
Towards Effective and Efficient Approximate
Query Answering in Probabilistic DeLP?

Mario A. Leiva, Alejandro J. Garćıa, and Gerardo I. Simari

Depto. de Cs. e Ing. de la Comp., Universidad Nacional del Sur (UNS)
Inst. de Cs. e Ing. de la Comp. (ICIC UNS-CONICET), Argentina

{mario.leiva,ajg,gis}@cs.uns.edu.ar

1 Introduction

This work presents an overview of a research project focused on R&D for ap-
proximate query answering in probabilistic structured argumentation based on
DeLP [2]. The ultimate goal is to develop a suite of algorithms for tackling the
computational cost of this task and selection criteria for choosing the best one
based on the analysis of available information. In the rest of this section, we
briefly present the basics of DeLP3E knowledge bases.

The DeLP3E framework

A DeLP3E model [9] consists of two parts: an environmental model (EM) and
an analytical model (AM), which represent different aspects of a domain, plus an
additional component—called an annotation function—linking the two. Figure 1
provides an overview of these components.

The analytical model contains all the background information that is avail-
able for the analysis of a domain: it contains rules, facts, or presumptions to rep-
resent available knowledge. Since such knowledge is in general complex and prone
to inconsistency and incompleteness, Defeasible Logic Programming (DeLP) [2]
is a good choice for this component given that it is a formal model that can cope
with such features. The environmental model is used to describe the background
knowledge and is probabilistic in nature; the choice of such a model will depend
on the specific application, but it must be consistent. Examples of probabilistic
models that can be used are Bayesian Networks (BNs) [7], Markov Logic Net-
works (MLNs) [8], extensions of first order logic such as Nilsson’s probabilistic
logic [6], or even ad-hoc specifications of a joint probability distribution.

The main DeLP3E KB components are denoted with PEM , PAM , and af
(annotation function). Analysts (or automated systems) assign a probability to
statements in the EM, whereas statements in the AM can be true or false depend-
ing on a certain combination (or several possible combinations) of statements
from the EM. There are thus two kinds of uncertainty that need to be modeled:
probabilistic uncertainty and uncertainty arising from defeasible knowledge. The

? Copyright c©2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



Worlds 𝒗𝟎 𝒗𝟏 𝒗𝟐 ... 𝒗𝟏𝟕 𝑷𝒓(𝝀𝒊)

𝜆1 T T T … T 0.47

𝜆2 T T T … F 0.15

𝜆3 T T T … T 0.05

… … … … … … …

𝜆1024 F F F … F 0.003

Probabilistic Model

Environmental Model 
(EM)

𝜴 ∪ 𝜣 ∪ 𝜟 ∪ 𝜱

Rules, Facts
and 

Presumptions

Arguments

Dialectical Process

Analytical Model (AM)

𝑎𝑓: Ω ∪ Θ ∪ Δ ∪ Φ → 𝑓𝑜𝑟𝑚𝐸𝑀

𝑎𝑓 𝑟1 = 𝑣1 𝑎𝑛𝑑 𝑣2
𝑎𝑓 𝑟2 = 𝑇𝑟𝑢𝑒
𝑎𝑓 𝑓1 = 𝑣6 𝑜𝑟 𝑣7

…

Annotation Function(AF)

𝜆𝑖
𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆𝑖

⋯

𝜆𝑖 ⊆ 𝑃𝐸𝑀 | 𝑃𝐴𝑀(𝜆𝑖) ⊆ 𝑃𝐴𝑀

𝑃𝐴𝑀 𝜆𝑖 "𝑌𝑒𝑠"

𝑃𝐴𝑀 𝜆𝑖 “No”

𝑃𝐴𝑀 𝜆𝑖 𝑛𝑜𝑡 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑

𝑃𝐴𝑀 𝜆𝑖 "𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑"

𝑃𝐴𝑀 𝜆𝑖 "𝑈𝑛𝑘𝑛𝑜𝑤𝑛"

𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆9

𝜆9
𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆1

𝜆1

𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆𝑛

𝜆𝑛
𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆𝑗

𝜆𝑗

DeLP3E KB

Fig. 1. Overview of the DeLP3E Framework

subsets of elements from PEM are called worlds; atoms that belong to the set
are said to be true in that world, while those that do not are false. This set
is denoted with WEM . In the same way, the set of all subsets of elements of
PAM (subprograms) is called WAM . Intuitively, given PAM , every element of
Ω ∪Θ ∪∆∪Φ (rules, facts or presumptions) only holds in certain worlds in the
set WEM, i.e., these elements are subject to probabilistic events. Each element
of Ω ∪ Θ ∪ ∆ ∪ Φ is thus associated with a formula over the set of all ground
elements of PEM (using conjunction, disjunction, and negation, as usual). The
notion of annotation function implements this association.

In order to answer a query for a literal of interest, we need to compute the
probability interval with which it is warranted in the DeLP3E KB—for this, we
must sum the probability mass of the worlds that generate subprograms where
the queried literal is warranted (warranting scenarios, for the lower bound) and
the mass worlds whose generated subprogram warrants the complement of the
query (for the upper bound). The lower and upper bounds obtained in this
manner comprise the probability interval for the query. This is one of the main
sources of computational intractability, since we must answer the query either
for all the worlds in WEM or all the programs in WAM . In Section 2, we will
present two approaches that we analyze to tackle this intractability.

Next, we present a simple example to illustrate the DeLP3E KB components
and show how the probability interval is calculated for a given query.

A Simple Example. Consider a small KB, with components PEM , PAM , and
af as shown in Figure 2.

For the environmental model PEM , we use a very simple Bayesian network
that describes relationship between the nodes a, b and c (EM elements); we omit



a

b c

Worlds a b c Pr(λi)

λ1 T T T 0.05

λ2 T T F 0.15

λ3 T F T 0.01

λ4 T F F 0.09

λ5 F T T 0.30

λ6 F T F 0.25

λ7 F F T 0.05

λ8 F F F 0.10

Ω : ∅
Θ : θ1 = l1
∆ : δ1 = l5 —< l3

δ2 = ∼l2 —< l4
δ3 = l2 —< l3

Φ : φ1 = l3 —<

φ2 = l4 —<

af(θ1) = true
af(δ1) = b ∨ c
af(δ2) = true
af(δ3) = true
af(φ1) = a
af(φ2) = true

Fig. 2. Top: (EM) Bayesian Network and Probability Distribution over WEM . Bot-
tom left: (AM) DeLP program that comprises the AM. Bottom right: (af) Annotation
function.

the detailed specification of the CPTs and instead provide directly the complete
probability distribution Pr over all possible worlds WEM . Thus, for example,
the probability associated with the world λ5 where a is false and b and c are
true, is 0.30.

The domain knowledge in the analytical model PAM is represented by the
DeLP program P = Ω ∪Θ ∪∆∪Φ (see Figure 2 bottom left). In that program,
there is an empty set of strict rules Ω = ∅, only one fact Θ = {θ1}, two presump-
tions Φ = {φ1, φ2} and three defeasible rules ∆ = {δ1, δ2, δ3}. The annotation
function af (Figure 2 bottom right) associates elements of P with probabilistic
events through formulas. As shown, in this example, almost every element hold
in every world (annotated as true), whereas for rule φ1 the annotation means
that this presumption only holds in worlds which the formula a (probabilistic
event a) is satisfied, and the annotation for rule δ1 means that this rule only
holds in worlds in which the formula b ∨ c, that relates the probabilistic events
b and c, is satisfied.

To answer a query, consider for example the literal ∼l2. To compute the
associated probability interval, we need to obtain the warranting scenarios for
both ∼l2 (for the lower bound) and its complement l2 (for the upper bound).
It is easy to check that the condition for the former is that a does not hold,
which yields the set of worlds {λ5, λ6, λ7, λ8}; it is also easy to check that there
are no warranting scenarios for L2. Therefore, the lower bound is calculated by
summing

∑8
i=5 Pr(λi) = 0.7, while the upper bound is simply 1, so the answer

to the query is Pr(∼l2) ∈ [0.70, 1].



