsumptions as Implications

Combinations of FCA and DL have already been described in several publications, e.g.
in [9], [10], and [11]. Our approach is motivated by [9] insofar as we use the same way
of transferring a DL setting into a formal context by considering the domain individuals
as objects and DL concept expressions as attributes.



Definition 5. Given an interpretationI = (∆I , (.)I) and a setM of DL concept
descriptions, we define the correspondingDL-CONTEXT

KI(M) := (∆I , M, I)

whereδIC :⇐⇒ δ ∈ CI , for all δ ∈ ∆I andC ∈ M .

The observation in the next theorem – though easy to see – is crucial for applying
attribute exploration for the intended purpose.

Theorem 1. Let I be an arbitrary interpretation andKI(M) a correspondingDL-
context. Then for finiteC,D ⊆ M , the implication

C�D

holds inKI(M) if and only if6

�
C ⊑I

�
D.

In the sequel, we will exploit this correspondence in the following way: employ-
ing the FCA exploration method allows us to collect all information that is valid ina
(not explicitly given) interpretation and can be expressedby DL subsumptions with
restricted maximal role depth7.

6 The Relational Exploration Algorithm

The algorithm we present here is an iterative one. In each step the maximal role depth
of the consideredDL concept descriptions will be incremented by one. In each step,
the results from previous steps will be exploited in severalways.

In the worst case, the time needed for the attribute exploration algorithm is expo-
nential with respect to the number of attributes. Thus, it isessential to see how the set
of attributes can be reduced without losing completeness.

The first exploration step is aimed at clarifying the implicational interdependencies
of DL concept descriptions with quantifier depth 0. Therefore, noroles occur yet and
we start with

M0 :=

{

{⊥} ∪ {A,¬A | A ∈ A} if DL = ALE
{⊥} ∪ A otherwise.

In the actual exploration step – the interview-like procedure described in Section3
– takes place with respect to the contextKI

i = KI
i (Mi). Every hypothetical implication

A�B for A,B ⊆ Mi presented to the expert has to be interpreted as question about
the validity of

�
A ⊑I

�
B, and will be passed to the “answering components” as

described in Section 2.
6 We use

�
{C1, . . . , Cn} to abbreviateC1⊓ . . .⊓Cn. Moreover, let

�
{C} := C and

�
{∅} :=

⊤.
7 As usual, a concept description’s role depth indicates how deep quantifiers are nested in it.



The exploration step ends up with an implication baseIBi, which – as we will
prove in Section 7 – represents the complete subsumptional knowledge of the consid-
ered domain up to role depthi.

For the next exploration step – incrementing the consideredrole depth – we have to
stipulate the next attribute setMi+1. In case of the concept descriptions preceded by an
existential quantification, the previously acquired implication baseIBi can be used to
reduce the number of attributes to consider, keeping the completeness property.

Mi+1 := M0

∪{∀R.C | R ∈ R, C ∈ Mi}
∪{∃R.

�
C | R ∈ R, C = CIBi ,⊥ �∈ C}

If consideringEL or FL0, simply discard the second resp. third line from the defi-
nition. In addition to minimizing the cardinality ofMi+1, we can accelerate the explo-
ration process by providing implications onMi+1 that are already known to be valid.
These are the following:

– {⊥}�Mi+1,
– {(A)i+1 | A ∈ A}� {(B)i+1 | B ∈ B} for every implicationA�B from IBi

(i.e., translate8 all known implications fromMi into Mi+1),
– {∀R.A | A ∈ A}�{∀R.B | B ∈ B} for every implicationA�B from IBi,

– {∃R.
�
A}� {∃R.

�
B} for all IBi-closed setsA,B ⊆ Mi with A � B where

there is noIBi-closed setC with A � C � B, and

– {∃R.
�
A, ∀R.A}� {∃R.

�
(A ∪ {A})IBi} for everyIBi-closed setA ⊆ Mi \

{A} and every concept descriptionA ∈ Mi.

With this attribute setMi+1 and the a-priori implications we start the next explo-
ration step.

In theory, this procedure can be continued to arbitrary roledepths. In some but
not in all cases a complete acquisition of knowledge can be achieved. Yet in practice,
with increasing role depth, the questions brought up by the exploration procedure will
be increasingly numerous as well as less intuitional and thus difficult to answer fora
human expert. So in many cases, one will restrict to small role depths.

7 Verification of the Algorithm

LetDLi denote the set of allDL concept descriptions with maximal role depthi. Now
we show a way how the validity of any subsumption onDLi can be checked by us-
ing just the attribute setsM0, . . . , Mi as well as the corresponding implication bases
IB0, . . . ,IBi on those sets. First, we will define functions that provide for any concept
descriptionC ∈ DLi a set of attributesC ⊆ Mi such thatC ≡I

�
C. The following

definitions and proofs are carried out forALE but can be easily adapted to the other
DLs by simply removing the irrelevant parts.

8 We will formally define and justify this translation(.)i+1 in Section 7.



Definition 6. Let I be an interpretation and the corresponding sequences(Mi), (K
I
i )

defined as above. Given the according sequenceIB0, . . . ,IBn of implication bases,
we define a sequence of functionsτi : DLi → P(DLi) in a recursive way:

τi(C) = {C} for C ∈ M0

τi(
�
C) =

⋃

{τi(C) | C ∈ C}

τi(∀R.C) = {∀R.D | D ∈ τi−1(C)}

τi(∃R.C) =

{

{⊥} if ⊥ ∈ (τi−1(C))IBi−1 ,
{∃R.

�
(τi−1(C))IBi−1} otherwise.

Moreover, let̄τi(C) := (τi(C))IBi for all C ∈ DLi.

Note that by this definition, we also haveτ̄i(⊤) = τ̄i(
�

∅) = ∅IBi . Next, we have
to show that the functions just defined behave in the desired way. The following lemma
ensures that̄τi andτi indeed map toMi.

Lemma 1. SupposeC ∈ DLi. Then we haveτi(C) ⊆ Mi and τ̄i(C) ⊆ Mi.

Proof. Obviously,τ̄i(C) ⊆ Mi wheneverτi(C) ⊆ Mi. We show the latter by induction
on the role depth considering four cases:

– C ∈ {A,¬A | A ∈ A} ∪ {⊥}. Then by definitionC ∈ Mi.
– C = ∃R.D. If ⊥ ∈ τ̄i−1(D), we getτi(C) = τi(∃R.D) = {⊥} ⊆ Mi.

Now suppose⊥ �∈ τ̄i−1(D). As immediate consequence of the induction hypothesis
we haveτ̄i−1(D) ⊆ Mi−1. Sinceτ̄i−1 gives anIBi−1-closed set, we have also
∃R.

�
τ̄i−1(D) ∈ Mi, as a look to the constructive definition ofMi immediately

shows. Therefore,τi(C) = τi(∃R.D) = {∃R.
�

τ̄i−1(D)} ⊆ Mi

– C = ∀R.D. Again, our induction hypothesis yieldsτi−1(D) ⊆ Mi−1 which implies
{∀R.E | E ∈ τi−1(D)} ⊆ Mi due to the definition ofMi and therefore also
τi(C) = τi(∀R.D) = {∀R.E | E ∈ τi−1(D)} ⊆ Mi.

– C =
�
C. W.l.o.g., we presuppose that there is no conjunction outside the quantifier

range in anyD ∈ C. So we haveτi(D) ⊆ Mi due to the three cases above, and
subsequently alsoτi(C) = τi(

�
C) =

(
⋃

{τi(D) | C ∈ C}
)

⊆ Mi. �

The next lemma and theorem show that in our fixed interpretationI, for any concept
descriptionC ∈ DLi, the entity sets fulfillingC on the one hand and̄τi(C) as well as
τi(C) on the other hand coincide.

Lemma 2. For anyC ⊆ Mi, we have
�
C ≡I

�
CIBi .

Proof. First, observe(
�
C)I =

⋂

{(C)I | C ∈ C} =
⋂

{CIi | C ∈ C} = {δ ∈ ∆I |
δ ∈ CI for all C ∈ C}. Now, considerKI

i . SinceIBi is an implication base ofKI
i ,

C � CIBi is an implication valid inKI
i , ergo all objects ofKI

i (being the individuals
δ ∈ ∆I ) fulfill C ⊆ δIi ⇒ CIBi ⊆ δIi . Therefore, oneδ has all attributes from
C exactly if it has all attributes fromCIBi . Finally, we have then{δ ∈ ∆I | δ ∈
CI for all C ∈ CIBi} =

⋂

{CI | C ∈ CIBi} = (
�
CIBi)I .

�



Theorem 2. LetC ∈ DLi. ThenC ≡I

�
τi(C) ≡I

�
τ̄i(C).

Proof. The second equivalence is a direct consequence of Lemma 2. Weshow the first
one again via induction on the role depth:

– C ∈ {A,¬A | A ∈ A} ∪ {⊥}. Then, we trivially haveCI = (
�
{C})I .

– C = ∃R.D. By induction hypothesis, we getDI = (
�

τ̄i−1(D))I , therefore
(∃R.D)I = (∃R.

�
τ̄i−1(D))I which by definition equals(

�
τi(∃R.D̃))I .

– C = ∀R.D. Again, by induction hypothesis, we getDI = (
�

τ̄i−1(D))I =
⋂

{EI | E ∈ τ̄i−1(D)}. Now, observe that the statement(δ, δ̃) ∈ RI → δ̃ ∈ DI

is equivalent to
∧

E∈τi−1(D)

(

(δ, δ̃) ∈ RI → δ̃ ∈ EI
)

and thus(∀R.D)I =

{δ | (δ, δ̃) ∈ RI → δ̃ ∈
⋂

{DI}} = {δ |
∧

E∈τi−1(D) δ ∈ (∀R.E)I} =
⋂

{(∀R.E)I | E ∈ τi−1(D)} = (
�
{∀R.E | E ∈ τi−1(D)})I which by defini-

tion is just(
�

τi(∀R.D))I .
– C =

�
C. Again, we can presume no conjunction outside the quantifierrange in

any D ∈ C. Then(
�
C)I =

⋂

{(D)I | D ∈ C} =
⋂

{(
�

τi(D))I | D ∈ C}
because of the cases shown before. Now, this is obviously thesame as

⋂

{(E)I |
E ∈ τi(D), D ∈ C} = (

�
(
⋃

{τi(D) | D ∈ C}))I = (τi(
�
C))I . �

Using these propositions, we can easily provide a method to check – using only the
closure operatorsIB0, . . . ,IBi – the validity of any subsumption onDLi with respect
to a fixed (but not explicitly known) interpretationI. It suffices to applȳτi on both sides
and then check for inclusion.

Corollary 1. LetC1, C2 ∈ DLi. ThenC1 ⊑I C2 if and only if τ̄i(C2) ⊆ τ̄i(C1).

Proof. Due to Theorem 2,C1 ⊑I C2 is equivalent to
�

τ̄i(C1) ⊑I

�
τ̄i(C2). Accord-

ing to Lemma 1, we havēτi(C1) ⊆ Mi andτ̄i(C2) ⊆ Mi. In view of Theorem 1, this
means the same as the validity of the implicationτ̄i(C1) � τ̄i(C2) in Ki. Now, since
the application of̄τ always gives a closed set with respect to all implications valid in
Ki, this is equivalent tōτi(C2) ⊆ τ̄i(C1). �

Finally, consider the functionτi from Definition 6. It is easy to see that for any
C ∈ Mi−1 by calculatingτi(C) we get a singleton set{D} with D ∈ Mi. We then have
evenC ≡I D. For the sake of readability we will just writeD = (C)i. Roughly spoken,
D is just the “equivalentMi-version” ofC. Note that evaluatingτi does not need the
implication baseIBi but onlyIB0, . . . ,IBi−1. So we have provided the translation
function we promised in Section 6.

8 Conclusion

We have introduced an interactive knowledge acquisition technique for finding DL-style
subsumption statements valid in a domain of interest. Its outstanding properties are

– minimal workload for the domain expert (i.e., no redundant questions will be posed)
and



– completeness of the resulting specification (any statementfrom the exploration lan-
guage is known to hold or not to hold).

Several current fields of AI can benefit from the results presented here.
Ontology engineering would be the first to mention. Since based on DL formalisms,

our method can obviously contribute to the development and refinement of ontologies.
RE can be used for an organized search for new GCIs9 of a certain shape (namely those
expressible byDL concept descriptions). Clearly, the description logics nowaday’s on-
tology specifications are based on are much more complex thanany ofDL. Nonethe-
less, our algorithm is still applicable since all of them incorporate the DLs considered
as exploration language candidates. Hence, any of the existent reasoning algorithms for
deciding subsumption (as for instance KAON2 [12] or FaCT [13], both capable of rea-
soning inSHIQ(D) – see [14]) can be used for the terminology part. All information
beyondDL would then be treated as background knowledge and “hidden” from the
exploration algorithm. As already pointed out, one major advantage of applying this
technique is the guarantee that all valid axioms expressible as subsumption statements
onDL with a certain role depth will certainly be found and specified.

Another topic RE can contribute to is machine learning. The supervised case cor-
responds almost directly to the RE algorithm – mostly one would have large data sets
and (almost) empty theories in this setting. Yet also unsupervised machine learning can
be carried out – by “short-circuiting” the expert such that every potential statement di-
rected to him would be automatically confirmed. Essentially, the same would be the
case for data mining tasks.

Finally, we are confident that an implementation of the RE algorithm will be a very
helpful and versatile tool for eliciting information from various knowledge resources.

