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Abstract. In this paper Quantization effects are assessed for a real time
Edge based person detection use case that is based on the use of a Rasp-
berry Pi. TensorFlow architectures are presented that enable the use of
real-time person detection on the Raspberry Pi. The model quantization
is performed, performance of quantized models is analyzed, and worst-
case performance is established for a number of deep learning object
detection models that are capable of being deployed on the Pi for real-
time applications. The study shows that the inference time for a suitably
optimized TensorFlow enabled solution architecture is significantly lower
than for an unquantized model with only slight cost implications in terms
of accuracy when benchmarked against a desktop implementation. An
industrial standard floor limit value of greater than 70% is achieved on
the quantized models considered with a reduced detection time of less
than 3ms. The Deep Neural Network model is trained using the INRIA
Person Detection benchmark Dataset.

Keywords: Person Detection · Edge Intelligence· Edge Computing ·
Model Optimization · Model Quantization.

1 Introduction

Person recognition subsystems have now reached a certain level of maturity in
many autonomous detection systems. The detection subsystems range from com-
putationally less expensive use cases like simple people counting that can still
use Infra-Red (IR) systems or heat-map processing to identification problems
with more complex surveillance applications. Such cognitive applications invari-
ably depend on a deep learning framework for robust performance. The deep
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learning frameworks will encompass aspects of representation learning, high-
level abstraction of non-linear raw signal data and will contain an automatic
feature extraction capability [24].

The demand for fast and robust person detection in indoor as well as out-
door use-cases is necessary in this accelerated urbanizing environment. Central
to the use case is a requirement for the use of a TensorFlow enabled approach
within a CNN (Convolutional Neural Network) framework. Neural networks that
consist of chains of tensor operations, (geometric trans-formations, affine trans-
formations, rotation, scaling and so on) are use cases that are attracting a lot of
attention in the literature of late. Pre-processing of the input data and a suitable
framework which can process the tensor data on a device like the Pi is neces-
sary for the geometric interpretation of such operations in low cost commercial
applications [8]. Hence TensorFlow is considered as a necessary inference step
for person detection in the deep learning use case that is considered here. In
this work ‘TensorFlow lite’ is considered for the inference processes on the Pi.
The TensorFlow framework used here is an open-source framework developed
for internal use by Google for machine learning but was later released under the
Apache 2.0 open source license in the year 2015 [17].

This work also applies some recent advances in the study of the integration of
deep learning frameworks to exploit the strong inductive biases that have been
observed when applying neural networks to optimization or machine learning
problems, [11] CNNs are an essential component in a deep learning framework
used for detection and classification from image/video input. CNNs have been
the preferred neural network-based approach to pixel-wise image segmentation
over traditional image processing and computer vision techniques, especially in
real-time person detection and identification problems [12]. Unlike the conven-
tional image processing techniques which involve HOG, SVM or other gradient
based methods, Deep Learning makes it easier to implement person detection
due to its automatic feature extraction capabilities [5]. Transfer Learning have
made Deep Learning more versatile as the base model trained on a sufficiently
large dataset can be further used to find solutions of new problems with few
steps of fine-tuning for the specific use-case.

The efficacy of such deep learning frameworks is always a focus of academic
research. In this work use case performance is assessed across a GPU powered
device and an Edge computing device with regard to latency calculations as op-
posed to the standard processing time requirements in an industry-specific ap-
plication, and use of quantization approach for performance enhancement. This
paper considers the efficiency vs latency of person detection on Edge Computing
devices against a GPU accelerated device. This analysis is significant because of
the advancement of Edge Intelligence, where every technology is swiftly moving
into resource constrained devices, and there is an increased need to maintain
robust performance.

The literature is focused briefly on the types of optimization that were pre-
viously used for model optimization. There is a comparison of how various deep
learning object detection models respond to quantization.
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This paper is organized as follows. In Section II, the concept of Edge Intel-
ligence is discussed This work should be viewed very much as an example of AI
on the Edge use case based on a Pi type infrastructure. Model optimization and
compression efforts is considered in Section III. In Section IV, the experiment
is explained, and the results are analyzed. Finally, we present some conclusions
based on the results that have been obtained and some recommendations for
future work.

