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Abstract. Answer type prediction is a key task in Question Answer-
ing (QA) that aims at predicting the type of the expected answer for
a user query expressed in natural language. In this paper we focus on
semantic answer type prediction where the candidate types come from a
class hierarchy of a general-purpose ontology. We model the problem as a
two-stage pipeline of sequence classification tasks (answer category pre-
diction, answer literal/resource type prediction), each one making use of
a fine-tuned BERT classifier. To cope with the harder problem of answer
resource type prediction, we enrich the BERT classifier with a rewarding
mechanism that favors the more specific ontology classes that are low in
the class hierarchy. The results of an experimental evaluation using the
DBpedia class hierarchy (∼760 classes) demonstrate a superior perfor-
mance of answer category prediction (∼96% accuracy) and literal type
prediction (∼99% accuracy), and a satisfactory performance of resource
type prediction (∼78% lenient NDCG@5).

1 Introduction

Question Answering (QA) is a task in the field of Natural Language Processing
and Information Retrieval that aims at automatically answering a question posed
by a human in a natural language [4]. An important sub-task of QA is the
prediction of the type of the expected answer based only on the user question.
The majority of existing approaches on this task considers a set of coarse-grained
question types, usually less than 50. However, this is quite restrictive for the
general case of cross-domain QA where the number of types is very large.

In this paper, we focus on a two-stage answer type prediction task where a
first step aims at finding the general category of the answer (resource, literal,
boolean), while a second step tries to predict the particular literal answer type
(number, date, or string, if the predicted category of the first step is literal), or the
particular resource class (if the predicted category of the first step is resource).
We consider the case where the resource classes belong to a rich class hierarchy
of an ontology containing a large number of classes (e.g., >500), and model the
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Fig. 1. Two-stage answer type prediction for QA and performance of our proposed
methods.

problem as a set of sequence classification tasks, each one making use of a fine-
tuned BERT model. For the more fine-grained (and thus more challenging) task
of resource class prediction, we propose to enrich the BERT classifier with a
rewarding mechanism that favors the more specific ontology classes that are low
in the class hierarchy. Fig. 1 depicts this two-stage answer prediction task, the
classifiers we use in each different sub-task, and the accuracy of the obtained
results. The evaluation results using the DBpedia class hierarchy (∼760 classes)
and a ground truth of 40,393 train questions for category prediction, 17,571
for resource/literal type prediction, and 4,393 test questions demonstrate the
high performance of our approach. Specifically, we achieve 96.2% accuracy on
answer category prediction, 99.2% accuracy on literal type prediction, and 77.7%
NDCG@5 on resource type ranking.

The rest of the paper is organized as follows: §2 describes the context, §3
describes our approach, §4 reports the results of the evaluation, and finally, §5
concludes the paper.

2 Context and Datasets

The context of this work is the SMART (SeMantic AnsweR Type) challenge of
ISWC 20201 [8]. Given a question in natural language, the challenge is to predict
the type of the answer using a set of candidates. The problem is modeled as a
two-stage classification task: in the first step the task is to predict the general
category of the answer (resource, literal, or boolean), while in the second step the
task is to predict the particular answer type (number, date, string, or a particular
resource class from a target ontology).

Two datasets are provided for this task, one using the DBpedia ontology and
the other using the Wikidata ontology. Both follow the below structure: Each

1 https://iswc2020.semanticweb.org/program/semantic-web-challenges/

https://iswc2020.semanticweb.org/program/semantic-web-challenges/
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question has a (a) question id, (b) question text in natural language, (c) an
answer category (resource/literal/boolean), and (d) answer type. If the category
is resource, answer types are ontology classes from either the DBpedia ontology
(∼760 classes) or the Wikidata ontology (∼ 50K classes). If the category is literal,
answer types are either number, date, or string. Finally, if the category is boolean,
answer type is always boolean.