9 Future Work

So, as the very next step, we plan an implementation of the presented algorithm includ-
ing interfaces for database querying as well as for DL reasoning. Applying this tool
in the ontology engineering area will in turn enable us to investigate central questions
concerning practical usability; in particular performance on real-life problems and scal-
ability (being of unprecedented relevance in the Semantic Web Technologies sector), as
well as issues concerning user acceptance will be of specialinterest for evaluation.
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Comparing Disjunctive Well-founded Semantics⋆
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Abstract. While the stable model semantics, in the form of Answer Set
Programming, has become a successful semantics for disjunctive logic
programs, a corresponding satisfactory extension of the well-founded se-
mantics to disjunctive programs remains to be found. The many current
proposals for such an extension are so diverse, that even a systematic
comparison between them is a challenging task. In order to aid the quest
for suitable disjunctive well-founded semantics, we present a systematic
approach to a comparison based on level mappings, a recently intro-
duced framework for characterizing logic programming semantics, which
was quite successfully used for comparing the major semantics for normal
logic programs. We extend this framework to disjunctive logic programs,
which will allow us to gain comparative insights into their different han-
dling of negation. Additionally, we show some of the problems occurring
when trying to handle minimal models (and thus disjunctive stable mod-
els) within the framework.

1 Introduction

Two semantics are nowadays considered to be the most important ones for nor-
mal logic programs. Stable model semantics [1] is the main two-valued approach
whereas the major three-valued semantics is the well-founded semantics [2].
These two semantics are well-known to be closely related. However, enriching
normal logic programs with indefinite information by allowing disjunctions in
the head3 of the clauses separates these two approaches. While disjunctive sta-
ble models [5] are a straightforward extension of the stable model semantics, the
issue of disjunctive well-founded semantics remains unresolved, although several
proposals exist.

Even a comparison of existing proposals is difficult due to the large vari-
ety of completely different constructions on which these semantics are based. In
[6], Ross introduced the strong well-founded semantics (SWFS) based on a top-
down procedure using derivation trees. The generalized disjunctive well-founded

⋆ This research has been partly funded by the European Commission within
the 6th Framework Programme projects REWERSE number 506779 (cf.
http://rewerse.net/) and NeOn (IST-2006-027595, cf. http://www.neon-
project.org/), and by the Deutsche Forschungsgemeinschaft under project
ReaSem.

3 For an overview of semantics for disjunctive logic programs we refer to [3] and [4].



semantics (GDWFS) was defined by Baral, Lobo, and Minker in [7], built on sev-
eral bottom-up operators and the extended generalized closed world assumption
[8]. Brass and Dix proposed the disjunctive well-founded semantics (D-WFS)
in [9] based on two operators iterating over conditional facts, respectively some
general program transformations.

In order to allow for easier comparison of different semantics, a methodology
has recently been proposed for uniformly characterizing semantics by means of
level mappings, which allow for describing syntactic and semantic dependencies
in logic programs [10]. This results in characterizations providing easy compar-
isons of the corresponding semantics.

In this paper, we attempt to utilize this approach and present level mapping
characterizations for the three previously mentioned semantics, namely SWFS,
GDWFS and D-WFS. The obtained uniform characterizations will allow us to
compare the semantics in a new and more structured way. It turns out, however,
that even under the uniform level-mapping characterizations the three semantics
differ widely, such that there is simply not enough resemblance between the
approaches to obtain a coherent picture. We can thus, basically, only confirm in
a more formal way what has been known beforehand, namely that the issue of a
good definition of well-founded semantics for disjunctive logic programs remains
widely open. We still believe that our approach delivers structural insights which
can help to guide the quest.

The paper is structured as follows. In Section 2, basic notions are presented
and we recall shortly the well-founded semantics. Then we devote one section
to each of the three semantics recalling the approach itself and presenting the
level mapping characterization. We start with SWFS in Section 3, continue with
GDWFS in Section 4 and end with D-WFS in Section 5. After that, in Section 6
we compare the characterizations looking for common conditions which might be
properties for an appropriate well-founded semantics for disjunctive programs,
and consider some of the difficulties occurring when applying the framework to
minimal models. We conclude with Section 7.

The formal proofs required for the level-mapping characterizations of the
semantics reported in this paper are very involved and technical. Due to space
limitations, it was obviously not possible to include them. They can be found in
the publicly available Technical Report [11].

2 General Notions and Preliminaries

A disjunctive logic program Π consists of finitely many universally quantified
clauses of the form H1 ∨ · · · ∨ Hl ← A1, . . . , An,¬B1, . . . ,¬Bm where Hk, Ai,
and Bj , for k = 1, . . . , l, i = 1, . . . , n, and j = 1, . . . , m, are atoms of a given
first order language, consisting of predicate symbols, function symbols, constants
and variables. The symbol ¬ is representing default negation. A clause c can be
divided into the head H1 ∨ · · · ∨ Hl and the body A1, . . . , An, ¬B1, · · · ,¬Bm. If
the body is empty then c is called a fact. We also abbreviate c by H ← A,¬B,
where H, A and B are sets of pairwise distinct atoms and, likewise, we sometimes



handle disjunctions D and conjunctions C as sets. A normal (definite) clause
contains exactly one atom in H (no atom in B) and we call a program consisting
only of normal (definite) clauses a normal (definite) logic program. We denote
normal programs by P to distinguish from disjunctive ones represented by Π.
Any expression is called ground if it contains no variables. The Herbrand base

BΠ is the set of all ground atoms that can be formed by using the given language
from Π. A literal is either a positive literal, respectively an atom, or a negative

literal, a negated atom, and usually we denote by A, B, . . . atoms and by L, M, . . .
literals. Moreover, a disjunction literal is a disjunction or a negated disjunction.
The extended Herbrand base EBΠ (conjunctive Herbrand base CBΠ) is the set of
all disjunctions (conjunctions) that can be formed using pairwise distinct atoms
from BΠ . Finally, ground(Π) is the set of all ground instances of clauses in Π
with respect to BΠ .

We continue by recalling three-valued semantics based on the truth values
true (t), undefined (u), and false (f). A (partial) three-valued interpretation I
of a normal program P is a set A ∪ ¬B, for A, B ⊆ BP and A ∩ B = ∅,
where elements in A, B respectively, are t, f , and the remaining wrt. BP are u.
The set of three-valued interpretations is denoted by IP,3. Given a three-valued
interpretation I, the body of a ground clause H ← L1, . . . , Ln is true in I if and
only if Li ∈ I, 1 ≤ i ≤ n, or false in I if and only if Li 
∈ I for some i, 1 ≤ i ≤ n.
Otherwise the body is undefined. The ground clause H ← body is true in I if
and only if the head H is true in I or body is false in I or body is undefined
and H is not false in I. Moreover, I is a three-valued model for P if and only if
all clauses in ground(P ) are true in I. The knowledge ordering is recalled which,
given two three-valued interpretations I1 and I2, is defined as I1 ≤k I2 if and
only if I1 ⊆ I2. For a program P and a three-valued interpretation I ∈ IP,3

an I-partial level mapping for P is a partial mapping l : BP → α with domain
dom(l) = {A | A ∈ I or ¬A ∈ I}, where α is some (countable) ordinal. Every
such mapping is extended to literals by setting l(¬A) = l(A) for all A ∈ dom(l).
Any ordinal α is identified with the set of ordinals β such that α > β. Thus, any
mapping f : X → {β | β < α} is represented by f : X → α. Given two ordinals
α, β, the lexicographic order (α × β) is also an ordinal with (a, b) ≥ (a′, b′) if
and only if a > a′ or a = a′ and b ≥ b′ for all (a, b), (a′, b′) ∈ α × β. This order
can be split into its components, namely (a, b) >1 (a′, b′) if and only if a > a′

for all (a, b), (a′, b′) ∈ α × β and (a, b) ≥2 (a′, b′) if and only if a = a′ and b ≥ b′

for all (a, b), (a′, b′) ∈ α × β. Additionally we allow the order ≻ which given an
ordinal (α × β) is defined as (a, b) ≻ (a′, b′) if and only if b > b′ for all (a, b),
(a′, b′) ∈ (α × β).

We shortly recall the level mapping characterization of the well-founded se-
mantics and refer for the original bottom-up operator to [2].

Definition 2.1. ([10]) Let P be a normal logic program, let I be a model for P ,

and let l be an I-partial level mapping for P . We say that P satisfies (WF) with
respect to I and l if each A ∈ dom(l) satisfies one of the following conditions.

(WFi) A ∈ I and there is a clause A ← L1, . . . , Ln in ground(P ) such that

Li ∈ I and l(A) > l(Li) for all i.



(WFii) ¬A ∈ I and for each clause A ← A1, . . . , An,¬B1, . . . ,¬Bm in

ground(P ) one (at least) of the following conditions holds:

(WFiia) There exists i with ¬Ai ∈ I and l(A) ≥ l(Ai).
(WFiib) There exists j with Bj ∈ I and l(A) > l(Bj).

If A ∈ dom(l) satisfies (WFi), then we say that A satisfies (WFi) with respect

to I and l, and similarly if A ∈ dom(l) satisfies (WFii).

Theorem 2.1. ([10]) Let P be a normal logic program with well-founded model

M . Then, in the knowledge ordering, M is the greatest model amongst all models

I for which there exists an I-partial level mapping l for P such that P satisfies

(WF) with respect to I and l.

Example 2.1. Consider the program P = {p ← ¬q; q ← q; r ← ¬p}. We obtain
the well-founded model M = {p,¬q,¬r} with l(p) = 1, l(q) = 0 and l(r) = 2.
Note that, for I = ∅ and arbitrary l, P satisfies (WF) wrt. I and l as well but I
is not the greatest such model wrt. ≤k and thus not the well-founded model.

We continue extending some of the previous notions to the disjunctive case.
Let I be a set of disjunction literals. The closure of I, cl(I), is the least set I ′ with
I ⊆ I ′ satisfying the following conditions: if D ∈ I ′ then D′ ∈ I ′ for all D′ with
D ⊆ D′, and for all disjunctions D1 and D2, ¬D1 ∈ I ′ and ¬D2 ∈ I ′ if and only
if ¬(D1∨D2) ∈ I ′. Then, I is consistent if there is no D ∈ cl(I) with ¬D ∈ cl(I)
as well4. A disjunctive three-valued interpretation I of a disjunctive program Π
is a consistent set A ∪ ¬B, A, B ⊆ EBΠ , where elements in A are t, elements
in B are f , and the remaining wrt. EBΠ are u. The body of a ground clause
H ← A,¬B is true in I if and only if all literals in the body are true in I, or false
in I if and only if there is a D such that either D ⊆ A with ¬D ∈ I or D ⊆ B
with D ∈ I5. Otherwise the body is undefined. The truth of a ground clause
H ← body is identical to normal programs and I is a disjunctive three-valued

model of Π if every clause in ground(Π) is true in I. The disjunctive knowledge

ordering �k is defined as I1 �k I2 if and only if I1 ⊆ I2 and the corresponding
level mapping is extended as follows.

Definition 2.2. For a disjunctive program Π and a disjunctive interpretation

I a disjunctive I-partial level mapping for Π is a partial mapping l : EBΠ → α
with domain dom(l) = {D | D ∈ I or ¬D ∈ I}, where α is some (count-

able) ordinal. Every such mapping is extended to negated disjunctions by setting

l(¬D) = l(D) for all D ∈ EBΠ .

Another way of representing disjunctive information are state-pairs A∪¬B,
where A is a subset of EBΠ such that for all D′ if D ∈ A and D ⊆ D′ then
D′ ∈ A, and B is a subset of CBΠ such that for all C ′ if C ∈ B and C ⊆ C ′

4 Here, a consistent set is not automatically closed, in contrast with the assumption
made in [6].

5 The extension is necessary since we might e.g. know the truth of some disjunction
without knowing which particular disjunct is true.



then C ′ ∈ B. Disjunctions in A are t, conjunctions in B are f , and all remaining
are u. A state-pair is consistent if whenever D ∈ A then there is at least one
disjunct D′ ∈ D such that D′ 
∈ B and whenever C ∈ B then there is at
least one conjunct C ′ ∈ C such that C ′ 
∈ A. The notions of models and the
disjunctive knowledge ordering can easily be adopted. Note that a state-pair is
not necessarily consistent and that it contains indefinite positive and negative
information in opposite to disjunctive interpretations where negative information
will be precise. Level mappings are adjusted to state-pairs in the following and
now we do not extend the mapping to identify l(D) = l(¬D) since in a state-pair
D is a disjunction and ¬D a negated conjunction.

Definition 2.3. For a disjunctive program Π and a state-pair I a disjunctive

I-partial level mapping for Π is a partial mapping l : (EBΠ ∪¬CBΠ) → α with

domain dom(l) = {D | D ∈ I or ¬D ∈ I}, where α is some (countable) ordinal.

3 Strong Well-founded Semantics

We start with SWFS which was introduced by Ross [6] and based on disjunctive
interpretations. The derivation rules of the applied top-down procedure are the
following. Given a set of disjunction literals I and a disjunctive program Π the
derivate I ′ is strongly derived from I (I ⇐ I ′) if I contains a disjunction D and
ground(Π) a clause H ← A1, . . . , An,¬B such that either

(S1) H ⊆ D and I ′ = (I \ {D}) ∪ {A1 ∨ D, . . . , An ∨ D} ∪ ¬B or
(S2) H 
⊆ D, H ∩ D 
= ∅, C = H \ D, and I ′ = (I \ {D}) ∪ A ∪ ¬B ∪ ¬C.