2 Edge Intelligence

Conventional deep learning frameworks are bulky, consume hundreds of mega-
bytes necessary for trained weight storage and the inclusion of a necessary in-
ference process. For those deep learning models that rely on dense layers, the
number of parameters can number in the billions [7]. This explosion in parame-
ters makes it challenging for reduced instruction set embedded or mobile systems
to perform such cumbersome calculations in real-time. This has motivated the
use of so-called performance ‘optimized’ neural networks that are denoted as
edge applications. The process of integrating edge computing and AI, termed as
edge intelligence, has attracted significant attention in the literature of late [10].

Fig. 1. A road map of edge intelligence on a top-down decomposition [10](left). Edge
Computing structure for IoT Devices(right)

In [19], the peripheral control devices of industrial electronic systems often set
up in the local ethernet is referred to as the edge computing infrastructure. Edge
computing is a decentralized intelligent system with independent entities as per
Kristiani et.al [18]. Edge computing has often been combined with IoT(Internet
of Things)-based decentralized and distributed data capture infrastructure for
advanced applications.
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Fig. 2. A picture of the edge computing experiment setup used in this paper. Extreme-
left is a Raspberry Pi 4 Module, center is a Pi camera module and the extreme-right
image shows the connection of Pi camera on the Raspberry Pi Module. The USB ports
helps connect the mouse and keyboard for control and the display device is connected
to the HDMI port.

In this work on person detection, the input will be captured by a pin-point
camera device which will be mounted on an edge processor. The real-time stream-
ing and processing of image is necessary at the edge device to initiate the detec-
tion process on the edge device. The Edge computing device used in this work is
a Raspberry Pi 4 with 4GB RAM. A picture of the experiment setup is attached
above in figure 2.

In [10], Deng et.al. describes the principle of edge computing as the process
of transferring the computation and communication resources to the edge of
networks, from the cloud, to reduce the latency, enabling faster responses for
end users. They also state that Edge Intelligence is a blooming field today.
Studies shows that by 2024, 40-ZB of global internet data will be generated
by IoT devices. In contrast to the growth rate of data generated by the IoT
devices, the global datacenter traffic is estimated to reach only 20.6ZB by 2021
[25]. At this stage, the conventional wisdom is to transfer the data into cloud
datacenters which will lead to network congestion. This is the reason for the
recent advancements to handle user demands at the edge-cloud servers. The
process of analyzing user data at the edge device directly can account for the
concerns of latency, monetary loss in data transfer and privacy issues associated
with data transfer and storage.

The large model size and complex matrix calculations during the inference
process in this use case poses a significant challenge for the deployment of deep
learning models on edge devices [26]. Re-design of deep learning architectures be-
come inevitable given the increased need of efficient performance of deep learning
frameworks on resource constrained devices [19].

3 Model Optimization Efforts

The efforts of model optimization can be classified into different types based on
the change in the architecture. A significant property of Deep Neural Networks
is that its inference is not affected by minor changes in weights or activation
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functions. Hence the optimization techniques started off as two-fold: modification
of network structure to increase efficiency, which led to MobileNets which use
depth-wise separable convolutions, and the second category is introduction of
quantization from floating point precision to discrete levels, owing to quantized
inference due to the constrained weights and activation values [19].

Training large deep learning networks required computing clusters of thou-
sands of machines and various methods like ensemble models were studied in
the process of constructing smaller, compressed models. The model compression
techniques were later classified into four in [7] based on the principles used. 1)
Reduction in Size by pruning, quantization and model compression. 2) Altering
the matrix multiplication by matrix factorization and filtering. 3) Based on do-
main knowledge and the data learned which includes processed like knowledge
Distillation and Transfer Learning. 4)Hybrid methods.

3.1 Mimic Nets and Mimic Loss

Neural networks have undergone different stages of evolution and further size
optimizing stages. Mimic architectures were one the first experiments, further
progressing into various model compression techniques. Mimic nets are architec-
tures which are not necessarily supporting the neurological analogy, but they are
used to mimic consistent training data [16]. Glenn et.al introduced mimic nets
as a technique to train feed-forward nets to automate classification and ranking
task in 1993.

Mimic nets have two stages of operation. The first stage is to generate an
augmented feature space from the training data input features and in the second
stage, linear boundaries to separate classification categories, the selected and
rejected options, are found. Feature selection is a substantial part of constructing
a mimic net as it also defines the order of the mimic net.

