
DAGOBAH: Enhanced Scoring Algorithms for
Scalable Annotations of Tabular Data

Viet-Phi Huynh1, Jixiong Liu1, Yoan Chabot1, Thomas Labbé1,
Pierre Monnin1, and Raphaël Troncy2

1 Orange Labs, France
yoan.chabot@orange.com

2 EURECOM, Sophia Antipolis, France
raphael.troncy@eurecom.fr

Abstract. We present new approaches used in the DAGOBAH system
to perform automatic semantic table interpretation. DAGOBAH seman-
tically annotates tables with Wikidata entities and relations to perform
three tasks: Columns-Property Annotation (CPA), Cell-Entity Annota-
tion (CEA) and Column-Type Annotation (CTA). In our system, the ini-
tial scores from entity disambiguation influence the CPA output, which,
in turn, influences the output of the CEA. Finally, the CTA is computed
using the type hierarchy available in the knowledge graph in order to an-
notate columns with the most suitable fine-grained types. This approach
that leverages mutual influences between annotations allows DAGOBAH
to obtain very competitive results on all tasks of the SemTab2020 chal-
lenge.

Keywords: Tabular Data · DAGOBAH · SemTab Challenge

1 Introduction

Within the ever-expanding Web of data, more and more knowledge graphs (KGs)
become available. However, these KGs may suffer from inconsistency and incom-
pleteness issues [20]. Hence, one can envision to either correct or complete KGs
by extracting information from various sources such as web tables and texts
available in Web pages [7]. Interestingly, tables often constitute a major source
of information since large parts of both companies internal repositories and Web
pages are represented in tabular formats. Additionally, besides KG completion,
the automatic interpretation of tables by software agents can enable semantic-
driven services to query, manipulate, and process heterogeneous table corpora [2],
such as a dataset search “moving beyond keyword” [4].

These automatic annotation tasks raise several challenges. For example, ta-
bles present limited context to resolve semantic ambiguities, and their layout can

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Huynh et al.

be complex (e.g. merged rows, missing headers, table orientation to determine).
The aforementioned perspectives and challenges have motivated the development
of numerous approaches that perform table annotation with entities and relations
from a KG via three main tasks: Cell-Entity Annotation (CEA), Column-Type
Annotation (CTA) and Columns-Property Annotation (CPA) [12]. The previous
SemTab2019 challenge edition has structured this effort, enabling systems to be
compared on common datasets and metrics. We observed that systems based
on optimized lookups and majority voting were largely represented [5, 16, 19, 23,
24]. Other works attempt different approaches using probabilistic models [18] or
disambiguation with embeddings [3].

During the SemTab2019 challenge, we first developed and evaluated the
DAGOBAH system [3], a generic annotation system that can handle large cor-
pora of heterogeneous tables. In the context of the SemTab2020 challenge, we
improved DAGOBAH with the following main contributions:

– Mutual influences between the CEA and CPA tasks to resolve ambiguities;

– A fine-grained typing of columns (CTA) by considering the KG type hierar-
chy;

– An attention on the scalability of the system for an efficient execution on
large table corpora;

– A continuous exploration of the role of knowledge graph embeddings for the
CEA and CTA tasks.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce some related approaches tackling the tasks associated with tabular data
annotation. In Section 3, we detail the algorithms used in the DAGOBAH sys-
tem, whose performance on the SemTab2020 corpus is presented and discussed
in Section 4. Finally, we outline some future works in Section 5.

2 Related Work

Two main approaches are used to carry out the CEA task. The most com-
mon approach consists in finding a match for each cell of a given table using
syntactic lookups (e.g. Levenshtein distance), aligning ontologies, or exploiting
embeddings [1, 9, 13, 15]. The second approach, on the other hand, attempts to
match an entire row of a table with an entity of the target KG based on the
assumption that a row represents a main entity (key column) and associated at-
tributes (other columns) [8]. The disambiguation of the candidate entities is then
treated as a typical ranking task among the candidates, using either heuristics or
algorithms such as PageRank [8], similarity measurement [9, 13], or graph-based
models [11]. The main approaches on column typing (CTA) infer classes from
the entities output by the CEA task. Different algorithms have been proposed,
integrating more or less complex heuristics built around majority voting [17].
Finally, the extraction of relations (CPA) is generally carried out by searching
pairs of elements in columns, i.e. types and entities previously determined [21].