An excerpt from this dataset is shown below:

[ {

"id": "dbpedia_14427",

"question": "What is the name of the opera based on Twelfth Night?",

"category": "resource",

"type": ["dbo:Opera", "dbo:MusicalWork", "dbo:Work" ]

},{

"id": "dbpedia_23480",

"question": "Do Prince Harry and Prince William have the same parents?",

"category": "boolean",

"type": ["boolean"]

} ]

With respect to the size of the datasets, the DBpedia dataset contains 21,964
questions (train: 17,571, test: 4,393) and the Wikidata dataset contains 22,822
questions (train: 18,251, test: 4,571). The DBpedia training set consists of 9,584
resource, 2,799 boolean, and 5,188 literal questions. The Wikidata training set
consists of 11,683 resource, 2,139 boolean, and 4,429 literal questions.

3 Approach

Here we describe our approach for answer type prediction: in §3.1 we provide
some background, in §3.2 we describe question category prediction, in §3.3 we
describe literal answer type prediction, and in §3.4 we describe resource answer
type prediction. The models and code are publicly available at: https://github.
com/cnikas/isl-smart-task.

3.1 BERT for Sequence Classification

BERT [3], or Bidirectional Encoder Representations from Transformers, is a
language representation model based on the Transformer model architecture
of [11]. A pre-trained BERT model can be fine-tuned with just one additional
output layer to create state-of-the-art models for a wide range of tasks, such
as question answering and language inference, without substantial task-specific
architecture modifications. Because of BERT’s massive success and popularity,
several methods have been presented to improve BERT on its prediction metrics,
by using more data and computational speed [7,12], or by creating lighter and
faster models that compromise on prediction metrics [10].

https://github.com/cnikas/isl-smart-task
https://github.com/cnikas/isl-smart-task


4 Christos Nikas, Pavlos Fafalios, and Yannis Tzitzikas

3.2 Question Category Prediction

A question can belong to one of the following three categories: (1) boolean, (2)
literal, (3) resource. Boolean questions (also referred to as Confirmation ques-
tions) only have ‘yes’ or ‘no’ as an answer (e.g. “Does the Owyhee river flow
into Oregon?”). Thus, there is no further classification for this category of ques-
tions. Resource questions have a specific fact as an answer (e.g. “What is the
highest mountain in Italy?”) that can be described by a class in an ontology
(e.g. http://dbpedia.org/ontology/Mountain). Literal questions have a lit-
eral value as answer, which can be a number, string, or date (e.g. “Which is the
cruise speed of the airbus A340?”).

To detect question categories, we fine-tune a BERT model using the Hug-
gingface PyTorch implementation2. We choose this model because we approach
answer type prediction as a classification problem where each question is a se-
quence of words. To fine tune BERT we used the training datasets provided
for the SMART challenge (described in §2). Specifically, we used questions from
both the DBpedia and the Wikidata dataset. Because the data is imbalanced for
categories (13.7% boolean, 26.6% literal, 59.4% resource) we randomly sampled
questions for each class so that all classes had the same number of samples.

As we will see below, this model achieves 96.2% accuracy on our test set in
this prediction task.

3.3 Literal Answer Type Prediction

The answer type for questions that belong in the literal category can be: 1) a
date, i.e. a literal value that describes a date, 2) number, i.e. a numeric value,
or 3) a string, i.e. a text value. Due to the small number of classes (3), it is very
effective to train a language model. We again use a fined-tuned BERT model
to classify literal questions in one of the 3 types. Similar to question category
prediction, we used questions from both the DBpedia and the Wikidata dataset
and also randomly sampled questions for each class to cope with class imbalance
(29.1% date, 27.3% number, 43.6% string). As we will see, the model achieves
99.2% accuracy for literal questions in our test set.