Worlds Programs

𝜆7 𝜆5
𝜆9

𝜆4

𝜆8
𝜆2

𝜆11
𝜆3

𝜆14
𝜆1

𝜆0
𝜆6

𝜆10

𝜆12 𝜆7𝜆5

𝜆9

𝜆4

𝜆8𝜆2
𝜆11 𝜆3𝜆14

𝜆1

𝜆0 𝜆6

𝜆10 𝜆12
𝑃1 𝑃2

𝑃3
𝑃6 𝑃5𝑃4

… …𝜆𝑛
𝜆13

𝜆𝑛 𝜆13

Fig. 3. Worlds and Programs sampling

2 Approximate Query Answering

A well-known technique to address intractability in this kind of situation is
to sample a subset of the solution space in order to arrive at an approximate
answer. In this case, we can consider two types of sampling: world-based and
subprogram-based, as illustrated in Figure 3. In world-based sampling, a subset
of the possible EM worlds are chosen and, based on the annotation function,
different subprograms of PAM are obtained (as shown in Figure 1). So, each
PAM (λ) is a classical DeLP program [2] in which we can query for the status of
some literal. On the other hand, subprogram-based sampling divides the universe
of all possible subprograms into regions that represent programs that warrant the
query or its complement. Each of these programs can be generated by multiple
worlds through their annotations.

In both cases, we also have those worlds or programs in which the status
of the query can be “undecided” or “unknown”. The objective is to sum the
probability value corresponding to the green and red worlds (circles in the figure);
that is, those that are warranting scenarios for the query and its complement,
respectively. Given the incomplete nature of the process, some probability mass
will remain unexplored (the white elements in Figure 3).

A Family of KB Metrics. In order to define a suite of sampling algorithms
to approximate the answer to a probabilistic query in the most efficient and
effective way possible, we must consider what metrics we have available for the
input KB. Figure 4 shows a set of such possible metrics, organized with respect to
the component they apply to, and what attribute they are designed to measure.
For each one, we also analyze whether or not they can be tractably computed
(observable column) or approximated.

For each component (or submodel of the KB), we can focus on two main
attributes: size and complexity. For PAM , #Rules and #Facts refers to the
total number of different rules and facts in the DeLP program, respectively.
Regarding the complexity component, the MDDL metric refers to the maximum
defeasible derivation length, i.e., the maximum number of defeasible rules present
in any argument constructed from the program. In a similar vein, h refers to



Component Attribute Example Metric Observable? Approx.?

PAM

Size
#Rules Yes –
#Facts Yes –

Complexity
MDDL – Yes
h – Yes
τ – Yes

PEM

Size
#RandomVars Yes –
#PGM Arcs Yes –

Complexity
PGM TW – Yes
Entropy – Sometimes

AF
Size %AF ann Yes –

Complexity AF Comp Yes –

Fig. 4. Example metrics computable (exactly or approximately) for a DeLP3E KB.

the maximum length of an argumentation line (a sequence of arguments where
each element of the sequence defeats its predecessor), and τ is the number of
dialectical trees (a tree structure formed by all argumentation lines arising from
one argument) for each literal in the program [2].

On the other hand, for PEM , #RandomVars refers to the number of random
variables in the model (for instance, nodes in a BN), while #PGM Arcs refers
to the number of arcs in a probabilistic graphical model (PGM) [4]. The metric
PGM TW refers to the treewidth of a PGM (such as a BN), which intuitively
measures how “close to a tree” a graph is; approximations for this metric can be
computed [3], but the exact value cannot be tractably calculated for very large
models. The entropy metric is inherent to the joint probability distribution func-
tion represented by PEM , and it is possible to approximate it in some particular
scenarios [1].

Finally, for annotation functions (AF) an example metric for the size at-
tribute is %AF ann, which refers to the percentage of formulas of the program
that are annotated. For the complexity attribute, metric AF Comp refers to the
complexity of each annotation itself (that is, which operators can be used, if
nesting is allowed, etc.).