DAGOBAH: Enhanced Scoring Algorithms for Scalable Table Annotations

If the previous approaches are intrinsically sequential, we observe that some ap-
proaches aim to jointly achieve the three tasks via graph-oriented models [15,
25].

In parallel, efforts have been made by the community to provide evalua-
tion corpora for these different tasks. While the first corpus only contained
428 Wikipedia tables [15], the following ones were expanded either in volume
(WTC [14]: 233 million tables divided into three categories) or in precision (T2D
Gold Standard [22]: 1748 tables from the WTC whose rows, attributes, and ta-
bles were manually annotated with instances, properties, and DBpedia classes
respectively). Some corpora have also been customized to meet a particular need
(Wikipedia Gold Standard [8]) but do not currently serve as an evaluation ref-
erence within the community.

More recently, the SemTab2019 challenge invited research teams to compare
the performance of their tabular data annotation systems for the three tasks
mentioned above. The challenge took place in four rounds [12] proposing cor-
pora differing in size (respectively 63, 11925, 2162, and 818 tables), and nature
(increasingly complex tables both in terms of formats and information to be pro-
cessed) [10]. Seventeen teams participated in the challenge with seven of them
having participated in at least two of the four rounds of the challenge, including
the DAGOBAH system. A majority of the approaches take the form of systems
based on the search of candidates in DBPedia and Wikidata, the calculation of
a syntactic similarity and majority votes [5, 16, 19, 23, 24]. IDLab proposes an it-
erative approach in which the annotation of cells with little ambiguity reinforces
the disambiguation of more complex cells over the iterations [23]. Tabularisi uses
the aliases of the entities defined in Wikidata and ensures that the columns have
a semantic consistency at the end of the annotation process [24]. ADOG creates
a DBpedia index in ArrangoDB and essentially uses the Levenstein distance to
measure the difference between cell values and labels of entities [19]. MantisTable
differentiates itself with a sophisticated graphical interface to configure the au-
tomatic annotation process and to view the results [5]. LOD4ALL essentially
uses SPARQL ASK queries to obtain candidates and deduce type constraints on
the columns [16]. Alternatively, MTab [18] proposes the use of a probabilistic
approach coupled with queries on several search services on DBpedia, Wikidata,
and Wikipedia using multilingual strategies. Evaluations show that approaches
using sophisticated search techniques and optimized cleaning and pre-treatment
steps achieve better results.

3 DAGOBAH: An Enhanced and Scalable Table
Annotation System

The DAGOBAH system is designed to interpret relational tables by annotating
them with entities and relations from the Wikidata knowledge graph (KG).
It mostly consists of the following steps (Fig. 1). Given a relational table as
input, the entity lookup module retrieves candidate entities from the KG for
each target cell (Section 3.1). The pre-scoring module evaluates each candidate

Huynh et al.

with a confidence score (Section 3.2). Then, the Columns-Property Annotation
(CPA) is carried out (Section 3.3). Its output is used during the Cell-Entity
Annotation (CEA) to disambiguate entities (Section 3.4). Finally, the Column
Type Annotation (CTA) uses the output entities and a majority vote to annotate
columns with types (Section 3.5).

Fig. 1. Overview of the DAGOBAH annotation workflow. The table “3BHPG0ZP.csv”
comes from the Round 3 of the SemTab2020 challenge.