Mimic nets could classify inputs as well as rank sets of input feature and have
since been used to optimize classification and ranking tasks. Recently in 2018
[4], Plantinga et.al used a mimic architecture that was developed to mimic the
output of a spectral classifier and called it mimic loss. Mimic loss mentioned by
Plantinga is used to train a student model on a different task than the teacher
model. This solution only applies to classification and ranking problems which
make it out of scope in person detection problem.

With the increased use of analytics, Data Protection has also become seri-
ously important in every domain, be it industrial or academic or personal. This
concept of stealing data from Deep Neural Networks is possible with Mimic
Nets which were initially developed to learn the generalization function learned
by large deep learning networks. Mosafi et. al in 2019 [20] proposes the need for
protecting the data learned by networks which are deployed at the core of AI
based products and services. Though Mimic nets have proved to give promising
results in classification problems, they are susceptible to the threat of data steal-
ing, by mimicking the output of student network using a random large dataset.
This makes Mimic net an unfavorable candidate for Edge Deployment.
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3.2 Model Compression

Model Compression has been an area of research since large deep neural net-
works have been used for solving problems. Ensemble models were an option
to use smaller models to solve problems faster, but the main disadvantage of
ensemble models is that they are not suitable for applications in which real-time
predictions are needed, or in case of portable devices and sensor networks [6].
In 2006, Bucila et.al [6] proposed the use of model compression to obtain fast,
compact and accurate models.

Shallow feed-forward nets can learn deep functions using the same number
of parameters as the original deep models. The concept that is experimented by
Jimmy et. al [3], is that the shallow nets can be trained that perform similar
to complex well-organized deeper convolutional models. In the work on convolu-
tional nets by Urban et. al [23], the main emphasis was on analysis of CIFAR-10
Dataset which gave poor results when the shallow nets were trained to learn the
function from the deep learning networks and the presence of convolutional layer
was inevitable. Convolutional layers have proved to be the best neural network
layers for extracting feature information from image data and hence is important
to our problem of person detection from images and live video stream. Depth in
neural networks improve generalization capability of the model. Hence the most
effective method of model compression adopted lately is model quantization [15].

Hinton and Vinyals, a team from Google, found that an effective way to
transfer the generalization capability from a large model or ensemble of models
is to use a single model [13]. This process of transfer of the large cumbersome
model to a small model using a different kind of training is called Knowledge
Distillation. Hinton et. al [13] trained models with no convolutional layers on
CIFAR-10 dataset with an accuracy of 70.2% using distillation. In knowledge
distillation, knowledge can be transferred from one model to another model
with different architecture by training the new model on a transfer set.

In knowledge transfer learning, a base(teacher) network is first trained and
then re-purpose the network. In the re-purposing step, the knowledge is trans-
ferred to a second target(student) network to be trained on a random target
dataset. This kind of transfer learning has been found to give promising results
for learning on edge devices [25].

4 Quantization Effects

Network quantization achieves large reduction in memory and processing power
usage by reduction in precision values and operations within a model [1]. Quan-
tization enables on-device inference for deep learning models residing on Edge
Devices. Person detection can be achieved in Edge Devices using quantized Deep
Learning models. This work compares the accuracy of detection and inference
time required by the non-quantized model vs quantized models. Unlike shal-
low net, the network architecture is not altered in quantization process and the
network remains deep enough for better generalization capability.
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Fig. 3. The flow-diagram of training with simulated quantization [15]

In the flow-diagram, the ‘weight quant’ and ‘activatn quant’ are quantization
nodes integrated into the computation graph to simulate the effects of quan-
tization of the respective weight and activation values. Training that accounts
quantization in models accounts for quantization error during training to reflect
the quantization at the point of inference. In this type of quantization, every
quanti-zation is followed by dequantization, thus facilitating the simulation of
precision loss in case of inference operation using arithmetic operations. Such
quantization is termed as quantization-aware training. In Post training quanti-
zation, the inference is quantized with offline conversion from floating point to
fixed point.