Consider a ground disjunction D, let I0 = {D} and suppose that I0 ⇐
I1 ⇐ I2 . . ., then I0, I1, I2 . . . is a (strong) derivation sequence for D. An active

(strong) derivation sequence for D is a finite derivation sequence for D whose last
element, also called a basis of D, is either empty or contains only negative literals.
A basis I = {¬l1, . . . ,¬ln} is turned into a disjunction Ī = l1 ∨ · · · ∨ ln and if I
is empty, denoting t, then Ī denotes f . Thus, a strong global tree ΓS

D
for a given

disjunction D ∈ EBΠ contains the root D and its children are all disjunctions of
the form Ī, where I ranges over all bases for D. The strong well-founded model

of a disjunctive program Π is called MS
WF

(Π) and D ∈ MS
WF

(Π), i.e. D is true,
if some child of D is false and ¬D ∈ MS

WF
(Π), i.e. D is false, if every child of

D is true. Otherwise, D is undefined and neither D nor ¬D occur in MS
WF

(Π).
In [6], it was shown that MS

WF
(Π) is a consistent interpretation and that, for

normal programs, SWFS coincides with the well-founded semantics6.

Example 3.1. The following program Π will be used to demonstrate the behavior
of the three semantics.

p ∨ q ← ¬q b ∨ l ← ¬r c ← ¬l,¬r f ← ¬e
q ← ¬q l ∨ r ← e ← ¬f, c g ← e

6 More precisely, the disjunctive model has to be restricted to (non-disjunctive) literals.



We obtain a sequence {l∨r} ⇐ {} and l∨r is true as expected. Furthermore,
there is a finite sequence in ΓS

e , namely {e} ⇐ {¬f, e ∨ c} ⇐ {¬f,¬l,¬c}
with the only (true) child and e is false. Thus, we have that MS

WF
(Π) = {l ∨

r, f,¬b,¬c,¬e,¬g} while p and q remain undefined. Literally, this is only a small
part of the model and we might close the model (e.g. ¬(e ∨ g) ∈ MS

WF
) for this

example, but the strong well-founded is not necessarily closed which does not
allow us to add this implicit information in general.

The level mapping framework is based on bottom-up operators and SWFS
is a top-down-procedure so we introduced a bottom-up operator on derivation
trees defined on Γ

S

Π
which is the power set of ΓS

Π
- the set of all strong global

trees with respect to Π.

Definition 3.1. Let Π be a disjunctive logic program, MS
WF

(Π) the strong well-

founded model, and Γ ∈ Γ
S

Π
. We define:

– TS
Π

(Γ ) = {ΓS
D

∈ ΓS
Π

| ΓS
D

contains an active strong derivation sequence

{D}, I1, . . . , Ir with child C = Īr and I1 = {D1, . . . , Dn,¬Dn+1, . . . ,¬Dm}
where ¬C ∈ MS

WF
(Π), ΓS

C
∈ Γ if C 
= {}, ΓS

Di
∈ Γ , Di ∈ MS

WF
, ΓS

Dj
∈ Γ ,

¬Dj ∈ MS
WF

for all i = 1, . . . , n and j = n + 1, . . . , m}
– US

Π
(Γ ) = {ΓS

D
∈ ΓS

Π
| for all active strong derivation sequences in ΓS

D
the

corresponding child C is true in MS
WF

(Π) and ΓS
C
∈ Γ}

The information is joined by WS
Π

(Γ ) = TS
Π

(Γ ) ∪ US
Π

(Γ ) and iterated: WS
Π

↑
0 = ∅, WS

Π
↑ n + 1 = WS

Π
(WS

Π
↑ n), and WS

Π
↑ α =

⋃

β<α
WS

Π
↑ β for limit

ordinal α. It was shown in [11] that WS
Π

is monotonic, allowing to apply the
Tarski fixed-point theorem which yields that the operator WS

Π
always has a

least fixed point, and that this least fixed point coincides with MS
WF

. This was
used to derive the following alternative characterization of SWFS.

Definition 3.2. Let Π be a disjunctive logic program, let I be a model for Π,

and let l be a disjunctive partial level mapping for Π. We say that Π satisfies

(SWF) with respect to I and l if each D ∈ dom(l) satisfies one of the following

conditions:

(SWFi) D ∈ I and ΓS
D

contains an active strong derivation sequence with

child C, ¬C ∈ I and l(D) > l(C) if C 
= {}, and there is a clause H ←
A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) which is used for the first derivation

of that sequence such that ¬Bj ∈ I and l(D) > l(Bj), 1 ≤ j ≤ m, and one

of the following conditions holds:

(SWFia) H ⊆ D such that there is Di ⊆ D with (Di ∨ Ai) ∈ I and

l(D) > l(Di ∨ Ai), 1 ≤ i ≤ n.

(SWFib) H 
⊆ D, H ∩ D 
= ∅, {C1, . . . , Cl} = H \ D, Ai ∈ I and

l(D) > l(Ai), 1 ≤ i ≤ n, and ¬Ck ∈ I and l(D) > l(Ck), 1 ≤ k ≤ l.
(SWFii) ¬D ∈ I and for each active strong derivation sequence in ΓS

D
with

child C ∈ I there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
which is used for the first derivation of that sequence such that (at least) one

of the following conditions holds:



(SWFiia’) H ⊆ D and there exists i, 1 ≤ i ≤ n, with ¬(Ai ∨ D) ∈ I,
l(D) ≥ l(Ai ∨ D).
(SWFiia”) H 
⊆ D, H ∩ D 
= ∅, and there exists i with ¬Ai ∈ I, l(D) ≥
l(Ai), 1 ≤ i ≤ n.
(SWFiib’) H ⊆ D and there exists D′ with D′ ⊆ B, D′ ∈ I and l(D) >
l(D′).
(SWFiib”) H 
⊆ D, H ∩ D 
= ∅, C = (H \ D), and there exists D′ with

D′ ⊆ (B ∪ C), D′ ∈ I and l(D) > l(D′).
(SWFiic) l(D) > l(C).

Theorem 3.1. Let Π be a disjunctive program with strong well-founded model

M . Then, in the disjunctive knowledge ordering, M is the greatest model amongst

all models I for which there exists a disjunctive I-partial level mapping l for Π
such that Π satisfies (SWF) with respect to I and l.

The characterization is obviously more involved than Definition 2.1. In fact,
even though it appears that for every true disjunction there are a sequence and a
clause satisfying (SWFia), we were unable to show that due to the missing closure
property of the strong well-founded model. Thus, we have to keep the condition
(SWFib). Moreover, it can be checked that all the cases for negated disjunctions
yield that (SWFiic) holds as well. We therefore could have formulated (SWFii)
just using (SWFiic), but for a better comparison to the characterization of well-
founded semantics and the following semantics we separate the case. We continue
with the example.

Example 3.2. (Example 3.1 continued) As shown in [11], we obtain l(D) = α,
where α is the least ordinal such that ΓS

D
∈ (WS

Π
↑ (α + 1)) = WS

Π
(WS

Π
↑ α).

Thus, we have l(l ∨ r) = 0 by (SWFia) and l(e) = 1 by (SWFiia’) and therefore
l(f) = 2 by (SWFia). Moreover, l(b) = 1 by (SWFiib’) whereas l(c) = 1 by
(SWFiib”). Note that in case of b, c, and e also (SWFiic) is satisfied.

It should be mentioned that the reference to derivation sequences in the
conditions is also necessary because of the missing closure property of MS

WF
(Π).

4 Generalized Disjunctive Well-founded Semantics

Baral, Lobo, and Minker introduced GDWFS [7] based on state-pairs. They
applied various operators for calculating the semantics and we recall at first T D

S

and FD
S

for disjunctive programs.

Definition 4.1. Let S be a state-pair and Π be a disjunctive program. Let T ⊆
EBΠ and F ⊆ CBΠ .

T D
S

(T ) = {D ∈ EBΠ | D undefined in S, H ← A1, . . . , An, ¬B1, . . . ,¬Bm

in ground(Π) such that for all i, 1 ≤ i ≤ n, (Ai ∨Di) ∈ S or (Ai ∨Di) ∈ T , Di

might be empty, ¬Bj ∈ S for all j, 1 ≤ j ≤ m, and (H ∪
⋃

i
Di) ⊆ D.}

FD
S

(F ) = {C ∈ CBΠ | C is undefined in S, A ∈ C, and for all clauses

H ← A1, . . . , An, ¬B1, . . . ,¬Bm in ground(Π), with A ∈ H, at least one of

the following three cases holds: (B1 ∨ · · · ∨ Bm) ∈ S, ¬(A1 ∧ · · · ∧ An) ∈ S, or

¬(A1 ∧ · · · ∧ An) ∈ F}



TD
S

is bottom-up and FD
S

is top-down: T D
S

↑ 0 = ∅, T D
S

↑ (n+1) = T D
S

(T D
S

↑
n), T D

S
=

⋃

n<ω
T D

S
↑ n, and FD

S
↓ 0 = CBΠ , FD

S
↓ (n + 1) = FD

S
(FD

S
↓ n),

FD
S

=
⋂

n<ω
FD

S
↓ n.

There are two more operators defined for definite programs which necessitates
the following program transformations. Given a disjunctive program Π and a
state-pair S, DIS(Π) is obtained by transferring all negated atoms in the body
of each clause of Π as atoms to its head. Then, Dis(Π, S) results from DIS(Π)
by reducing the clauses in DIS(Π) as follows: remove atoms from the body
of a clause if they are true in S, remove a clause if its head is true in S, and
remove atoms from the head of a clause if they are false in S. This is similar
to the construction used for stable models and we recall TD

Π
(T ), a simplification

of T D
S

(T ) to definite programs. Given a definite (disjunctive) program Π and
T , a subset of EBΠ , we have that TD

Π
(T ) = {D ∈ EBΠ | H ← A1, . . . , An in

ground(Π) such that for all i, 1 ≤ i ≤ n, (Ai ∨Di) ∈ T , Di might be empty, and
(H ∪

⋃

i
Di) ⊆ D.} We then iterate TD

Π
↑ 0 = ∅, TD

Π
↑ (n + 1) = TD

Π
(TD

Π
↑ n),

and TD
Π

=
⋃

n<ω
TD

Π
↑ n.

For deriving indefinite false conjunctions the Extended Generalized Closed
World Assumption (EGCWA) [8] is applied. It intuitively says that a conjunction
can be inferred to be false from Π if and only if it is false in all minimal models
of Π where a minimal model [12] is a two-valued model M of Π such that no
subset of it is a model as well.

The previous two constructions yield the operators TED
S

= {D | D ∈
TD

Dis(Π,S) and D 
∈ S} and FED
S

= {C | C ∈ EGCWA(Dis(Π, S) ∪ S) and

C 
∈ S}. Now we can combine all the operators and obtain

SED(S) = S ∪ T D
S ∪ ¬FD

S ∪ TED
S ∪ ¬FED

S .

The iteration is done via M0 = ∅, Mα+1 = SED(Mα), and Mα =
⋃

β<α
Mβ

for limit ordinal α, and has a fixed point [7]. The fixed point corresponds to
the generalized disjunctive well-founded model MED

Π
which is consistent [7].

However, for normal logic programs in general, the well-founded semantics and
GDWFS do not coincide.

Example 4.1. Recall the program from Example 3.1. We have MED
Π

= {l ∨
r, q, f,¬p,¬b,¬c,¬e,¬g,¬(l ∧ r)}. Note that MED

Π
is closed in so far that any

superset of a true disjunction (false conjunction) is true (false) as well. Moreover,
the semantics concludes q to be true from q ← ¬q. This is exactly the kind of
reasoning which is not applied for the well-founded semantics, thus being the
cause for GDWFS and WFS not to coincide on normal programs.

We continue with the level mapping characterization of GDWFS.

Definition 4.2. Let Π be a disjunctive logic program, let the state-pair I be a

model for Π, and let l1, l2 be disjunctive I-partial level mappings for Π. We say

that Π satisfies (GDWF) with respect to I, l1, and l2 if each D ∈ dom(l1) and

each ¬C ∈ dom(l1) satisfies one of the following conditions:



(GDWFi) D ∈ I and there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in

ground(Π) with H ⊆ D such that ¬Bj ∈ I and l1(D) >1 lt(¬Bj), t ∈
{1, 2}, for all j = 1, . . . , m, and, for all i = 1, . . . , n, there is Di ⊆ D with

(Di ∨ Ai) ∈ I where l1(D) > l1(Di ∨ Ai) or l1(D) >1 l2(Di ∨ Ai).

(GDWFii) ¬C ∈ I with atom A ∈ C and for each clause H ← A1, . . . , An,
¬B1, . . . ,¬Bm in ground(Π) with A ∈ H (at least) one of the following

conditions holds:

(GDWFiia) ¬(A1 ∧ . . . ∧ An) ∈ I and l1(¬C) ≥ l1(¬(A1 ∧ . . . ∧ An)).

(GDWFiia’) ¬(A1 ∧ . . . ∧ An) ∈ I and l1(¬C) >1 l2(¬(A1 ∧ . . . ∧ An)).