An embedding approach has also been implemented, based on the intuition
that semantically similar entities can be clustered in a vector space, allow-
ing geometrical disambiguation. The implementation is similar to the one de-
scribed in [3] but was only used in Round 1. This approach is later referenced
as “DAGOBAH Embedding”. In the details, we use the K-Mean algorithm to
cluster the candidate lookups for a column into N partitions. N is defined as
the ratio between the total number of lookups and the number of table rows. We
then select the three best clusters based on their coverage and we score each en-
tity candidate belonging to those clusters. The entity scoring function takes the
cluster confidence into account, apart from the confidence score of the entity it-
self. However, we observed that its added-value was limited since tables provided
by the challenge were hardly noisy (as discussed in Section 4). In the remain-
der of this paper, we describe our so-called “DAGOBAH SL(Semantic Lookup)”
method which contains an algorithmic optimization of the scoring function.

DAGOBAH: Enhanced Scoring Algorithms for Scalable Table Annotations

3.1 Entities Lookup

Given a target cell3 em contained in a table, we aim at retrieving a set of relevant
candidates Ec from a KG, i.e. entities whose labels or aliases are similar to the
text of the cell. We employ two strategies to evaluate the similarity between a
cell and the candidate entities: an exact match using a regex similarity and a
threshold-based match using the Levenstein ratio. We take the maximum value
between all comparisons made across entity labels and aliases.

Regex similarity Candidate labels or aliases should include all the words of
em in any order. This is particularly useful to match the full name of a person
since the first and last names could appear in any order, e.g. “Elon Musk”
versus “Musk Elon”. A full edit ratio on these two multiple tokens string
would yield the relatively low score of 0.44.

Levenshtein ratio This ratio is computed between the candidate labels and
aliases, and the text of the cell. We empirically fix the threshold to 0.65 to
ensure that a cell has at least one candidate and we then retain the top 50
candidates for each cell.

Table 1. Overview of the SemTab2020 table corpus in each round. Several cells may
contain the same text. Such cells are only counted once in the line “# Unique cells to
annotate”. The length of cells counts the number of characters.

Round 1 Round 2 Round 3

Tables 34K 12K 63K
Cells to annotate 985K 283K 768K
Unique cells to annotate 264K 138K 379K
Average cell length 20 21 20

In the context of the SemTab2020 challenge, the table corpora are signifi-
cantly large with thousands of tables and cells to annotate (Table 1). The public
Wikidata API is not an ideal lookup service due to restrictions on the num-
ber of concurrent connections, result set sizes, and query time. To avoid these
limitations, we built our own lookup service using the Wikidata Toolkit4 and a
Spark-based big data platform. Specifically, from the initial raw Wikidata dump,
we use the Wikidata Toolkit to filter out the unnecessary documents such as
Form, Lexeme, MediaInfo, Sense and Statement documents, so that we only re-
tain entities that are item documents identified by QID and property documents
identified by PID, associated with their labels and aliases in all languages. We

3 In the context of the SemTab2020 challenge, the target cells are provided. In general,
DAGOBAH has a module that enables to infer a primitive type for any arbitrary
cell so that lookups are only triggered on cells that have entities as values.

4 https://github.com/Wikidata/Wikidata-Toolkit

Huynh et al.

then store the filtered dump in a Hadoop Distributed File System (HDFS) and
perform the entity lookup via the Spark framework. Table 2 presents the Wiki-
data KG used in the challenge. It should be noted that during the Round 1, we
built the lookup service based on an old version of Wikidata (from 2017) that
contains fewer entities (50 millions vs. 86 millions in version 2020), which has
resulted in incomplete lookups, and thereby hindered the annotation results as
discussed in Section 4.

Table 2. Overview of the Wikidata KG used in the challenge. A 2017 version was used
in Round 1. The July 2020 version was used in Round 2, 3 and 4.

Wikidata version # triples # entities # predicates

July 2020 490M 86M 7800
Circa 2017 100M 50M 8200

We provide in Table 3 the complete lookup time for the Round 1, 2, and 3
(line “Current Time”). To construct our lookup service, we considered a pure
Python Levenshtein module which has very poor performance (generally, 50
to 100 times slower than the more efficient Cython Levenshtein library5). As
a result, our current lookup service is not optimized yet, taking about 268h
(≈ 11 days) for the lookups of Round 3. In a future system, we will install
the Cython Levenshtein library to significantly reduce the execution time. We
roughly estimate the potential lookup time of such a future system (line “Ideal
Time”) by inducing the time of Cython Levenshtein usage from the pure Python
Levenshtein’s time.