3.4 Resource Answer Type Prediction

The prediction of the answer type of questions in the resource category is a more
fine-grained (and thus more challenging) classification problem, because of the
large number of types a question can be classified to (∼760 classes on DBpedia
and ∼50K classes on Wikidata). Therefore, it is not effective to train a classifier
on all the ontology classes, especially for open-domain tasks.

To reduce the number of possible types for classification, we selected a subset
(C) of all ontology classes, based on the number of samples of each class in the
training set. This subset C contains classes that have at least k occurrences in

2 https://huggingface.co/transformers/
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the training set. We set k = 10 as this number provides a good trade-off between
number of classes and performance.3 The choice of this parameter is described
more extensively in section 4.2. The final number of classes in C is 88. Because
we chose to train the system on a subset of all the classes, our classifier cannot
handle questions with labels that are not included in this subset. To tackle this
problem, we replace their labels with the labels of super classes that belong in
C. Then we fine tuned a BERT model on them.

Since most questions in the dataset have several answer types ordered by
specificity, according to the semantic hierarchy formed in the ontology, in the
fine tuning stage we use these questions multiple times, one with each of the
provided types as the label. The goal is to find an answer type that is as specific
as possible for the question. However, the model may classify a question to a
more general answer type in the ontology. To tackle this problem, we ‘reward’
(inspired by [2]), the predictions of the classes that lie below the top class.
The reward of a class c is measured by the depth of the class in the hierarchy,
specifically, reward(c) = depth(c)/depthMax, where depth(c) is the depth of c
in its hierarchy, while depthMax is the maximum depth of the ontology (6 for
DBpedia). This means that, after applying normalization and adding the rewards
on the output of the model, the top class can be a sub-class that was originally
ranked below a more general class. For example, for the question “What is the
television show whose company is Playtone and written by Erik Jendresen?”
the top 5 classes that the classifier predicts are: 1) Work, 2) TelevisionShow,
3) Film, 4) MusicalWork, 5) WrittenWork. Then rewards are applied to classes
that are a subclass of Work. After applying the rewards, the top 5 classes are:
1) TelevisionShow, 2) Work, 3) Film, 4) Book, 5) MusicalWork. We can see
that TelevisionShow, is now the top prediction, which is both correct and more
specific than the previous top prediction (Work).

4 Evaluation

4.1 Evaluation Metrics

We report results for the following metrics:

– Accuracy, for category prediction (the percentage of questions classified in
the correct category).

– Precision, for type prediction (the percentage of the questions for which the
top type found by the system was one of the types provided in the test
dataset, without considering type specificity).

– Lenient NDCG@k (with a Linear decay) [1], for resource type prediction.

Lenient NDCG@k, which has been introduced in [1], measures the distance
between the predicted type and the most specific type of the answer d(t, tq).

3 For the SMART challenge, we had submitted our outputs using k = 30. After further
experiments on the training dataset, we changed this value to 10 (more in Sect. 4.2).
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Then it converts this distance into a Gain measure, with a linear decay func-
tion. The gain is calculated as: G(t) = 1 − d(t, tq)/6, where 6 is the maximum
depth of the hierarchy. For example, for the question “Which company founded
by Fusajiro Yamauchi gives service as Nintendo Network?”, the top 5 classes
found as the answer type by our system are: ‘dbo:Company’, ‘dbo:Organisation’,
‘dbo:University’, ‘dbo:Agent’, ‘dbo:RecordLabel’ (in this order). The true types
specified on the dataset are: ‘dbo:Company’, ‘dbo:Organisation’, ‘dbo:Agent’.
The most specific of these 3 classes is ‘dbo:Company’, so we calculate the gain for
each type found by our system using the distance from the class ‘dbo:Company’.
Then we compute DCG as: DCGp = gain1 +

∑p
i=2

gaini

log2 i . We also compute the

ideal DCG (iDCG) using the gains of the correct types provided in the dataset,
and normalized DCG (nDCG) as DCG

iDCG . Finally we compute and report the
average nDCG over all questions in the test dataset.