(GDWFiib) (B1 ∨ . . . ∨ Bm) ∈ I and l1(¬C) >1 lt(B1 ∨ . . . ∨ Bm) for

t ∈ {1, 2}.

and each D,¬C ∈ dom(l2) satisfies one of the following conditions:

(GDWFi’) D ∈ I and there is a clause H1 ∨ · · · ∨ Hl ← A1, . . . , An,¬B1,
. . . ,¬Bm in ground(Π) such that ∅ 
= ((H ∪B) \D′) ⊆ D, Hk ∈ D′ for each

¬Hk ∈ I with l2(D) >1 lt(¬Hk), t ∈ {1, 2}, Bj ∈ D′ for each ¬Bj ∈ I with

l2(D) >1 lt(¬Bj), t ∈ {1, 2}, for all k = 1, . . . , l and all j = 1, . . . , m, and,

for all i = 1, . . . , n, there is Di ⊆ D with (Di ∨ Ai) ∈ I where l2(D) >2

l2(Di ∨ Ai) or Ai ∈ I where l2(D) >1 ls(Ai), s ∈ {1, 2}.

(GDWFii’) ¬C ∈ I and C ∈ EGCWA(Dis(Π, S)∪S), C 
∈ S and l2(¬C) >1

lt(L), t ∈ {1, 2}, if and only if L ∈ S.

The reason for introducing two mappings is to extrapolate exactly the si-
multaneous iteration of the two operators dealing with positive, negative respec-
tively, information. The very same argument necessitates the different orderings.
From a more general perspective, e.g. (GDWFiia) and (GDWFiia’) employ ba-
sically the same kind of dependency, just the proof of the following theorem
stating the equivalence enforces the diverse conditions.

Theorem 4.1. Let Π be a disjunctive program with generalized disjunctive well-

founded model M . Then, in the disjunctive knowledge ordering, M is the greatest

model amongst all models I for which there exist disjunctive I-partial level map-

pings l1 and l2 for Π such that Π satisfies (GDWF) w.r.t. I, l1, and l2.

Example 4.2. (Example 4.1 continued) From [11] we know that if D ∈ T D
Mα

then

β is the least ordinal such that D ∈ T D
Mα

↑ (β+1) and l1(D) = (α, β), if D ∈ TED
Mα

then β is the least ordinal such that D ∈ TD

Dis(Π,Mα) ↑ (β + 1) and l2(D) =

(α, β). For negative conjunctions it holds that l1(¬C) = (α, 0) if C ∈ FD
Mα

and

l2(¬C) = (α, 0) if C ∈ FED
Mα

. Thus, we obtain e.g. l1(l ∨ r) = l2(l ∨ r) = (0, 0)
by (GDWFi) and (GDWFi’), l1(f) = (2, 0) by (GDWFi), l2(¬p) = (0, 0) by
(GDWFii’), l1(¬e) = (1, 0) by (GDWFiia’) and l1(¬g) = (1, 0) by (GDWFiia).

The condition (GDWFii’) directly refers to EGCWA due to problems with
minimal models in the level mapping framework (see Section 6).



5 Disjunctive Well-founded Semantics

The third approach we study is the disjunctive well-founded semantics presented
by Brass and Dix in [9]. We use again disjunctive interpretations for representing
information even though in [9] the syntactically different pure disjunctions are
applied. D-WFS is only defined for (disjunctive) DATALOG programs which
are programs whose corresponding language does not have any function symbols
apart from (nullary) constants. Thus they correspond to propositional programs
and we use the notation Φ from [9] for DATALOG programs.

We recall the operators defining D-WFS. Both map sets of conditional facts

which are disjunctive clauses without any positive atoms in the body and we
start with TΦ. Given Φ and a set of conditional facts Γ , we have that TΦ(Γ ) =
{(H∪

⋃

i
(Hi\{Ai})) ← ¬(B∪

⋃

i
Bi) | there is H ← A1, . . . , An,¬B in ground(Φ)

and conditional facts Hi ← ¬Bi ∈ Γ with Ai ∈ Hi for all i = 1, . . . , n.} The
iteration of TΦ is given as TΦ ↑ 0 = ∅, TΦ ↑ (n + 1) = TΦ(TΦ ↑ n), and
TΦ =

⋃

n<ω
TΦ ↑ n and yields a fixed point.

The next operator is top-down starting with the previous fixed point also
applying the notion of heads(S) which is the set of all atoms occurring in some
head of a clause contained in a given set of ground clauses S: given a set of
conditional facts Γ we define R(Γ ) = {H ← ¬(B ∩ heads(Γ )) | H ← ¬B ∈ Γ ,
and there is no H ′ ← in Γ with H ′ ⊆ B or there is no H ′ ← ¬B′ in Γ with
H ′ ⊆ H and B′ ⊆ B where at least one ⊆ is proper.} Note that the second
condition forcing one ⊆ to be proper is necessary since otherwise we could remove
each conditional fact by means of itself. The iteration of this operator is defined
as R ↑ 0 = TΦ, R ↑ (n + 1) = R(R ↑ n) and the fixed point of this operator is
called the residual program of Φ.

Given the residual program res(Φ), the disjunctive well-founded model MΦ

is MΦ = {D ∈ EBΦ | there is H ← in res(Φ) with H ⊆ D} ∪ {¬D | D ∈ EBΦ

and ∀D′ ∈ D : D′ 
∈ heads(res(Φ))}. Though TΦ is monotonic, R is not and
we cannot generalize the following results to all disjunctive logic programs. We
should note that in [13] the approach was extended to disjunctive logic programs
by combining the transformation rules with constraint logic programming. But
the operators are not extended as well and we remain with that restriction.

Example 5.1. Recall Π from Example 3.1. It is obvious that Π is also a DATA-
LOG program and we obtain MΠ = {l ∨ r, f,¬p,¬c,¬e,¬g}. Note that MΠ is
closed by definition of the model.

In the following, we present the alternative characterization of D-WFS.

Definition 5.1. Let Φ be a DATALOG program, let I be a model for Φ, and let

l be a disjunctive I-partial level mapping for Φ. We say that Φ satisfies (DWF)

with respect to I and l if each D ∈ dom(l) satisfies one of the following conditions:

(DWFi) D ∈ I and there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in

ground(Φ) with H ⊆ D such that there is Di ⊆ D with (Di ∨ Ai) ∈ I,
l(D) > l(Di ∨ Ai), and l(D) ≻ l(Di ∨ Ai) if l(D) >1 l(Di ∨ Ai), for all

i = 1, . . . , n, and ¬Bj ∈ I and l(D) >1 l(Bj) for all j = 1, . . . , m.



(DWFii) ¬D ∈ I and for each clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in

ground(Φ) with A ∈ H and A ∈ D (at least) one of the following conditions

holds:
(DWFiia) ¬Ai ∈ I and l(D) ≥ l(Ai).
(DWFiib) D′ ∈ I with D′ ⊆ B and l(D) >1 l(D′).

(DWFii’) ¬D ∈ I and for each conditional fact H ← ¬B in TΦ with A ∈ H
and A ∈ D (at least) one of the following conditions holds:

(DWFiia’) there is H ′ ← ¬B′ in R ↑ α with H ′ ⊂ H and B′ ⊆ (B \D′)
where A 
∈ H ′, Bj ∈ B, ¬Bj ∈ I, and l(D) >1 (l(Bj) + 1) for all

Bj ∈ D′, and l(D) >1 (α, β) for some β.
(DWFiib’) D′ ∈ I with D′ ⊆ B and l(D) >1 l(D′).

It is evident that (DWFiib) and (DWFiib’) apply the same kind of depen-
dency only that the former does this wrt. to one clause while the latter may
employ several, i.e. (DWFiib) can be considered a special case of (DWFiib’)
which appears basically for easier comparison.

Theorem 5.1. Let Φ be a (disjunctive) DATALOG program with disjunctive

well-founded model M . Then, in the disjunctive knowledge ordering, M is the

greatest model amongst all models I for which there exists a disjunctive I-partial
level mapping l for Φ such that Φ satisfies (DWF) with respect to I and l.

Example 5.2. (Example 5.1 continued) From [11] we know that if D ∈ M then
l(D) = (α, β) where α is the least ordinal such that H ← in R ↑ α with H ⊆ D
and β is the least ordinal such that the corresponding conditional fact H ← ¬B
in TΦ ↑ (β + 1). Furthermore, if ¬D ∈ M then l(D) = (α, 0) where α is the
least ordinal such that for each A ∈ D there is no conditional fact H ← ¬B in
R ↑ α with A ∈ H. Thus, we obtain e.g. l(f) = (2, 0) by (DWFi), l(p) = (1, 0)
by (DWFiia’), l(c) = (1, 0) by (DWFiib) and l(e) = (1, 0) by (DWFiia).

Finally, we mention that ≻ was introduced for technical reasons in the proof
to match the precise behavior of the operators [11].

6 Discussions

6.1 Comparison of the Characterizations

It was already shown in [9] that D-WFS and GDWFS satisfy five program trans-
formation principles while SWFS does not, and that GDWFS always derives
more or equal knowledge than D-WFS [14]. However, there is no similar result
for D-WFS and SWFS since they are incomparable with respect to the derived
knowledge (cf. our main example: SWFS derives ¬b while D-WFS concludes ¬p).

We will now further compare the semantics on the basis of our characteriza-
tions. We will in particular attempt to obtain some insights into good general
criteria for a well-founded semantics for disjunctive programs.

Level-mapping characterizations separate positive and negative information.
One key insight which can be drawn from our investigations is that any charac-
terization basically states that a true disjunction D satisfies the following scheme
with respect to the model I and the program Π.



D ∈ I and there is a clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
with H ⊆ D such that there is Di ⊆ D with (Di∨Ai) ∈ I, l(D) > l(Di∨Ai),
for all i = 1, . . . , n, and ¬Bj ∈ I and l(D) > l(Bj) for all j = 1, . . . , m.

We can see that this corresponds in general to (SWFia) from Definition
3.2, to (GDWFi) from Definition 4.2, and to (DWFi) from Definition 5.1. We
only have to consider that the relation > is technically not sufficient and that
we sometimes apply a more precise order. Nevertheless, in all cases we obtain
levels such that l(D) is greater with respect to the specific ordering. There are
further differing details. For (SWF), we have to abstract additionally from the
notion of derivation sequences and their children, and there is also (SWFib)
which arises from proof-theoretical treatments. In case of (GDWF) we have
additionally a condition (GDWFi’) but that is the part (corresponding to TD

Π
)

which derives more knowledge than the well-founded semantics and should thus
not be an intended result for a well-founded semantics for disjunctive programs.
We claim that the condition given above is the ’disjunctive’ version of (WFi)
from Definition 2.1 and we propose it to be a condition for any semantics aiming
to extend the well-founded semantics to disjunctive programs.

If we look for adequate extensions of (WFii) to disjunctive programs then
we see that the conditions for negative information differ more. However, we
still obtain straightforward extensions of (WFii) for each of the semantics only
abstracting a little from the technical details. We generalize to the following
scheme:

¬D ∈ I and for each clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
with A ∈ H and A ∈ D (at least) one of the following conditions holds:

(iia)¬α ∈ I and l(D) ≥ l(α).
(iib) D′ ∈ I with D′ ⊆ B and l(D) >1 l(D′).

For SWFS, we have (SWFiia’) with α = D ∨Ai and (SWFiia”) with α = Ai

corresponding to (iia) depending on whether H ⊆ D or H 
⊆ D but H ∩D 
= ∅7,
and (SWFiib’) as equivalent to (iib). In case of GDWFS, we have (GDWFiia) and
(GDWFiia’) both with α = ¬(A1∧. . .∧An) for (iia) and (GDWFiib) for (iib). We
only have to take care that l(D) has to be l(¬D) in this case since we are dealing
with negated conjunctions and thus indefinite information. Finally, (DWFiia)
with α = Ai and (DWFiib) correspond to (iia) and (iib), respectively. We claim
as well that the scheme above should be part of any well-founded semantics for
disjunctive programs ignoring some minor differences depending e.g. on whether
we represent negative information by conjunctions or disjunctions.

Unfortunately, since positive information may be indefinite, it is also possible
to obtain a correspondence to (iib) which results from several clauses (consider
the program Π = {p ∨ q ←; r ← s,¬p; s ← ¬q} where ¬r is derivable). This is
covered by (SWFiic), (GDWFii’), and (DWFiib’). Still, this is not the whole char-
acterization for any of the semantics. (SWFiib”) extends (SWFiib’) to include
particular atoms from the head. (GDWFii’) is in fact much more powerful by

7 Note that in both cases there is an A common to H and D.



means of the EGCWA and allows for deriving more knowledge difficult to char-
acterize in a clause-based approach. In case of D-WFS we also have (DWFiia’)
which resolves the elimination of non-minimal clauses, a feature not contained
in SWFS and also covered by (GDWFii’) for GDWFS.

Summarising, it is obvious (and certainly expected) that it is in the derivation
of negative information where the semantics differ wildly. All characterizations
contain extensions of (WFii), but contain also additional non-trivial conditions
some of which are difficult to capture within level mapping characterizations.
The obtained uniform characterizations thus display in a very explicit manner
the very different natures of the different well-founded semantics – there is simply
not enough resemblance between the approaches to obtain a coherent picture.
We can thus, basically, only confirm in a more formal way what has been known
beforehand, namely that the issue of a good definition of well-founded semantics
for disjunctive logic programs remains widely open. We believe, though, that our
approach delivers structural insights which can guide the quest.

6.2 Minimal Models

As mentioned when dealing with the EGCWA appearing in GDWFS it is diffi-
cult within the level mapping framework to characterize minimal models which
are the main evaluation principle for EGCWA. In the appendix of [11] it was
concluded that the best possible characterization obtained for minimal models
is the following:

Corollary 6.1. ([11]) Let Π be a definite disjunctive program and M be a model

of Π. If there exists a total level mapping l : BΠ → α such that for each A ∈ M
exists a clause A∨H1∨· · ·∨Hl ← A1, . . . , An in ground(Π) with Ai ∈ M , Hk 
∈
M or l(Hk) > l(A), and l(A) > l(Ai), for all i = 1, . . . , n and all k = 1, . . . , l,
then M is a minimal model of Π.