Table 3. Spark Lookup Time (in hours) for Round 1, 2, and 3 using 150 machines.
“Current time” is measured using the pure Python Levenshtein module. “Ideal time”
is the expected lookup time in a future system using the Cython Levenshtein library.

Round 1 Round 2 Round 3

Current time 44 64 268
Ideal time 44 36 96

3.2 Candidate Pre-Scoring

The pre-scoring step aims to assign a preliminary confidence score to each can-
didate ec ∈ Ec generated after the lookup step. The confidence score function
(Equation (1)) leverages the semantic contextual relationships and literal simi-
larity between the candidate ec and the cell em.

5 https://pypi.org/project/python-Levenshtein/

DAGOBAH: Enhanced Scoring Algorithms for Scalable Table Annotations

Sc(ec, em) = Sccontext(Ntable(em),Ngraph(ec)) ∗ Scsim(em, ec)
x (1)

Sc(em, ec) is the product of a context factor Sccontext(Ntable(em),Ngraph(ec))
and a literal factor Scsim(em, ec). Scsim(em, ec) gives the highest Levenshtein
ratio between the cell and the label set of the candidate. This label set is com-
posed of the labels and aliases of the entity (e.g. “France”, “La France” for
Q142). x ∈ N+ allows to define the importance of the textual similarity acting
as an amplification factor. We empirically observed that 5 was an appropriate
amplification factor for x for this challenge.

The context score is calculated by Equation (2):

Sccontext(Ntable(em),Ngraph(ec)) =

{
Ns if Ns ≥ 0.1

0.0001 otherwise
(2)

Ntable(em) is the set of neighboring cells in the same row as em. Ngraph(ec) is the
set of neighboring elements of ec in the KG6. Neighboring literals are directly
added to Ngraph(ec) whereas, for neighboring entities, their labels and aliases
are added. Ns is a set which contains the best neighborhood matching score nsi
for each neighboring cell ni ∈ Ntable(em) and all neighboring literals or nodes
in Ngraph(ec). For each neighboring cell ni, the neighborhood matching score
nsi ∈ Ns is generated as follow:

– If ni is a string, then nsi is the highest Levenshtein similarity value.
– If ni is a number, then nsi is given by Equation (3):

nsi = max
ng∈Ngraph(ec)

1− |ni − ng|
|ni|+|ng|

(3)

– If ni is a date-time value, and if a matching exists between the cell and a
neighboring element, then we set nsi to 1, otherwise nsi = 0.

– If the previous steps gives a nsi value lower than 0.85, then the system resets
nsi to 0.0001.

For example, the confidence score Sc(em, ec) of the candidate ec “Q1574185”
with the cell em “University College Cork” is equal to 1 since “Q1574185” has
this exact label and all neighboring cells share information with neighboring
elements of “Q1574185”.

3.3 Columns-Property Annotation (CPA)

The CPA task involves finding a semantic relation between a pair of ordered
columns {head, tail}. In other words, we try to figure out the most suitable rela-
tion among the ones connecting a candidate entity in Ehead for the head column
to a candidate entity in Etail for the tail column. We employ a simple majority
voting strategy which relies on the occurrence and accumulated confidence score
of the relation r that we define as:
6 Neighboring elements are object (resp. subject) of triples whose subject (resp. object)

is ec.

Huynh et al.

– Occurrence(r) = #(ehead, etail),
– AccumulatedConfidenceScore(r) =

∑
Sc(ehead) ∗ Sc(etail)

such that ehead ∈ Ehead, etail ∈ Etail, and 〈ehead, r, etail〉 ∈ KG.
In contrast to the relation’s head which is always an entity, its tail can be

an entity, a textual value, a numerical value, or a date-time value. Literal values
may be noisy (e.g. “370.1069999997” may represent the integer value “369”,
“1845-01-01” may correspond to “1845/01/01” or “1845” in the KG). Due to
the different natures of each tail type, we consider different matching metrics to
verify whether a triple 〈ehead, r, etail〉 exists in the KG:

– For entity IDs, score(id1, id2) = 1 if the two ids are exactly the same, other-
wise 0.