In Post training Quantization, model size can be reduced by quantizing an
already trained float TensorFlow model. There are three types of quantization
available. They are 1)Dynamic Range Quantization which statically quantizes
only weights from floating point to integer(with 8-bits precision) which are then
converted back to floating point during inference. In this process, the model can
become 4times smaller, with 2-3 times increase in speed. 2)Full integer Quantiza-
tion, as the name suggests, all mathematical operations are integerised and hence
3times increase in speed and reduction in peak memory usage. This is mostly
used in Edge devices. 3)Float16 quantization quantizes the weight to float16
from floating point numbers. This ensures minimal loss in accuracy and mostly
used only with CPU and GPU devices. The quantization method adapted in
this experiment is dynamic range quantization, which is a type of post-training
quantization.

Quantization aware training is better for model accuracy than post training
quantization, even though the latter is often easier to achieve [2]. The quantized
models use 8-bit float instead of 32-bit float and this is more similar to inference-
time quantization.



8 R. Mohandas et al.

5 Experiment and Analysis

The experimentation were carried out by training the models using the Tensor-
Flow object detection API and with the use of transfer learning, the models are
then trained and fine-tuned for person-detection task. TensorFlow Lite is the
framework for inference modules to work on resource constrained devices with
low latency. The weights are converted into 8-bit precision values in the Tensor-
Flow Flat buffer format. The activations are always stored in floating point. For
inference, the activations are dynamically quantized to 8-bit precisions prior to
inference processing and dequantized back into floating point post processing.

Fig. 4. The top two images show person detection from the INRIA dataset using
unquantized SSD MobileNet Model. The bottom row of pictures show detections from
the Raspberry Pi. The bottom-left image is a fully accurate detection comparable to
the GPU and the bottom-right is an image with two False-Positives

The reference experiment for the model optimization criteria is SSD incep-
tion network trained on INRIA dataset [9]. This is included as the first model
in both the comparison tables. In 2014, Szegedy et.al from Google proposed
GoogLeNet(22 layers) which consists of inception modules and hence came to
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Table 1. Comparison of different SSD models on the GPU vs the Raspberry Pi in
person detection based on detection time and IOU value

Object detection Model Name Time for detection(ms) IOU value

SSD-Inception-v2-coco(GPU) 3.247 0.8034
SSD-Mobilenet-v1-coco(GPU) 2.119 0.7699
SSD-Mobilenet-v2-coco(GPU) 1.811 0.713
SSDLite-Mobilenet-v2-coco(GPU) 1.332 0.6337
SSD-Inception-v2-coco(Rasp-Pi) 2.309 0.7081
SSD-Mobilenet-v1-coco(Rasp-Pi) 1.027 0.7829
SSD-Mobilenet-v2-coco(Rasp-Pi) 0.813 0.7378
SSDLite-Mobilenet-v2-coco(Rasp-Pi) 0.648 0.591

be widely known as Inception Net [21]. These networks were further modified
in architecture in 2015, which led to versions Inception-v2 and Inception-v3
[22]. MobileNets were lighter networks, also designed by Google engineers for
Mobile vision applications [14]. The models were trained on TensorFlow Model
repository on the TensorFlow version 1.14. The inference was programmed using
Python 3.6 with OpenCV 3.4 as the image analysis package. The training process
is completed using GPU GeForce RTX 2080 Ti and the frozen graph is exported
as a TensorFlow-lite model. This model is then converted into a flat-buffer for-
mat used for detection experiments on Raspberry Pi 4 running the Raspbian
Buster-10 OS. The Raspberry Pi Camera Module V2 is used for real-time detec-
tion experiment. The simulation in this experiment involves detection on images
for controlled comparison of results. The Raspberry Pi camera is single channel,
8megapixels and has a maximum frame rate capture of 30fps. To connect the
camera module to a pi, a 15cm ribbon cable is attached to the module slots into
the Pi Camera Serial Interface port(CSI).