This is of course not a characterization but just saying that a model satisfying
the given level mapping characterization is in fact minimal. Unfortunately, it is
not possible to state this the other way around since there are minimal models
which do not satisfy this condition8.

Example 6.1.

a ∨ b ←

a ← b

b ← a

This program has only one minimal model {a, b}, so according to the condition
above, the first clause cannot be used since both atoms in the head are true.
With the remaining two clauses we cannot have a level mapping satisfying the
given condition since we must have l(a) > l(b) and l(b) > l(a) which is not
possible.

8 Note though that in [15] a similar result was obtained working in both directions
restricted to head-cycle free programs.



Apparently, the condition imposed is too strong but all attempts (cf. [11])
to correct the problem end up with a condition too weak being satisfied also by
models which are not minimal.

We can thus not apply a more precise condition for EGCWA. More generally,
any semantics based on minimal models seems to fail being characterized in
the framework (excluding cases like GDWFS where we simply do not treat the
details of EGCWA). So surprisingly, even though disjunctive stable models are
a straightforward extension of stable models, the corresponding characterization
does not extend easily if at all.

It remains to be said that in opposite to that there exist characterizations for
various semantic extensions of the well-founded semantics, though being rather
complicated and diverse, which might allow the conclusion that (almost) any of
the approaches has a better structural foundation than minimal models.

7 Conclusions

We have characterized three of the extensions of the well-founded semantics to
disjunctive logic programs. It has been revealed that these characterizations are
non-trivial and we have seen that they share a common derivability for true dis-
junctions. The conditions for deriving negative information however vary a lot.
Some parts of the characterizations are common extensions of conditions used
for the well-founded semantics while others cover specific deduction mechanisms
occurring only in one semantics. We have obtained some structural insights into
the differences and similarities of proposals for disjunctive well-founded seman-
tics, but the main conclusion we have to draw is a negative one: Even under our
formal approach which provides uniform characterizations of different semantics,
the different proposals turn out to be too diverse for a meaningful comparison.
The quest for disjunctive well-founded semantics thus remains widely open. Our
uniform characterizations provide, however, arguments for approaching the quest
in a more systematic way.

In this paper, we covered only those of the well-founded semantics which
a priory appeared to be the most important and promising ones. Obviously,
further insights could be obtained from considering also the remaining proposals
reported e.g. in [16–20, 14].
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Abstract. The aim of this paper is to present a formal semantics in-
spired by the notion of Mental Imagery, largely researched in Cognitive
Science and Experimental Psychology, that grasps the full significance
of the concept of context. The outcomes presented here are considered
important for both the Knowledge Representation and Philosophy of
Language communities for two reasons. Firstly, the semantics that will
be introduced allows to overcome some unjustified constraints imposed
by previous quantificational languages of context, like flatness or the use
of constant domains among others, and increases notably their expressive
power. Secondly, it attempts to throw some light on the debate about the
relation between meaning and truth by formally separating the condi-
tions for a sentence to be meaningful from those that turn it true within
a context.

1 Introduction

In human communication every sentence is uttered in a context and interpreted
in a context. These contexts are regarded as the set of facts that hold true
at the time of utterance and interpretation respectively. If a sentence refers
unambiguously to a fact that is universally accepted, it will be considered true
regardless of the differences between the context of the agent who uttered it
and the agent who interprets it. This is the case of mathematics, which is based
on an unambiguous formal language that expresses facts derived from a set of
universally accepted axioms, such as the Zermelo-Fraenkel set theory. Quine [1]
referred to these sentences as “eternal” and looked for a language whose sentences
were all of this kind. However, in contrast with the language of mathematics,
human language, and consequently that of any form of artificial intelligence,
is highly dependent on context. And as a consequence of this, Quine’s project
turned to be a difficult enterprise, that could result even impossible, if the notion
of context is not included in the characterization of the truth function.

Although the interest in a formal theory of context within the AI community
had already been present years before, there was no official research programme
in this direction until in 1993 McCarthy [2] presented it as a candidate solution

⋆ This work has been funded by Tecnalia-Labein (Building 700, Bizkaia Technology
Park, 48160 Derio, Spain) under the FCT-Iñaki Goenaga doctoral scholarship pro-
gramme.



for the problem of generality [3]. Since then, many logics [4–7] have emerged
with the aim of capturing all of the common-sense intuitions about contextual
reasoning that were introduced in [2]. However, most of these languages only
deal with the propositional case and are therefore unable to treat contexts as
first-class citizens included in the domain of discourse, what is one of the main
desiderata behind the formalization of contexts. Only the quantificational logic
of context presented in [6] is capable of formulating statements that predicate
on contexts. Nevertheless, its semantics is too restrictive and imposes counter-
intuitive constraints like flatness [5] or the use of constant domains [8] among
others. Due to the lack of an adequate solution to the challenges posed in [2],
Guha and McCarthy [9] restated the initial motivations by providing a classifica-
tion on the different kinds of contexts that a satisfactory logic of context should
be able to represent.

In parallel with the research in contextual reasoning developed in AI, the
theory of a mental representation of ideas in the form of mental images 1 has
been largely researched by cognitive scientists, experimental psychologists and
philosophers [10]. Although there exist a number of controversies on how these
images are formed or if after all they are images or not, the common thesis is
that mind can recreate quasi-perceptual experiences similar to those that are
presumed to be caused by external factors. According to the analog or quasi-

pictorial theory of imagery [11], the human ability for the interpretation of sym-
bols is equivalent to the recreation of quasi-perceptual experiences by mind. The
memory of past perceptual experiences and their possible recombination are the
basis of the imagery that an agent uses when interpreting a sentence.

We endorse the quasi-pictorial theory of imagery and argue that by taking
it as an inspiration we can develop a logic of context that meets the challenges
introduced by [2]. This inspiration is mainly realized in two features of our
semantics. Firstly, in contrast with the truth-conditional theory of meaning, in
our logic the meaning of a sentence will be regarded as a set of quasi-perceptual
experiences instead of as a set of worlds. Secondly, a sentence will be considered
to be supported by a context if its meaning is part of the image produced by the
interpretation of that context. We claim that this separation between meaning
and truth is necessary to grasp the concept of context in its full extent.

In this paper we present a semantics that formalizes a conceptualization of
a quasi-pictorial theory of Mental Imagery by which it notably increases the ex-
pressiveness of previous logics of context and overcomes some difficulties posed
by them. The paper is structured as follows. First, we introduce informally the
main features of the logic and compare it with previous logics of context and
other formalisms. Second, the language of our logic and its formation rules are
described. Third, we define a model of interpretation inspired by a conceptual-
ization of a theory of imagery and subsequently explain the associated theory of

1 It must be noted that all along this document we do not use the term “image” with a
static connotation but we refer to both instantaneous and durative quasi-perceptual
recreations. Besides, it is not limited to visual experiences but to all the kinds of
experiences an agent can perceive through its senses.



meaning, together with the characterization of the truth function and the way
we resolve traditional problems like existence and denotation. We end the paper
by extracting the conclusions and envisaging some future work that we plan to
undertake in this line of research.

2 The Logic

Our logic cannot simply be defined as an extension to predicate calculus, because
there are some fundamental aspects in the semantics that turn it very different
from the classical model theoretic semantics of first order logic. However, we can
compare the expressive power of both logics and say that the logic presented
here increases the expressiveness of predicate calculus with identity by adding
the following capabilities:

1. Like in previous logics of context [4–7], formulas can be stated in a context.
Therefore, there is no contradiction in asserting a formula and its negation
while they are in different contexts. However, in contrast with those logics of
context based on the ist predicate [4–6], we do not force every sentence to be
preceded by a context. Instead, if a sentence is not preceded by a context, it
will be assumed to be a description of actuality. The reason for this is that,
unlike [2], we do not judge intuitively correct to state that actuality can be
transcended and therefore we consider it to be the outermost context. Never-
theless, this does not make our logic differ on the transcendence capabilities
described in [4–6], because what it is claimed as unlimited transcendence by
these approaches is actually limited in each context tree by its respective
initial context k0.

2. Formulas in our language can refer to contexts and quantify over them like
in [4, 6]. In our logic it is not allowed, however, to predicate on any context,
but only on those that are accessible from the context under which the
formula in question is being asserted. References to non-accessible contexts
will therefore fail to denote.

3. A given contextualized formula can be quoted or not depending on the con-
text in terms of which that formula is being expressed. In order to express a
formula in terms of the context in which is being contextualized it will need
to be quoted. Otherwise, it will be assumed that the meaning of the terms
used on that formula correspond to the outer context. The use of quotation
marks in a formula will therefore allow for the abstraction from the meaning
of its terms and the disambiguation of the indexicals it may contain.

4. Like suggested in [12], we differentiate between internal and external nega-
tions. While the external negation of a formula can be satisfied even if its
terms fail to denote or the formula is meaningless, the internal negation of
a formula requires that it is meaningful and its terms succeed to denote in
the context in which it is being asserted.

5. Formulas can express a parthood relation between the references of two
terms. This relation will result particularly useful when formalizing normalcy
assumptions between contexts [9]. If a context is said to be part of other



context and the latter supports a set of normalcy conditions expressed in
the form of universal quantifications, all these conditions will consequently
become normalcy assumptions in the former context.

In addition to the mentioned expressive capabilities, the semantics we present
overcomes some counter-intuitive restrictions imposed by [6] and adds some novel
ways of dealing with meaningless sentences, existence and designation. Below are
roughly introduced the fundamental aspects that characterize this semantics:

1. An image is a mereologically structured object.
2. The meaning of the non-logical symbols of our logic ranges over a set that

contains the imagery an agent possesses. This set is partially ordered ac-
cording to two mereological parthood relations that will be introduced in
the next section. In terms of possible worlds semantics, the imagery set is
equivalent to a kind of possibilia. The meaning function assigns to each con-
stant symbol a subset of the imagery containing all the possible counterparts
[13] that it can denote.

3. Like [6] we differentiate between individuals of the discourse sort and the
context sort. Like the rest of individuals contexts are interpreted as images
mereologically structured. The domain of discourse of a context consists of
its set of grounded parts. Therefore, each context defines in a natural and
flexible way its own domain of discourse over which the denotation of terms
of the discourse sort ranges. This domain is equivalent to actuality. In a given
context the denotation of terms of the context sort ranges over the set of
contexts that are accessible from it, which is equivalent to its set of figured
parts.

4. In contrast with Intensional Logic [14–16], the denotation of constant sym-
bols is not a function from contexts or states to members of the domain of
discourse. Instead, the object denoted by a constant is the unique member
of the intersection of the meaning of that constant and the grounded part
expansion of the context in question, if it is of the discourse sort, or the set of
contexts that are accessible from it, if it is of the context sort. This will help
to determine whether a symbol succeeds to denote under a certain context.

5. Unlike in [6], there is no flatness restriction among contexts. In other words,
the set of axioms holding at a particular context depends on the context
from which it is accessed.

We will make use of classical Extensional Mereology [17] for the elaboration
of the semantics. The binary relation “is part of” will be represented by the
symbol � in our model. Therefore, if an object x is said to be part of an object
y, we will write x � y. In addition to the classical operators of mereology we will
make use of the part-expansion of an object. This operation is defined below.

Definition 1. Given an object Γ , its part-expansion ↓ Γ is the set containing

every part of Γ .

↓ Γ = {x : x � Γ} (1)



3 Formal System

3.1 Syntax

A language L of our logic is any language of classical two-sorted predicate cal-
culus with identity and a infinite set of non-logical symbols, together with a
parthood relation and a set of symbols to express the contextualization, the
quotation, and the internal negation of a formula. For simplicity we will make
no use of functions. Below is the list of logical symbols of our language and the
notational convention we will use for the non-logical ones:

1. n-ary predicate symbols: Pn , Pn
1 , Pn

2 , . . .
2. Constants of the discourse sort: a , a1 , a2 , . . .
3. Constants of the context sort: k , k1 , k2 , . . .
4. Variables of both sorts: x , x1 , x2 , . . .
5. External and internal negation: ¬ , ¯
6. Connectives: ∨ , ∧ , ⊃
7. Quantifiers: ∀ , ∃
8. Identity: =
9. Parthood: ≤g , ≤f

10. Quotation marks: “ , ”
11. Auxiliary symbols: : , [ , ]

Given a language L, we will use C to refer to the set of constants of the
discourse sort, and K to refer to the set of constants of the context sort. The
set of variables of both sorts will be given by V, while P will denote the set of
predicates.

Definition 2. The set of terms T and well-formed formulas (wffs) W are in-

ductively defined on their construction by using the following formation rules:

1. Each variable or constant of any sort is a term.

2. If t1, . . . , tn are terms and Pn is an n-ary predicate, then Pn (t1, . . . , tn) and

Pn (t1, . . . , tn) are wffs.

3. If t1 and t2 are terms, then t1 = t2, t1 ≤g t2 and t1 ≤f t2 are wffs.

4. If A is a wff, then [¬A] is a wff.

5. If A and B are wffs, then [A ∨ B] , [A ∧ B] and [A ⊃ B] are wffs.

6. If A is a wff and x is a variable of any sort, then (∀x) [A] and (∃x) [A] are

wffs.