– For numerical values, score(num1, num2) = 1−
|num1 − num2|
|num1|+ |num2|

– For string values, score(text1, text2) = Levenshtein(text1, text2)
– For date-time values, we compare many variants of date-time values (e.g.

from the initial value “2020”, we could have “2020-01-01” or “2020/01/01”).
Two date-time values are matched, i.e., score(date1, date2) = 1 if one is a
variant of the other.

From the criteria above, the relation with the highest occurrence is considered
the target relation. If there are several relations having this highest occurrence,
we select the one with the highest score. For example, consider the table pro-
vided in Fig. 1. The two relations P131 (“located in the administrative territorial
entity”) and P159 (“headquarters location”) can relate the first (Col 0) and the
third (Col 2) columns. Specifically, Q1574185-“University College Cork” (resp.
Q245247-“King’s College London”) is located (P131) in Q36647-“Cork” (resp.
Q202059-“London Borough of Lambert”). Cork is also the headquarter (P159)
of University College Cork. Therefore, the occurrence count of P131 is 2, and 1
for P159. We conclude that P131 is the CPA for the column pair {Col0, Col2}.

3.4 Cell-Entity Annotation (CEA)

The CEA task aims to annotate the table cells with entities from the KG. Taking
the CPA into account, for each candidate entity in a given row, we update its
score computed in the pre-scoring step (Section 3.2) by adding a constant score
1 (resp. 0) if the CPA relation can (resp. cannot) connect this candidate to the
counterpart in the remaining column. The output entity is the one with the
highest score.

For example, for the cell “Cork” in Fig. 1, two of the candidate entities
are Q36647 (“Cork city in Munster, Ireland”) and Q162475 (“Cork County,
Ireland”). They both have the same score output from the pre-scoring step (Sec-
tion 3.2). Given we have determined the relation between “Col 0” and “Col 2”
to be P131 and that the candidate Q36647 is linked to the cell “University Col-
lege Cork” via this relation, we increase the score of Q36647 by 1. Q36647 then
becomes the candidate with the highest score, and is chosen as the CEA output
for the “Cork” cell.

DAGOBAH: Enhanced Scoring Algorithms for Scalable Table Annotations

3.5 Column-Type Annotation (CTA)

After getting the output of CEA, a majority voting strategy is adapted to identify
the most precise type for target columns. This process is illustrated in Fig. 2 for
the first column (“Col 0”) of the example table depicted in Fig. 1.

Fig. 2. CTA annotation structure

The CTA annotation begins with a type enrichment step. Let Tj be the set
of candidate types for the cell j from a target column. Tj is represented by a
hierarchical tree with 3 levels of types. We consider the types related by the P31
predicate (“instance of ”) to the predicted CEA entity as level 0. Their parent
types linked through the P279 predicate (“subclass of ”) are assigned to level 1
and their ancestors to level 2. The system gives priority to the direct types. The
rank of a candidate type is another useful factor for the CTA decision. Accord-
ing to Wikidata’s mechanism for annotating multiple values for a statement, a
type for an entity may have three ranks7. We represent those ranks as priority
numbers: PREFERRED-2, NORMAL-1 and DEPRECATED-0.

The second step consists in a preliminary selection of types. We compute the
frequency, accumulated level, and accumulated rank for all candidate types of a
target column, i.e. all types appearing in at least one Tj of the column. We then
select the types with the highest occurrence, the lowest accumulated level, and
the highest accumulated rank at the same time. In case of ties, we give priority
to the occurrence, then to the accumulated level, and finally to the accumulated
rank. In the example of Fig. 2, Q2385804 and Q38723 are chosen at this step.