Towards a Suite of Approximation Algorithms. Based on the information
obtained using these metrics, we can begin to explore the possible alternatives
for deriving sampling-based approximation algorithms. For example, consider a
scenario in which we have 10 elements in the PAM (#Rules + #Facts) and 50 in
the PEM (#RandomVars), and AF Comp is low (only one variable from PEM

is used in the annotations, without operators). Here, we can approximate the
probability of a query by sampling subprograms, since the number of subpro-
grams will be smaller in comparison with the number of worlds (210 < 250),
and the annotations associated with subprograms are simple to evaluate (con-
junctions of variables or their negation). On the other hand, if the annotations
are complex (they use several variables, connectors and negations, for example
af(ω1) = a∨ b→ ¬c) then sampling by worlds is simpler (even if there are more



elements in PEM than rules in PAM ). This is because the task of obtaining the
subprogram is simple (substitute the random variable values according to the
sampled world and evaluating the annotation formula, then query for the literal
in the generated program) compared to computing the probability of a complex
expression in the EM.

Note that the examples mentioned above expose a kind of asymmetry be-
tween the PAM and the PEM—even though given a world it is only possible
to generate a single program, a program can be generated by a set of worlds
(since the formulas in the annotations can have more than one model). This can
be observed also in Figure 3. Consider a case in which the PEM is a BN with
high values of treewidth and entropy—for example, 5 (complex structure) and
14, respectively—meaning that the network is far from a tree structure and that
the underlying probability distribution has a high degree of uncertainty. This
leads to a slower, more complex, and less guided sampling process; therefore, an
algorithm to sample worlds randomly is not recommended, and in this case it
is better to decide in a previous step which worlds to sample (such as weighted
sampling given the BN), in order to optimize resources.

These examples show the variety of possible approaches to approximate query
answering in probabilistic DeLP. Our ultimate goal is to develop a set of decision
criteria that allow to select the best algorithm for the job, contemplating the
inherent tradeoffs between running time (including the cost of calculating any
necessary approximate metrics) and precision of the result obtained.

3 Conclusions and Future Work

In this work we presented a preliminary study of the aspects that must be consid-
ered when developing a family of approximation algorithms for query answering
in the DeLP3E framework. Ongoing and future work consists of developing ap-
proximation algorithms that can handle large instances based on the criteria
initially explored here, and implement them in the DAQAP platform [5]. In
order to do this effectively, we are developing procedures for automatically gen-
erating DeLP3E KBs in order to simulate different scenarios, running a suite of
approximation algorithms over them, and evaluating their performance. Other
approaches currently being evaluated are the application of machine learning
techniques to sample in a guided way during the approximation process.

Acknowledgments. This work was supported by funds provided by Univer-
sidad Nacional del Sur (UNS) under grants PGI 24/N046 and PGI 24/ZN34),
Agencia Nacional de Promoción Cient́ıfica y Tecnológica under grant PICT-2018-
0475 (PRH-2014-0007), and CONICET under grant PIP 11220170100871CO.

References

1. Batu, T., Dasgupta, S., Kumar, R., Rubinfeld, R.: The complexity of approximating
the entropy. SIAM J. Comput. 35(1), 132–150 (2005)



2. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. TPLP 4(1-2), 95–138 (2004)

3. Kloks, T.: Treewidth: computations and approximations, vol. 842. Springer Science
& Business Media (1994)

4. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

5. Leiva, M.A., Simari, G.I., Gottifredi, S., Garćıa, A.J., Simari, G.R.: DAQAP: de-
feasible argumentation query answering platform. In: Proc. FQAS 2019. LNCS, vol.
11529, pp. 126–138. Springer (2019)

6. Nilsson, N.J.: Probabilistic logic. Artificial intelligence 28(1), 71–87 (1986)
7. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible infer-

ence. Elsevier (2014)
8. Richardson, M., Domingos, P.: Markov logic networks. Machine learning 62(1-2),

107–136 (2006)
9. Shakarian, P., Simari, G.I., Moores, G., Paulo, D., Parsons, S., Falappa, M.A., Aleali,

A.: Belief revision in structured probabilistic argumentation. Annals of Mathematics
and Artificial Intelligence 78(3-4), 259–301 (2016)