7. If A is a wff and k is a constant of the context sort, then [k : A] and [k : “A”]
are wffs.

It must be noted that the treatment of the parthood relation as a logical
symbol of our logic entails that its axiomatization as a transitive, reflexive and
antisymmetric relation will be included in the set of axioms of the logic itself.
We will refer to the axioms of Extensional Mereology [17] for this.



3.2 A Model of Interpretation

In our attempt to elaborate a formal semantics inspired by a quasi-pictorial the-
ory of mental imagery, we consider that an image is a mereologically structured
object and therefore it is a whole composed of parts. An image will be said to
model the set of facts that its parts support and consequently the truth value
assigned to a sentence will be relativized to the context under which is being
considered. However, we will differentiate between two kinds of parts of which
images may consist, namely grounded and figured parts. It is easy to understand
the intuition behind this differentiation if we consider an example in which an
agent is situated in an augmented-reality scenario. In this situation the agent will
perceive some objects as genuine parts of reality and others as artificial objects
recreated by some kind of device. We will say that the former objects are part
of the actuality constructed by this agent in a grounded sense while the latter
objects are part of the actuality constructed by this agent in a figured sense. Our
intuition is that contexts, like those artificially recreated objects of the example,
exist and are part of reality in a figured sense.

In order to capture these two different senses of parthood, the model structure
will include a grounded parthood relation and a figured parthood relation. While
the former will determine the domain of those objects of the discourse sort, the
latter will determine the domain of those objects of the context sort and their
accessibility. A formal definition of the model structure is given below.

Definition 3. In this system a model, M, is a structure M = 〈I, �g, �f , Ω,M〉
whose components are defined as follows:

1. I is a non-empty set. It consists of all the imagery an agent can recreate at

the moment she is performing the interpretation.

2. �g is a partial ordering on I. It is therefore a transitive, reflexive, and

antisymmetric relation on I. It denotes the mereological parthood relation

on the members of I in a grounded sense.

3. �f is a partial ordering on I. It is therefore a transitive, reflexive, and

antisymmetric relation on I. It denotes the mereological parthood relation

on the members of I in a figured sense.

4. Ω is a distinguished member of I. It represents the image of actuality con-

structed by the agent performing the interpretation.

5. M is a function from the non-logical symbols of L to a mapping from mem-

bers of I to subsets of I. M denotes the meaning function that assigns each

constant of L a mapping from contexts to its set of possible denotations and

each predicate of L a mapping from contexts to its extension over I. In

the definition of M given below we use the standard mathematical notation

P (X) to refer to the powerset of X.

M :











C → [I → P (I)]

K → [I → P (I)]

P → [I → P (In)]

(2)



3.3 Meaning

As introduced in the previous section, the meaning of a non-logical symbol does
not depend on the context under which the truth of the statement in which it
occurs is being considered. We consider that the meaning of a term is a subset of
I that contains all the images that term can possibly denote. This is the set of
possible counterparts [13] that term stands for. In the same way, the meaning of
a predicate symbol is defined as a subset of In. The meaning of those non-logical
symbols that are not included in the vocabulary of an agent will be equivalent
to the empty set. We will refer to these symbols as meaningless.

On the other hand, the meaning assigned to a constant or a predicate will
vary depending on whether the sentence is being asserted using the terms of
one context or the terms of other. This is the reason why the introduction of
quotation marks is important. A context will have to quote the report of a
sentence in order to dissociate itself from the meaning given to the non-logical
symbols in that sentence. This resolves the problems with statements containing
ambiguous references [9].

Assignment. We proceed to define the assignment function in our logic.

Definition 4. If x is a variable of any sort, an assignment into M is a function

ϕ such that ϕ (x) is a subset of I.

ϕ : V → [I → P (I)] (3)

It will be useful to introduce the concept of x-variant assignment for the char-
acterization of the truth function that will be presented in the next section.

Definition 5. An assignment ψ is an x-variant of an assignment ϕ if ϕ and ψ
agree on all variables except possibly x.

Valuation. As usual we will define the valuation of the non-logical symbols of
our logic in terms of the assignment and meaning functions. However, as we have
mentioned before, the valuation of the terms of the logic will not yet result in
the denotation of these, because the latter is relativized to the context under
which the truth of a particular formula is being considered. We will define this
notion more formally in the next section.

Definition 6. Given a model M = 〈I, �g, �f , Ω,M〉, an assignment ϕ and

a context ∆ member of I, a valuation VM

ϕ,∆
of the non-logical symbols of our

language into M under ϕ and in terms of ∆ is defined as follows:

1. VM

ϕ,∆
(t) = ϕ (t) (∆) if t is a variable.

2. VM

ϕ,∆
(t) = M (t) (∆) if t is a constant of any sort.

3. VM

ϕ,∆
(Pn) = M (Pn) (∆) if Pn is an n-ary predicate.



Meaningful Formula. We do not need to check the truth of a formula with
regard to a context in order to know whether it is meaningful or not. This will
only depend on the valuation of the terms and predicates it contains. Informally,
we will say that a sentence is meaningful with regard to a model constructed
by an agent if this agent can recreate some image for each of the terms in the
sentence and at least one of these images is included in the set to which she
would attribute the predicate in question. For example, let us take the sentence
“the smell of your jacket is red”. If “the smell of your jacket” and “red” are
interpreted as they are usually in English, an English speaking agent will not
be able to recreate an image of the smell of someone’s jacket that is included in
the set of images to which she would attribute the red colour. Therefore we will
say that this sentence is meaningless for that agent. Below is presented a more
formal definition of meaningful formula:

Definition 7. An atomic wff expressing the Pn-ness of a sequence of terms

t1, . . . , tn in terms of a context ∆ is said to be meaningful in a model M if and

only if there exists some assignment ϕ such that the cardinality of the intersection

of the cartesian product of the valuations of t1, . . . , tn under ϕ in terms of k and

the valuation of Pn under ϕ in terms of ∆ is equal or greater than one.

Pn (t1, . . . , tn) is a meaningful formula iff
∣

∣

[

VM

ϕ,∆ (t1) × · · · × VM

ϕ,∆ (tn)
]

∩ VM

ϕ,∆ (Pn)
∣

∣ ≥ 1
(4)

Note that the condition that the valuation of each of the non-logical symbols
included in the sentence must be different from the empty set is implicit in this
definition. Therefore, if a sentence is to be meaningful in a model, all of its
non-logical symbols must be meaningful in that model as well.

This definition can be extended to sentences expressing the parthood or iden-
tity relation between two terms. The set of meaningful formulas will be trivially
defined by induction on their construction.

3.4 Truth

The meaning of the non-logical symbols of a formula cannot determine by itself
its truth value. In our logic the truth value of a formula is relativized to the
context in which it is asserted. As we have said in the definition of a model in
our logic, the image of a context supports the set of facts that are supported by
its parts. Therefore, the first requisite for a formula to be supported by a context
is that at least one counterpart of each of the terms of that sentence is part of the
image of that context. On the other hand, one and only one counterpart can be
part of the image of the same context or otherwise the term will be an ambiguous
designator in that context. In this section, we define in what conditions a term
succeeds to denote when it is used in a particular context and how the truth
function is characterized according to this definition of denotation.



Denotation. Below we define formally the conditions under which a term suc-
ceeds to denote when considered under a certain context.

Definition 8. A term t succeeds to denote into a model M under an assignment

ϕ in terms of a context ∆ when considered under a context Γ if and only if the

cardinality of the intersection of the valuation of t under ϕ in terms of ∆ with

the grounded part-expansion of Γ , if t is of the discourse sort, or the figured

part-expansion of Γ , if t is of the context sort, is a singleton.







∣

∣VM

ϕ,∆
(t)∩ ↓g Γ

∣

∣ = 1 if t is of the discourse sort

∣

∣VM

ϕ,∆
(t)∩ ↓f Γ

∣

∣ = 1 if t is of the context sort
(5)

Definition 9. A term t fails to denote into a model M under an assignment ϕ
in terms of a context ∆ when considered under a context Γ if and only if the

cardinality of the intersection of the valuation of t under ϕ in terms of ∆ with

the grounded part-expansion of Γ , if t is of the discourse sort, or the figured

part-expansion of Γ , if t is of the context sort, is zero.







∣

∣VM

ϕ,∆
(t)∩ ↓g Γ

∣

∣ = 0 if t is of the discourse sort

∣

∣VM

ϕ,∆
(t)∩ ↓f Γ

∣

∣ = 0 if t is of the context sort
(6)

Definition 10. A term t is an ambiguous designator into a model M under an

assignment ϕ in terms of a context ∆ when considered under a context Γ if and

only if the cardinality of the intersection of the valuation of t under ϕ in terms

of ∆ with the grounded part-expansion of Γ , if t is of the discourse sort, or the

figured part-expansion of Γ , if t is of the context sort, is greater that one.







∣

∣VM

ϕ,∆
(t)∩ ↓g Γ

∣

∣ > 1 if t is of the discourse sort

∣

∣VM

ϕ,∆
(t)∩ ↓f Γ

∣

∣ > 1 if t is of the context sort
(7)

If a term succeeds to denote then we will say that it denotes that image that,
at the same time, is in its meaning and is part of the image of the context in
consideration. This is formally defined below.

Definition 11. If a term t succeeds to denote into a model M under an as-

signment ϕ in terms of a context ∆ when considered under a context Γ , its

denotation VM,Γ

ϕ,k
(t) into M under ϕ in terms of ∆ when considered under Γ is

that unique element that is member of the intersection of the valuation of t under

ϕ in terms of ∆ with the grounded part-expansion of Γ , if t is of the discourse

sort, or the figured part-expansion of Γ , if t is of the context sort.

VM,Γ

ϕ,∆
(t) =def (ιx)







x ∈
[

VM

ϕ,∆
(t)∩ ↓g Γ

]

if t is of the discourse sort,

x ∈
[

VM

ϕ,∆
(t)∩ ↓f Γ

]

if t is of the context sort.
(8)



Truth Function. Once the conditions under which a term succeeds to denote
and the value that takes its denotation have been defined, we can proceed to
characterize the truth function on a model M by induction on the construction
of the wffs of our logic.

Definition 12. Truth (�), with respect to an assignment ϕ into a model M =
〈I, �g, �f , Ω,M〉, is characterized as follows:

1. A context Γ included in the imagery I of a model M supports the assertion

[internal negation] of the Pn-ness of a sequence of terms t1, . . . , tn under an

assignment ϕ in terms of a context ∆ included in I if and only if every term

t1, . . . , tn succeeds to denote under ϕ in terms of ∆ when considered under

Γ and the tuple formed by the denotations of t1, . . . , tn under ϕ in terms of

∆ when considered under Γ belongs to [the complement of] the valuation of

Pn under ϕ in terms of ∆.

M,Γ �ϕ,∆ Pn (t1, . . . , tn) iff

t1, . . . , tn succeed to denote under ϕ in terms of ∆ in Γ

and 〈VM,Γ

ϕ,∆
(t1) , . . . ,VM,Γ

ϕ,∆
(tn)〉 ∈ VM

ϕ,∆ (Pn)

(9)

M,Γ �ϕ,∆ Pn (t1, . . . , tn) iff

t1, . . . , tn succeed to denote under ϕ in terms of ∆ in Γ

and 〈VM,Γ

ϕ,∆
(t1) , . . . ,VM,Γ

ϕ,∆
(tn)〉 ∈

[

VM

ϕ,∆ (Pn)
]C

(10)

2. A context Γ included in the imagery I of a model M supports the assertion

of the identity relation between two terms t1 and t2 under an assignment ϕ
in terms of a context ∆ included in I if and only if t1 and t2 succeed to

denote under ϕ in terms of ∆ when considered under Γ and the denotations

of t1 and t2 under ϕ in terms of ∆ when considered under Γ are equal.

M,Γ �ϕ,∆ t1 = t2 iff

t1 and t2 are proper descriptions under ϕ in terms of ∆ in Γ

and VM,Γ

ϕ,∆
(t1) = VM,Γ

ϕ,∆
(t2)

(11)

3. A context Γ included in the imagery I of a model M supports the assertion

of the grounded[figured] parthood relation of a term t1 into a term t2 under

an assignment ϕ in terms of a context ∆ included in I if and only if t1 and

t2 succeed to denote under ϕ in terms of ∆ when considered under Γ and

the denotation of t1 under ϕ in terms of ∆ when considered under Γ is a

grounded[figured] part of the denotation of t2 under ϕ in terms of ∆ when



considered under Γ .

M,Γ �ϕ,∆ t1 ≤g t2 iff

t1 and t2 succeed to denote under ϕ in terms of ∆ in Γ

and VM,Γ

ϕ,∆
(t1) �g VM,Γ

ϕ,∆
(t2)

(12)

M,Γ �ϕ,∆ t1 ≤f t2 iff

t1 and t2 succeed to denote under ϕ in terms of ∆ in Γ

and VM,Γ

ϕ,∆
(t1) �f VM,Γ

ϕ,∆
(t2)

(13)

4. A context Γ included in the imagery I of a model M supports the external

negation of a formula A under an assignment ϕ in terms of a context ∆
included in I if and only if it does not support A under ϕ in terms of ∆.