7 https://www.wikidata.org/wiki/Help:Ranking

Huynh et al.

The final step consists in computing the distance between the chosen candi-
date types and the entity Thing (Q35120) in order to select the most specific
type. We first consider the mutual inheritance relationship between the remain-
ing candidate types. When such a relationship exists, we select the most specific
type. If no inheritance relationship can be found, we compute the shortest dis-
tance to Thing. If there is still a tie among some candidate types, the system
randomly selects one of them as CTA output.

4 Results and Discussion

Table 4 provides the annotation scores (F1-score, precision, and coverage) of our
system for the three tasks in Rounds 1, 2, 3, and 4 of the challenge. Note that the
datasets used in Rounds 1, 2, and 3 are automatically generated in a synthetic
way by adding some artificial noise (Synthetic Tables). Interestingly, in Round 4,
beside a synthetic dataset, a novel corpus (Tough Tables [6]) is introduced and
consists of a set of high quality manually-curated tables with complex patterns
of cells (e.g., ambiguous names, typos). The results clearly show that a simple,
yet optimised, model can achieve very good performance on the SemTab2020
synthetic corpus. This is partly explained by the fact that a row in any tables
from this corpus is fully represented in the Wikidata Knowledge Graph (KG).
As a consequence, a good lookup service with high coverage and a well-tuned
matching strategy are enough to produce very competitive results.

As stated in Section 3, during Round 1, we implemented two variants of
DAGOBAH: an embedding-based version (DAGOBAH Embedding) and an op-
timised scoring-based version (DAGOBAH SL). We notice that DAGOBAH SL
performs much better than DAGOBAH Embedding. The drop in the scores is
arguably derived from the fact that DAGOBAH Embedding retains only 3 clus-
ters for the entity disambiguation, which does not always involve all the good
candidates given the imperfection of the current clustering algorithm.

We observe that one difficulty concerns the dynamic and evolving nature
of KGs such as Wikidata. During Round 1, we used an outdated KG version
(circa 2017 vs. target March 2020, see Table 2). Hence, the lookup service was
not able to retrieve relevant candidates for ≈ 5% of the target cells, leading
to a significant drop in performance, compared to the leader MTab. Challenge
organizers should either consider distributing the reference KG to use alongside
the tables to annotate, or consider tables with evolving annotations along the
time, anticipating that new items or even properties may be added in the KG.

The other main limitation of Rounds 1, 2, and 3 of SemTab2020 resides in the
nature of the data to annotate. Indeed, tables are synthetically generated from
the Wikidata knowledge graph. Consequently, the proposed tables are relatively
clean and lookup operations can easily match cells in the tables to entities in
Wikidata even if noising techniques are introduced. In real-world applications,
tabular data can contain complex values (e.g., cells containing lists of entities
using various separators, alternative entity names), artifacts (e.g., data encoding
problems, formatting errors, input errors, missing values), and more complex lay-

DAGOBAH: Enhanced Scoring Algorithms for Scalable Table Annotations

Table 4. Results of the DAGOBAH system in Rounds 1, 2, 3, and 4 of the SemTab2020
challenge. “F1” stands for F1-score, “P” stands for Precision, and “C” stands for
Coverage. The coverage is the ratio between the number of annotations proposed by
the system and the number of targets to annotate. We also report on the score of MTab
as this is the challenge winner.

CTA CEA CPA

F1 P C F1 P C F1 P C

Round 1
DAGOBAH Embedding 0.779 0.803 95.3% 0.776 0.843 91% 0.809 0.958 73%

DAGOBAH SL 0.834 0.854 95.3% 0.922 0.944 95.3% 0.914 0.962 90.6%
(Synthetic Tables) MTab 0.926 0.926 - 0.987 0.988 - 0.971 0.971 -

Round 2 DAGOBAH SL 0.983 0.983 99.9% 0.993 0.993 99.9% 0.992 0.994 99.5%
(Synthetic Tables) MTab 0.984 0.984 - 0.995 0.995 - 0.997 0.997 -