Table 2. Comparison of different SSD models on the GPU vs the Raspberry Pi in
person detection based on Precision and Recall value of detection

Object detection Model Name Precision Recall

SSD-Inception-v2-coco(GPU) 1.0 0.8
SSD-Mobilenet-v1-coco(GPU) 1.0 1.0
SSD-Mobilenet-v2-coco(GPU) 1.0 0.8
SSDLite-Mobilenet-v2-coco(GPU) 0.8 0.8
SSD-Inception-v2-coco(Rasp-Pi) 1.0 1.0
SSD-Mobilenet-v1-coco(Rasp-Pi) 1.0 1.0
SSD-Mobilenet-v2-coco(Rasp-Pi) 1.0 0.8
SSDLite-Mobilenet-v2-coco(Rasp-Pi) 0.66 0.8

The evaluation metric used in this experiment is IOU(Intersection Over
Union). The IOU is the ratio of area of intersection vs area of union of the
predicted bounding box and the ground-truth bounding box. This is used to
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measure the Precision and Recall of object detection. Precision is the ratio of
True Positives against all positive detections whereas Recall is the ratio of True
Positives against the sum of True Positives and False Negatives(all ground truth
instances).

Fig. 5. The graphical comparison of detection time vs IOU value for all the models
used. The graph clearly shows comparable detection time(in ms)

The above graph shows that the inference time of the TensorFlow Lite model
is comparable to the larger models with slight change in IOU values. This is a
promising result. In case of industrial application, accuracy is a concern and
a 10% reduction in accuracy might lead to much higher number of erroneous
products and which might cost huge money in any mass production system. If
the acceptable floor rate of detection in an industrial scenario is considered to be
above 70% and within the time of detection of 3ms, then quantized version of
SSD-Inception-v2 and SSD-MobileNet are winning candidates. SSD-MobileNet-
v1 is a framework designed for the mobile and edge devices and it has been found
to be the most accurate and robust in the person detection experiment with a
detection rate of 78% and detection time of 1ms. The SSDLite-Mobilenet model
does not perform well enough to be considered for any industrial application as
the IOU values falls to the value of 59% and very low precision of 0.66. The
floor rate of detections as above 70% is sufficient for reliable identification of
person which is a standard engineering performance requirement for a cell-based
manufacturing environment.

The research for model optimization is still ongoing with different types
of quantization under study. Further research in this area of model quantiza-
tion considers adaptive quantization and layer-wise quantization. The process
of quantization is the most-effective method of model compression used in the
current research for autonomous person detection on Edge Devices.
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6 Conclusion

Edge Intelligence is rapidly developing with optimization of Deep Neural Net-
works. Among all the types of optimization and compression techniques, Model
quantization is the most widely used optimization method, due to its huge reduc-
tion in size as well as reduction in computational costs. Further developments in
model quantization like adaptive quantization or multiple quantization within
the same neural network model are also under research. The Knowledge Transfer
methods discussed above have been found beneficial in classification problems
but in case of person detection, model quantization gives the best results with
reduced inference time. The quantized models work efficiently on the Raspberry
Pi module, the edge device, with high accuracy values of more than 70% with a
reduced detection time of less than 3ms, which is comparable to the detection
time in GPU accelerated devices with non-quantized models. Thus, person de-
tection in Industrial application can rely on quantized models for stand-alone
Edge Devices. This highly accurate detections can be further integrated into
intelligent automated responses
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6. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 535–541 (2006)

7. Chen, C.J., Chen, K.C., Martin-Kuo, M.c.: Acceleration of neural network model
execution on embedded systems. In: 2018 International Symposium on VLSI De-
sign, Automation and Test (VLSI-DAT). pp. 1–3. IEEE (2018)

8. Chollet, F.: Deep Learning mit Python und Keras: Das Praxis-Handbuch vom
Entwickler der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG (2018)

9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05). vol. 1, pp. 886–893. IEEE (2005)

10. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intelli-
gence: the confluence of edge computing and artificial intelligence. IEEE Internet
of Things Journal (2020)



12 R. Mohandas et al.

11. Engel, J., Hantrakul, L., Gu, C., Roberts, A.: Ddsp: Differentiable digital signal
processing. arXiv preprint arXiv:2001.04643 (2020)

12. George, D., Huerta, E.: Deep learning for real-time gravitational wave detection
and parameter estimation: Results with advanced ligo data. Physics Letters B 778,
64–70 (2018)

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

14. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

15. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2704–2713 (2018)

16. Johnson, G.E.: Mimic nets. IEEE transactions on neural networks 4(5), 803–815
(1993)

17. Knezović, J., Pervan, B., Relja, Z., Knezović, J.: Project houseleek-a case study of
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