M, Γ �ϕ,∆ ¬A iff not M, Γ �ϕ,∆ A (14)

5. The following clauses are defined as usual.

M, Γ �ϕ,∆ A ∧ B iff M, Γ �ϕ,∆ A and M, Γ �ϕ,∆ B (15)

M, Γ �ϕ,∆ A ∨ B iff M, Γ �ϕ,∆ A or M, Γ �ϕ,∆ B (16)

M, Γ �ϕ,∆ A ⊃ B iff not M, Γ �ϕ,∆ A or M, Γ �ϕ,∆ B (17)

6. A context Γ included in the imagery I of a model M supports the universal

quantification of a variable x in a formula A under an assignment ϕ in

terms of a context ∆ included in I if and only if Γ supports A for every x-

variant assignment ψ under which x succeeds to denote in terms of ∆ when

considered under Γ .

M,Γ �ϕ,∆ (∀x) [A] iff

for every x-variant assignment ψ, if x succeeds to denote

under ψ in terms of ∆ in Γ then M, Γ �ψ,∆ A

(18)

7. A context Γ included in the imagery I of a model M supports the existential

quantification of a variable x in a formula A under an assignment ϕ in

terms of a context ∆ included in I if and only if Γ supports A under some

x-variant assignment ψ under which x succeeds to denote in terms of ∆ when

considered under Γ .

M,Γ �ϕ,∆ (∃x) [A] iff

for some x-variant assignment ψ,

x succeeds to denote under ψ in terms of ∆ in Γ

and M, Γ �ψ,∆ A

(19)

8. A model M supports a formula A under an assignment ϕ if and only if the

image of actuality Ω in M supports A under an assignment ϕ in terms of

Ω.

M �ϕ A iff M, Ω �ϕ,Ω A (20)



9. A context Γ included in the imagery I of a model M supports a formula A
contextualized in a context k under an assignment ϕ in terms of a context

∆ included in I if and only if k succeeds to denote under ϕ in terms of ∆
when considered under Γ and its denotation under ϕ in terms of ∆ when

considered under Γ supports A under ϕ in terms of ∆.

M,Γ �ϕ,∆ k : A iff

k succeeds to denote under ψ in terms of ∆ in Γ

and M,VM,Γ

ϕ,∆
(k) �ϕ,∆ A

(21)

10. A context Γ included in the imagery I of a model M supports the quotation

a formula A contextualized in a context ∆ under an assignment ϕ in terms

of a context ∆ included in I if and only if ∆ succeeds to denote under ϕ in

terms of ∆ when considered under Γ and its denotation under ϕ in terms of

∆ when considered under Γ supports A under ϕ in terms of its denotation

under ϕ in terms of ∆ when considered under Γ .

M,Γ �ϕ,∆ k : “A” iff

k succeeds to denote under ψ in terms of ∆ in Γ

and M,VM,Γ

ϕ,∆
(k) �

ϕ,V
M,Γ

ϕ,∆
(k) A

(22)

Definition 13. A formula A is said to be valid if and only if it is supported

by every image Γ of every model M under every assignment ϕ and in terms of

every context ∆.

� A iff (∀M) (∀Γ ) (∀ϕ) (∀∆) [M, Γ �ϕ,∆ A] (23)

As can be appreciated from the definition of the truth function, the principle
of bivalence holds with regard to both external and internal negations. However,
the bivalence with respect to the internal negation of a formula under a certain
context holds if and only if all its terms succeed to denote when considered
under that context and the sentence is meaningful, while the bivalence with
regard to the external negation of a formula holds regardless of these conditions.
Therefore the validity of the principle of bivalence can only be determined locally
in the case of internal negations. This differentiation resolves how to deal with
foreign languages [7] in the quantificational case. Concretely, this means that if a
sentence is expressed in a language different from the one an agent knows, then
the actuality constructed by this agent will not support that sentence neither its
internal negation. Below are formally expressed the principles of bivalence with
regard to both kinds of negation.

M, Γ �ϕ,∆ Pn (t1, . . . , tn) ∨ Pn (t1, . . . , tn) iff

t1, . . . , tn are proper descriptions under ϕ in terms of ∆ in Γ

and Pn (t1, . . . , tn) is a meaningful sentence.

(24)

� A ∨ ¬A in any case. (25)



On the other hand, in line with Modal Realism [13], we treat the universal
quantifier as implicitly ranging over actuality. Therefore, as can be seen in the
equation (16), only those assignments under which x succeeds to denote in the
context in consideration are required to validate the quantified formula.

The equations (18) and (19) show how this semantics facilitates entering
into an inner context from a relative actuality and reversely transcending back
from it. As can be seen in the equation (19), when entering a context the use
of quotation marks entails the change of the context in terms of which the non-
logical terms are valuated by the one in which we are entering.

4 Conclusions

In this paper we have presented a formal semantics for a logic of context that is
inspired by a quasi-pictorial theory of Mental Imagery [11], which is a very active
research area in the disciplines of Cognitive Science and Experimental Psychol-
ogy. The semantics we have elaborated not only addresses how to interpret the
reasoning between contexts but also increases the expressivity of previous logics
of context by adding some new constructors to the set of logical symbols. Among
these are the quotation marks that, like in natural language, enable an agent to
use the terms in which another agent expresses herself and the parthood rela-
tion, which results very useful when formalizing normalcy assumptions between
contexts. On the other hand, we have shown a characterization of the truth
function that allows the differentiation between external and internal negations
[12], what is necessary in order to adjust the principle of bivalence to the case
of meaningless sentences or foreign languages [7].

Besides, this semantics has proved to overcome some unjustified restrictions
that were imposed by previous quantificational logics of context [6], like flatness
or the use of constant domains among others. This makes our logic more intu-
itively appropriate for accommodating the concept of context that Guha and
McCarthy restated in [9].

From the point of view of the Philosophy of Language, we have elaborated
a theory of meaning that provides a novel solution to the classical problems
of meaningless sentences, designation and existence. The separation between
meaning and truth that we have formalized allows to identify these cases and
to deal with them adequately when it comes to evaluate the truth value of the
sentences of our language.

At the moment of writing this paper, we are looking into a complete and
sound axiomatization that allows to give a definition of derivability adequate for
our logic. We also plan to research into how to accommodate temporal concepts,
like events or actions, in this formalism.
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Abstract. The relationship and possible interplay between different
knowledge representation and reasoning paradigms is a fundamental topic
in artificial intelligence. For expressive knowledge representation for the
Semantic Web, two different paradigms – namely Description Logics
(DLs) and Logic Programming – are the two most successful approaches.
A study of their exact relationships is thus paramount.
An intersection of OWL with (function-free non-disjunctive) Datalog,
called DLP (for Description Logic Programs), has been described in [1,
2]. We provide normal forms for DLP in Description Logic syntax and
in Datalog syntax, thus providing a bridge for the researcher and user
who is familiar with either of these paradigms. We argue that our nor-
mal forms are the most convenient way to define DLP for teaching and
dissemination purposes.

1 Introduction

The Web Ontology Language OWL3 [3] has been recommended by the W3C
consortium as a standard for the Semantic Web. Based on Description Logics
[4], it provides a sound foundation for the development of sophisticated Semantic
Web technology. It is however understood that the expressivity of OWL lacks
certain features which can most naturally be covered by rule-based approaches
akin to Logic Programming [5], like F-Logic and its variants [6]. At the same time,
pure Logic Programming based approaches to ontology modelling are also being
used in practice, in particular in the form of F-Logic. Providing interoperability
between the two paradigms is thus of practical importance.

In [1] the intersection between OWL-DL and function-free disjunctive Dat-
alog has been described, and called Description Logic Programs (DLP). Since
then, this paradigm has been extended considerably. Most notably, it has been
developed into an efficient and flexible reasoning system using techniques from
disjunctive Datalog for OWL-DL reasoning [7–10] — including the translation
of a major fragment of OWL-DL to disjunctive Datalog. But it has also been
used in different contexts, e.g. for defining OWL Light− [11].

⋆ The authors acknowledge support by the German Federal Ministry for Education and
Research under the SmartWeb project (01 IMD01 B), by the Deutsche Forschungs-
gemeinschaft (DFG) under the ReaSem project, and by the EU in the IST project
NeOn (IST-2006-027595, http://www.neon-project.org/)).

3 http://www.w3.org/2004/OWL/



At the same time, DLP has been a focus of discord in the scientific dispute
about the use of open-world versus closed-world knowledge representation and
reasoning in the semantic web [12]. We believe, however, that DLP can serve
as a basic interoperability layer between these paradigms, at least for scientific
investigations, as spelled out in [12]. It may even find more practical uses if
considered as a tractable fragment of OWL in the sense of the W3C member
submission on OWL 1.14, or as a basis for the W3C Rule Interchange Format
RIF5, as it provides a bridge e.g. between OWL and the Web Rule Language
WRL6.

This short technical note has been written with the sole purpose of describing
normal forms for DLP, both in Description Logic and in Datalog syntax. We
see this as a helpful step for dissemination into adjacent fields of research and
possibly also into practice. At the same time, our normal forms can be used as
definitions for DLP which – in our opinion - are much more concise and more
transparent than others.

For clarification, we note that we do not consider Datalog to come with a
specific semantics (like the minimal model semantics) which is different from its
first-order logic semantics. We simply consider it to be a syntactic fragment of
first order logic which thus inherits its semantics. Some people prefer the notion
OWL-Horn in this case, instead of DLP, but it does not really matter in our
context.

The paper is structured as follows. In Section 2 we provide normal forms for
DLP in both DL and Datalog form, and formally prove that they are indeed
normal forms. In Section 3 we give an extended example for DLP using our
syntax, and in Section 4 we conclude.

2 Normal Forms

We assume that the reader is familiar with basic Description Logics [4], with
OWL [3] and basic notions from logic programming [5]. For detailed background
on DLP we recommend [2], and for a much shorter overview [1].

We need to fix terminology first. We call DLP the (semantic) fragment com-
mon to OWL Lite and Datalog, i.e. we abstract (for the time being) from a
concrete syntax: Every OWL Lite statement which is semantically equivalent —
in the sense of first order logic — to a (finite) set of function-free Horn clauses (i.e.
Datalog rules) constitutes a valid DLP statement. Likewise, every function-free
Horn clause which is semantically equivalent to some set of OWL Lite statements
constitutes a valid DLP statement7. Allowing integrity constraints, we call the

4 http://www.w3.org/Submission/2006/10/
5 http://www.w3.org/2005/rules/
6 http://www.w3.org/Submission/2005/08/
7 In our terminology, the set of OWL Lite statements {C ⊑ D ⊔ E, D ≡ E} would

not qualify as a set of DLP statements, although it is semantically equivalent to
{C ⊑ D, D ≡ E}, which is expressible in DLP. We are well aware of this restriction,
but will not be concerned with it in the moment, because this more general notion



resulting fragment DLP IC (or just IC). Allowing integrity constraints and equal-
ity, we call the resulting fragment DLP ICE (or ICE). We write DLP+ for the
(semantic) fragment common to OWL DL and (function-free non-disjunctive)
Datalog. Analogously, we write DLP+ IC, IC+, etc.

In the following, we will give normal forms, both on the Description Logic
side and on the Datalog side. I.e. we provide syntactic fragments which allow
expressing (semantically) everything in DLP.

2.1 Normal Form for Description Logic Syntax

Allowed are the following, where a, b, ai stand for individuals, C stands for a
concept name and R,Q,Ri, Qi,j stand for role names.

– ABox:
C(a) (individual assertion)
R(a, b) (property assertion)
a = b (ICE) (individual equivalence)

– Property Characteristics:
R ≡ Q (equivalence)
R ⊑ Q (subproperty)
⊤ ⊑ ∀R.C (C �= ⊥) (domain)
⊤ ⊑ ∀R−.C (C �= ⊥) (range)
R ≡ Q− (inverse)
R ≡ R− (symmetry)
⊤ ⊑≤1R (ICE) (functionality)
⊤ ⊑≤1R− (ICE) (inverseFunctionality)

– TBox: We allow expressions of the form

∃Q
(−)
1,1 . . .∃Q

(−)
1,m1

Left1 ⊓ · · · ⊓ ∃Q
(−)
k,1 . . .∃Q

(−)
k,mk

Leftk ⊑ ∀R
(−)
1 . . .∀R(−)

n .Right

where the following apply.
• For DLP we allow Leftj to be of the forms C, {o1, . . . , on}, ⊥ or ⊤, and
Right to be of the forms C or ⊤.

• For DLP IC we allow Leftj to be of the forms C, {o1, . . . , on}, ⊥, or ⊤,
and Right to be of the form C, ⊤, or ⊥.

• For DLP ICE we allow Leftj to be of the forms C, {o1, . . . , on}, ⊥, or
⊤, and Right to be of the form C, ⊤, ⊥, or {o}.

• For the DLP+ versions we furthermore allow Right to be of the form
∃R(−).{a}.

The superscript (−) shall indicate, that an inverse symbol may occur in
these places. Note that (by a common abuse of notation) we allow any of
k, mi, n to be zero. For k = 0 the left hand side becomes ⊤. Note also that
we could have disallowed ⊥ on the left and ⊤ on the right, since in either

of semantic equivalence is not readily accessible by syntactic means. Note, however,
that C ⊑ D ⊔ D qualifies as a DLP statement, since it is semantically equivalent to
C ⊑ D.



case the statement becomes void. Likewise, it would suffice to require n = 0
in all cases, since universal quantifiers on the right are expressable using
existentials on the left. Disallowing the existential quantifiers on the left
(while keeping universals on the right) is also possible, but at the expense
of the introduction of an abundance of new concept names. As an example,
note that ∃R.C ⊓ ∃Q.D ⊑ E would have to be translated into the set of
statements {C1 ⊓ D1 ⊑ E,C ⊑ ∀R−.C1, D ⊑ ∀Q−.D1}, where C1 and D1

are new concept names. Our representation is more compact.