4.2 Results on split of the DBpedia training set

Initially, we had no access to the final test dataset of the SMART challenge, so we
used 90% of the DBpedia training set4 as our training dataset and the remaining
10% as our test dataset. For category prediction and literal type prediction we
also use the questions from the training dataset for Wikidata for training the
classifiers. Our approach achieved the results shown in Table 1. We notice a
superior performance of category prediction (96.4% accuracy) and a very high
performance of type prediction (83% precision and 79% lenient NDCG@5).

Running the same experiments without the rewarding mechanism, we notice
an around 2% drop in the performance (Lenient NDCG) of literal/resource type
prediction.

Table 1. Evaluation results

Accuracy (category prediction) 0.964

Precision (literal/resource/boolean type prediction) 0.826

Lenient NDCG@5 with linear decay (literal/resource type prediction) 0.786

Lenient NDCG@10 with linear decay (literal/resource type prediction) 0.778

Tuning of the k parameter To find the optimal value for the parameter k,
which is the minimum sample size required to include a class in the subset of
classes included in the classifier, we evaluated our system using 4 different values:
5, 10, 30 and 50. Table 2 shows the number of classes included in the classifier
for each different value of k and the corresponding performance. We notice that
the best results are obtained using k=10, while the results for all other cases are
slightly worse.

Error analysis. To better understand the classification performance of cat-
egory prediction, literal type prediction, and resource type prediction, we in-
spected their confusion matrices. The results are shown in Table 3. As regards

4 https://github.com/smart-task/smart-dataset/tree/master/datasets/

DBpedia

https://github.com/smart-task/smart-dataset/tree/master/datasets/DBpedia
https://github.com/smart-task/smart-dataset/tree/master/datasets/DBpedia
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Table 2. Results for different values of k

Value Classes NDCG@5 NDCG@10

5 180 0.775 0.765

10 151 0.786 0.778

30 79 0.785 0.772

50 55 0.785 0.748

category prediction, we see that our system classifies in the correct category 99%
of the boolean questions, 92% of the literal questions, and 98% of the resource
questions. For literal type classification, our system classifies in the correct type
98.4% of date questions, 99.5% of number questions, and 99.5% of string ques-
tions. We notice that, for category prediction, most errors occur between the
classes literal and resource. For instance, 41 questions of literal type are misclas-
sified as of type resource. As regards resource type prediction, the table shows
the confusion matrix for the top-5 (most frequent) resource classes. We notice
that there is significant confusion between the classes City and Country, as well
as between the class Person and other classes.

Table 3. Confusion matrices for category (top left), literal (top right), and resource
(bottom) type prediction.

Actual
Boolean Literal Resource Sum

P
re

d
ic

te
d Boolean 287 2 5 294

Literal 1 497 13 511
Resource 2 41 905 948

Sum 290 540 923 1753

Actual
Date Number String Sum

P
re

d
ic

te
d Date 120 0 0 120

Number 2 182 1 185
String 0 1 191 192
Sum 122 183 192 497

Actual
Person City Country Award Organisation Other

P
re

d
ic

te
d Person 148 4 3 3 0 86

City 3 67 16 0 0 23
Country 4 2 42 0 0 17
Award 1 0 0 37 0 0

Organization 1 2 5 1 32 42
Other 15 1 8 3 6 351

By manually inspecting several of the misclassification cases, we noticed that
some of these errors occur on questions where the correct category is very am-
biguous, such as the question “In what area is Fernandel buried at the Passy
Cemetery?” (labeled as a literal question with type ‘string’, while our system
classifies it as a resource question of type ‘dbo:Place’), or the type provided in
the dataset is wrong, e.g. the question “What did the pupil of Mencius die of?” is
labeled as a literal question with type ‘date’, while our system predicts that the
question category is resource and ‘dbo:Disease’ is one of the predicted classes.