Round 3 DAGOBAH SL 0.974 0.974 99.9% 0.985 0.985 99.9% 0.993 0.994 99.9%
(Synthetic Tables) MTab 0.976 0.976 - 0.991 0.992 - 0.995 0.995 -

Round 4 DAGOBAH SL 0.972 0.972 - 0.984 0.985 - 0.995 0.995 -
(Synthetic Tables) MTab 0.981 0.982 - 0.993 0.993 - 0.997 0.997 -

Round 4 DAGOBAH SL 0.743 0.745 - 0.830 0.819 - - - -
(Tough Tables) MTab 0.728 0.73 - 0.907 0.907 - - - -

outs (e.g., merged rows/columns, multi-line headers, horizontal/vertical/matrix
tables) making table manipulation and annotation much more complicated. In
order to produce more robust, generic, and intelligent annotation systems, it
seems important that evaluation corpora take these challenges into account in
the future. An example can be found in the Tough Tables corpus from Round 4
which contains tables manually scraped from the Web. We observe a remarkable
degradation in performance of CTA and CEA tasks given the complexity and
ambiguity of this corpus.

5 Conclusion and Future Work

In this paper, we presented the improvements implemented in DAGOBAH, a
generic and scalable system for table annotation. In particular, our approach
involves mutual influences between the two tasks of Cell-Entity Annotation and
Columns-Property Annotation to resolve ambiguities. Additionally, by leverag-
ing the type hierarchy, we are able to determine the most fine-grained type in the
Column-Type Annotation task. We also focused on the scalability of our system
since computational time is an important limitation in real-world use cases.

Our promising results pave the way for several perspectives. First, APIs and
GUIs will be developed around DAGOBAH to enable its real-world and indus-
trial usage. Second, following some preliminary work [3], we ambition to leverage
embeddings to build an optimized hybrid system, with the intuition that their
continuous aspect may help to cope with ambiguities. To this end, we believe
that advanced approaches could be motivated and benefit from the availability
of more complex or real-world corpora. Such corpora could involve, for exam-
ple, more ambiguities, noise, or complex layouts [3]. In a broader perspective,

Huynh et al.

such real-world corpora could go beyond the issue of matching tabular data
with knowledge graphs to the detection and processing of emergent entities and
relations.

References

1. Bhagavatula, C.S., Noraset, T., Downey, D.: TabEL: Entity linking in web tables.
In: 14th International Semantic Web Conference (ISWC). pp. 425–441 (2015)

2. Chabot, Y., Grohan, P., Le Calvez, G., Tarnec, C.: Dataforum: Data exchange,
discovery and valorisation through semantics. In: 19th French Conference on Ex-
traction et Gestion des Connaissances (EGC). Metz, France (2019)

3. Chabot, Y., Labbé, T., Liu, J., Troncy, R.: DAGOBAH: An End-to-End Context-
Free Tabular Data Semantic Annotation System. In: International Semantic Web
Challenge on Tabular Data to Knowledge Graph Matching (SemTab). CEUR
Workshop Proceedings, vol. 2553, pp. 41–48 (2019)

4. Chapman, A., Simperl, E., Koesten, L., Konstantinidis, G., Ibáñez, L.D., Kacprzak,
E., Groth, P.: Dataset search: a survey. The VLDB Journal pp. 1–22 (2019)

5. Cremaschi, M., Avogadro, R., Chieregato, D.: MantisTable: an automatic approach
for the Semantic Table Interpretation. In: International Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching (SemTab). CEUR Workshop Pro-
ceedings, vol. 2553 (2019)

6. Cutrona, V., Bianchi, F., Jiménez-Ruiz, E., Palmonari, M.: Tough tables: Care-
fully evaluating entity linking for tabular data. In: International Semantic Web
Conference. pp. 328–343. Springer (2020)

7. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: 20th ACM International Conference on Knowledge Discovery
and Data Mining (KDD). pp. 601–610 (2014)

8. Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M., Christophides, V.: Match-
ing web tables with knowledge base entities: From entity lookups to entity em-
beddings. In: 16th International Semantic Web Conference (ISWC). pp. 260–277
(2017)