2.2 Normal Form for Datalog Syntax

Allowed are the following, where x, y, z, yi, xi,j are variables, a, b, c, aj are con-
stant symbols, C,D are unary predicate symbols, and Q, R,Ri,j are binary pred-
icate symbols.

– Corresponding to ABox:
C(a) ← (individual assertion)
R(a, b) ← (property assertion)
a = b ← (individual equivalence)

– Corresponding to Property Characteristics:
Q(x, y) ← R(x, y) (subproperty)
C(y) ← R(x, y) (domain)
C(y) ← R(y, x) (range)
R(x, y) ← Q(y, x) (inverse subproperty)
R(x, y) ← R(y, x) (symmetry)
y = z ← R(x, y) ∧ R(x, z) (ICE) (functionality)
y = z ← R(y, x) ∧ R(z, x) (ICE) (inverseFunctionality)

– Corresponding to TBox: We allow rules of the form

Left(y) ← Q
(−)
1,1 (x1,1, x1,2) ∧ · · · ∧ Q

(−)
1,m1

(x1,m1
, x) ∧ Right1(x)

∧ . . .

∧ Q
(−)
k,1 (xk,1, xk,2) ∧ · · · ∧ Q

(−)
k,m1

(xk,mk
, x) ∧ Rightk(x)

∧ R
(−)
1 (x, y1) ∧ · · · ∧ R(−)

n (yn−1, y),

where Rightj(x) is of the form C(x) or R(−)(x, a), and Left(y) is of the form

D(y), or (for DLP IC) ⊥, or (for DLP ICE) y = b, or (for DLP+ versions)
Q(y, c). Furthermore, we require all variables x, y, yi, xi,j to be mutually
distinct.
The meaning of the inverse symbol here is as follows: For a binary predicate
symbol R we let R−(x, y) stand for R(y, x). A bracketed inverse symbol
in the superscript (−) hence means that the order of the arguments of the
corresponding predicate symbol is not relevant.
By slight abuse of notation we allow any of k, n,mj to be zero, which may
cause the body of the rule to be empty. For mj = 0 the form of

Q
(−)
j,1 (xj,1, xj,2) ∧ · · · ∧ Q

(−)
j,m1

(xj,mj
, x) ∧ Rightj(x)



reduces to Rightj(x), with Rightj(x) as indicated. For n = 0 we require y
to be x.

Concerning the terminology just introduced, we can show the following the-
orem.

Theorem 1. Every DLP(+) (DLP(+) IC, DLP(+) ICE) statement made in nor-

mal form for Description logic syntax is semantically equivalent to a set of

DLP(+) (DLP(+) IC, DLP(+) ICE) statements made in normal form for Datalog

syntax. Conversely, every DLP(+) (DLP(+) IC, DLP(+) ICE) statement made

in normal form for Datalog syntax is semantically equivalent to a set of DLP(+)

(DLP(+) IC, DLP(+) ICE) statements made in normal form for Description

Logic syntax.

Proof. We use the translations between Description Logic and Datalog as pro-
vided in [1, 2], and summarized in Table 1. How to obtain the semantically
equivalent statements for the ABox and the Property Characteristics parts is
evident from this summary.

Now consider a rule

Left(y) ← Q
(−)
1,1 (x1,1, x1,2) ∧ · · · ∧ Q

(−)
1,m1

(x1,m1
, x) ∧ Right1(x)

∧ . . .

∧ Q
(−)
k,1 (xk,1, xk,2) ∧ · · · ∧ Q

(−)
k,m1

(xk,mk
, x) ∧ Rightk(x)

∧ R
(−)
1 (x, y1) ∧ · · · ∧ R(−)

n (yn−1, y),

where Left(y) and Rightj(x) are as indicated above. This translates to the
statement

∃Q
(−)
1,1 . . .∃Q

(−)
1,m1

Ri1 ⊓ · · · ⊓ ∃Q
(−)
k,1 . . .∃Q

(−)
k,mk

Rik ⊑ ∀R
(−)
1 . . .∀R(−)

n .Le,

where Le is

– D if Left(x) is D(x),
– ⊥ if Left(x) is ⊥,
– {b} if Left(x) is x = b, and
– ∃Q(−).{c} if Left(x) is Q−(x, c)

and Rej is

– C if Rightj(xj,1) is C(xj,1), and

– ∃R(−).{aj} if Rightj(xj,1) is R(−)(xj,q, aj).

We need to justify our translation by showing that the resulting Datalog rule
is semantically equivalent to the Description Logic statement from which it was
obtained. It boils down to somewhat tedious equivalence transformations in first
order logic following the exhibitions in [1, 2], and we will not be bothered with



OWL DL DL statement DLP rule

ABox

indiv. assertion C(a) C(a) ←
property assertion R(a, b) R(a, b) ←
indiv. equiv. a = b ICE a = b ←
indiv. inequiv. ¬(a = b) not expressible in general

TBox

equivalence C ≡ D not expressible in general
GCI C ⊑ D D(x) ← C(x)
top ⊤ expressible
bottom C ⊑ ⊥ IC (ri) ⊥ ← C(x)
conjunction C ⊓ D ⊑ E E(x) ← C(x) ∧ D(x)

C ⊑ E ⊓ F E(x) ← C(x)
F (x) ← C(x)

disjunction C ⊔ D ⊑ E (le) E(x) ← C(x)
E(x) ← D(x)

atomic negation ¬A not expressible in general
univ. restriction D ⊑ ∀R.C (C �= ⊥) (ri) C(y) ← D(x) ∧ R(x, y)

D ⊑ ∀R.⊥ IC (ri) ⊥ ← D(x) ∧ R(x, y)
exist. restriction ∃R.C ⊑ D (C �= ⊥) (le) D(x) ← R(x, y) ∧ C(y)

∃R.⊥ ⊑ D IC (le) ⊥ ← R(x, y) ∧ C(y)
one-of 1 C ⊑ {a} ICE a = x ← C(x)

{a} ⊑ C C(a) ←
hasValue ∃R.{a} ⊑ C C(x) ← R(x, a)

C ⊑ ∃R.{a} DLP+ R(x, a) ← C(x)
one-of {o1, . . . , on} ⊑ C (le) C(oi) ← (for i = 1, . . . , n)
card. restrictions . . . not expressible in general

Property Characteristics

equivalence R ≡ Q R(x, y) ← Q(x, y)
Q(x, y) ← R(x, y)

subproperty R ⊑ Q Q(x, y) ← R(x, y)
domain ⊤ ⊑ ∀R.C (C �= ⊥) C(y) ← R(x, y)
range ⊤ ⊑ ∀R−.C (C �= ⊥) C(y) ← R(y, x)
inverse R ≡ Q− R(x, y) ← Q(y, x)

Q(x, y) ← R(y, x)
symmetry R ≡ R− R(x, y) ← R(y, x)
transitivity R(x, y) ← R(x, z) ∧ R(z, y)
functionality ⊤ ⊑≤ 1R ICE y = z ← R(x, y) ∧ R(x, z)
inverseFunctionality ⊤ ⊑≤ 1R− ICE y = z ← R(y, x) ∧ R(z, x)

Table 1. Translation from DL to Datalog, taken from [1, 2]. The abbreviation ri (le)
means right (left) of GCI only.



the details. We can, however, make our transformation transparent by means of
the transformations listed in Table 1. The statement

∃Q
(−)
1,1 . . .∃Q

(−)
1,m1

Ri1 ⊓ · · · ⊓ ∃Q
(−)
k,1 . . .∃Q

(−)
k,mk

Rik ⊑ ∀R
(−)
1 . . .∀R(−)

n .Le

can be written as the pair of statements

∃Q
(−)
1,1 . . .∃Q

(−)
1,m1

Ri1 ⊓ · · · ⊓ ∃Q
(−)
k,1 . . .∃Q

(−)
k,mk

Rik ⊑ D

D ⊑ ∀R
(−)
1 . . .∀R(−)

n .Le,

where D is a new concept name. These statements can be translated separately
into

D(x) ← Q
(−)
1,1 (x1,1, x1,2) ∧ · · · ∧ Q

(−)
1,m1

(x1,m1
, x) ∧ Right1(x)

∧ . . .

∧ Q
(−)
k,1 (xk,1, xk,2) ∧ · · · ∧ Q

(−)
k,m1

(xk,mk
, x) ∧ Rightk(x)

and
Left(y) ← D(x) ∧ R

(−)
1 (x, y1) ∧ · · · ∧ R(−)

n (yn−1, y).

By unfolding over D(x) we obtain the desired combined rule.
The translation can obviously be performed in both directions, so there is

nothing more to show.

It is possible to strengthen Theorem 1 by providing a translation between
single Description Logic statements and single Datalog rules (in normal form).
In this case we would have to disallow the property characteristics inverse on
the OWL side, which can be done since R ≡ Q− is expressible e.g. by the set of
statements {R ⊑ Q−, Q− ⊑ R}, each member of which is in turn translatable
into a single Datalog statement. Similarly, property equivalence would have to
be disallowed. We think that the form we have chosen is more concise.

Theorem 2. All description logic programs following [1, 2] can be written in

normal form.

Proof. All statements belonging to DLP as described in [1, 2] are listed in Table
1. It is easy to check that all possibly resulting Datalog statements listed in the
last column are already in normal form, which suffices to show the statement.

3 Examples

A rule of thumb for the creation of DLP ontologies is: Avoid concrete domains

and number restrictions, and be careful with quantifiers, disjunction, and nom-

inals. We give a small example ontology which includes the safe usage of the
latter constructs. It shall display the modelling expressivity of DLP.

For the TBox, we model the following sentences.



(1) Every man or woman is an adult.
(2) A grown-up is a human who is an adult.
(3) A woman who has somebody as a child, is a mother.
(4) An orphan is the child of humans who are dead.
(5) A lonely child has no siblings.
(6) AIFB researchers are employed by the University of Karlsruhe.

They can be written in DLP as follows.

Man ⊔ Woman ⊑ Adult (1)

GrownUp ⊑ Human ⊓ Adult (2)

Woman ⊓ ∃childOf−.⊤ ⊑ Mother (3)

Orphan ⊑ ∀childOf.(Dead ⊓ Human) (4)

LonelyChild ⊑ ¬∃siblingOf.⊤ (5)

AIFBResearcher ⊑ ∃employedBy.{UKARL} (6)

In normal form in Description Logic syntax these are as follows.

Man ⊑ Adult (1)

Woman ⊑ Adult (1)

GrownUp ⊑ Human (2)

GrownUp ⊑ Adult (2)

Woman ⊓ ∃childOf−.⊤ ⊑ Mother (3)

Orphan ⊑ ∀childOf.Dead (4)

Orphan ⊑ ∀childOf.Human (4)

LonelyChild ⊑ ∀siblingOf.⊥ (5)

AIFBResearcher ⊑ ∃employedBy.{UKARL} (6)

We note that for (5) we require DLP IC, while for (6) we require DLP+.
For the RBox, we use the following.

parentOf ≡ childOf− parentOf and childOf are inverse roles.

parentOf ⊑ ancestorOf parentOf is a subrole of ancestorOf.

fatherOf ⊑ parentOf fatherOf is a subrole of parentOf.

⊤ ⊑ ∀ancestorOf.Human Human is the domain of ancestorOf.

⊤ ⊑≤1fatherOf− fatherOf is inverse functional.

We can populate the classes and roles by means of an ABox in the following
way.

{Bernhard, Benedikt, Rainer, Ganter} ⊑ Man

{Ruth, Ulrike} ⊑ Woman

Bernhard = Ganter

employedBy(Bernhard, TUD)

. . .



Note that an ABox statement such as

{Ruth, Ulrike} ⊑ Woman

is simply syntactic sugar for the two statements

Woman(Ruth) Woman(Ulrike)

We therefore consider it to be part of the ABox. To be precise, the original
statement is (syntactically) not in OWL Lite, but the equivalent set of three
ABox statements is. The statement Bernhard = Ganter requires DLP ICE.

Note also that class inclusions cannot in general be replaced by equivalences.
For example, the statement

Adult ⊑ Man ⊔ Woman

is not in DLP.
For illustration, we give the knowledge base in Datalog normal form. The

TBox is as follows.

Adult(y) ← Man(y) (1)

Adult(y) ← Woman(y) (1)

Human(y) ← GrownUp(y) (2)

Adult(y) ← GrownUp(y) (2)

Mother(y) ← childOf(x, y) ∧ Woman(y) (3)

Dead(y) ← Orphan(x) ∧ childOf(x, y) (4)

Human(y) ← Orphan(x) ∧ childOf(x, y) (4)

← LonelyChild(x) ∧ siblingOf(x, y) (5)

y = UKARL ← AIFBResearcher(x) ∧ employedBy(x, y) (6)

Translating the RBox yields the following statements.

parentOf(x, y) ← childOf(y, x)

childOf(x, y) ← childOf(y, x)

ancestorOf(x, y) ← parentOf(x, y)

parentOf(x, y) ← fatherOf(x, y)

Human(y) ← ancestorOf(x, y)

y = z ← fatherOf(y, x) ∧ fatherOf(z, x)

4 Conclusions

We have presented normal forms for Description Logic Programs, both in De-
scription Logic syntax and in Logic Programming syntax. We have formally
shown that these are indeed normal forms.



We believe that these normal forms can and should be used for defining

Description Logic Programs. We have found that some of the definitions used in
the literature remain somewhat ambiguous, so that the language is not entirely
specified. This brief note rectifies this problem in providing a frame of reference.
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