4.3 Results over the final DBpedia test set

After the final test dataset was released, we evaluated our system again, using
the script provided by the challenge organizers. We obtain the results shown in
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Table 4 (using k=30). We notice that the results are very close to those reported
for the split on the training dataset (cf. Table 1).

Table 4. Evaluation results over the final test set

Accuracy (category prediction) 0.962

Lenient NDCG@5 with linear decay (literal/resource type prediction) 0.777

Lenient NDCG@10 with linear decay (literal/resource type prediction) 0.762

4.4 Efficiency

Fine-tuning. We fine-tuned the models on Google Colab5, a Jupyter notebook
environment that runs in the cloud and offers access to GPUs. With a batch
size of 32, number of epochs set to 3 and using an Nvidia Tesla K80 GPU,
the time required for fine-tuning each classifier is: 49 mins and 25 secs for the
resource question type classifier, using 26,259 questions, 27 mins and 51 secs for
the question category classifier, using 14,814 questions, and 15 mins and 3 secs
for the literal question type classifier, using 8,025 questions.

Execution. To classify a question into a category and predict its answer type,
we execute the system locally on a machine with 2 cores and 8 GB of RAM,
without using a GPU. While the system is running, it requires approximately
2.3 GB of RAM to load the 3 classifiers in memory.

This means that the proposed approach has low main memory requirements.
Moreover, this memory footprint can be further reduced if we use a smaller

and lighter language model, such as DistilBERT [10], while sacrificing a small
percentage of accuracy. The time required to classify a single question is less
than a second (0.17 seconds on average), which is important for the application
context that we have in mind (more below). To obtain the system output required
to evaluate our system for the SMART challenge, we classified each one of the
4,381 questions provided in the test set sequentially. The process took 12 minutes
and 24 seconds.

4.5 Application Context

We plan to integrate the proposed classification models in the Question An-
swering module of Elas4RDF [9,5], a keyword search system where users can
input questions as queries and receive answers in real time according to various
perspectives; one of them is the “QA perspective”.

Screenshots of the system for the query “Greek philosopher from Athens who
is credited as one of the founders of Western philosophy” are shown in Figure 2.

Moreover the classification model presented in this paper can be exploited
also in the “Schema perspective”, that shows the classes of the top-ranked triples
(for allowing the user to refine as she wishes to), in order to promote (or just
mark) the class that corresponds to the predicted answer type.

5 https://colab.research.google.com/
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Fig. 2. Application Context: Elas4RDF

A demo of Elas4RDF over DBpedia [6] is publicly accessible at: https:

//demos.isl.ics.forth.gr/elas4rdf/.

5 Concluding Remarks

We have presented an approach for semantic answer type prediction, an im-
portant sub-task of QA which splits the problem into a two-stage pipeline of
classification tasks: answer category prediction and answer literal/resource type
prediction. We model the problem as a set of sequence classification tasks, each
one making use of a fine-tuned BERT classifier. For the more fine-grained (and
more challenging) problem of answer resource type prediction (since the classes
can be hundreds or thousands), we have proposed the enrichment of the BERT
model with a rewarding mechanism that considers the hierarchy of the ontology
classes, favoring the more specific classes that are low in the class hierarchy.
The evaluation results demonstrated the performance of the proposed method,
achieving >96% accuracy in predicting the general answer category, >98% accu-
racy in predicting the literal type, and >77% NCDG@5 in ranking the predicted
resource classes.

Our results showcase that it is feasible to achieve fine grained answer type
prediction with very high precision and without expensive computations.

Issues that are worth further research include: methods for fine-tuning the
parameter k that determines the minimum amount of training data needed to
obtain a certain degree of performance, and evaluating the rewarding scheme in
different datasets, e.g. in knowledge bases that have ontologies with more deep
class hierarchies.

https://demos.isl.ics.forth.gr/elas4rdf/
https://demos.isl.ics.forth.gr/elas4rdf/
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