9. Fernandez, R.C., Mansour, E., Qahtan, A.A., Elmagarmid, A., Ilyas, I., Madden,
S., Ouzzani, M., Stonebraker, M., Tang, N.: Seeping semantics: Linking datasets
using word embeddings for data discovery. In: 34th International Conference on
Data Engineering (ICDE). pp. 989–1000 (2018)

10. Hassanzadeh, O., Efthymiou, V., Chen, J., Jimnez-Ruiz, E., Srinivas, K.:
SemTab2019: Semantic Web Challenge on Tabular Data to Knowledge Graph
Matching - Data Sets. Zenodo (2019), https://doi.org/10.5281/zenodo.3518539

11. Ibrahim, Y., Riedewald, M., Weikum, G.: Making sense of entities and quanti-
ties in Web tables. In: International Conference on Information and Knowledge
Management (CIKM). pp. 1703–1712 (2016)

12. Jimnez-Ruiz, E., Hassanzadeh, O., Efthymiou, V., Chen, J., Srinivas, K.: SemTab
2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Sys-
tems. In: 17th European Semantic Web Conference (ESWC) (2020)

13. Kilias, T., Löser, A., Gers, F.A., Koopmanschap, R., Zhang, Y., Kersten, M.: Idel:
In-database entity linking with neural embeddings. arXiv:1803.04884 (2018)

14. Lehmberg, O., Ritze, D., Meusel, R., Bizer, C.: A Large Public Corpus of Web
Tables containing Time and Context Metadata. In: 25th International Conference
Companion on World Wide Web (WWW Companion). pp. 75–76 (2016)

DAGOBAH: Enhanced Scoring Algorithms for Scalable Table Annotations

15. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. In: 36th International Conference on Very
Large Data Bases (VLDB). pp. 1338–1347 (2010)

16. Morikawa, H.: Semantic Table Interpretation using LOD4ALL. In: Interna-
tional Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab). CEUR Workshop Proceedings, vol. 2553 (2019)

17. Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using linked data to interpret tables.
In: 1st International Workshop on Consuming Linked Data (COLD) (2010)

18. Nguyen, P., Kertkeidkachorn, N., Ichise, R., Takeda, H.: MTab: Matching Tabular
Data to Knowledge Graph using Probability Models. In: International Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab). CEUR
Workshop Proceedings, vol. 2553 (2019)

19. Oliveira, D., D’Aquin, M.: ADOG: Annotating Data with Ontologies and Graphs.
In: International Semantic Web Challenge on Tabular Data to Knowledge Graph
Matching (SemTab). CEUR Workshop Proceedings, vol. 2553 (2019)

20. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic Web 8(3), 489–508 (2017)

21. Ran, C., Shen, W., Wang, J., Zhu, X.: Domain-specific knowledge base enrichment
using wikipedia tables. In: IEEE International Conference on Data Mining (ICDM).
pp. 349–358 (2016)

22. Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML Tables to DBpedia. In: 5th In-
ternational Conference on Web Intelligence, Mining and Semantics (WIMS). pp. 1–
6 (2015)

23. Steenwinckel, B., Vandewiele, G., De Turck, F., Ongenae, F.: CSV2KG: Transform-
ing Tabular Data into Semantic Knowledge. In: International Semantic Web Chal-
lenge on Tabular Data to Knowledge Graph Matching (SemTab). CEUR Workshop
Proceedings, vol. 2553 (2019)

24. Thawani, A., Hu, M., Hu, E., Zafar, H., Divvala, N.T., Singh, A., Qasemi, E.,
Szekely, P., Pujara, J.: Entity Linking to Knowledge Graphs to Infer Column Types
and Properties. In: International Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab). CEUR Workshop Proceedings, vol. 2553
(2019)

25. Zhang, Z.: Towards efficient and effective semantic table interpretation. In: 13th

International Semantic Web Conference (ISWC). pp. 487–502 (2014)

