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Abstract  
Joint graphs are currently the primary way to define the global structure of algebraic 

Bayesian networks. In this paper, we give an overview of a direct algorithm for the synthesis 

of a minimal joint graph and carry out its asymptotic analysis. We also describe ways to 

achieve maximum efficiency. From a theoretical point of view, the problem has not been 

discussed previously.  

 

Keywords  1 
Algebraic Bayesian networks, joint graphs, labeled graph, complexity of algorithms, 

algorithms on graphs, depth-first search  

1. Introduction 

Currently, the amount of data being accumulated is increasing rapidly. One effective method of 

working with their increasing volume is the application of machine learning models [Jasenin et al. 

2018]. Algebraic Bayesian networks (ABN) are one such model. They are represented by an 

undirected graph whose vertices contain knowledge patterns. The mathematical model of the 

knowledge pattern is the ideals of conjunctions, each element of which is given scalar or interval 

estimates of the probability of truth. The ability to work with the interval estimates makes the ABN a 

suitable tool for processing incomplete, inaccurate or not-numerical information.  

In machine learning, the ABN is distinguished by several steps, including the stap of constructing 

a global structure or joint graph. One of the questions in this line of research is the computational 

complexity of the algorithms involved. They need to be reasonably computational. The aim of this 

work is to evaluate the asymptotics of the algorithm for constructing the minimal joint graph proposed 

by Oparin and Tulupyev [1]. 

2. Minimal joint graph 

Before describing the algorithm and studying its complexity, it is necessary to define the joint 

graphs themselves. 

Set the finite alphabet A and the finite set of vertices V. The set of vertices has a labeling function 

W:V→2A which compares each vertex 𝑣 ∈ 𝑉 with its load Wv. 

Definition: Two vertices u, v are main connected [2] if 𝑊𝑢 ∩ 𝑊𝑣 = ∅ or there is a way of P out of 

u in v that 

 ∀𝑝 ∈ 𝑃    𝑊𝑢 ∩ 𝑊𝑣  ⊆  𝑊𝑝  

Definition: A graph is the joint graph [2] if any two of its vertices are main connected.  

                                                      
Russian Advances in Fuzzy Systems and Soft Computing: selected contributions to the 8-th International Conference on Fuzzy Systems, 
Soft Computing and Intelligent Technologies (FSSCIT-2020), June 29 – July 1, 2020, Smolensk, Russia 

 
©️  2020 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



Multiple joint graphs can be constructed over the same set of vertices with a fixed labeling 

function. For example, if all vertex loads coincide, the joint graph will be any tree (and generally any 

connected graph). For logic-probability inference purposes, acyclic joint graphs [2], therefore, ABN 

theory pays particular attention to the minimal joint graphs. 

Definition: The joint graph is minimal [2] if it is minimal by inclusion. 

In [3], it was shown that the minimal by inclusion and minimal by number of edges are achieved at 

the same time. 

3. Minimal joint graph algorithm 

Definition: A restriction of Gq graph G on a load of q is a pair of 〈𝑉𝑞 , 𝐸𝑞〉: 

𝑉𝑞 = {𝑣 ∈ 𝑉|𝑞 ⊆ 𝑊𝑣}, 

𝐸𝑞 = {(𝑢, 𝑣) ∈ 𝐸|𝑢, 𝑣 ∈ 𝑉𝑞}, 

where Wv is the load on the vertex v. 

The algorithm that generates the minimal joint graph was described in [1]. Its pseudocode is 

shown below. The delegate(S) function returns an arbitrary representative of the set S. The 

component(G,v,q) function returns the connectivity component of a vertex v in the restriction of graph 

G to the load of q. 

 

Table 1 

Algorithm 1. Minimal joint graph algorithm. 

Require V,W  

Ensure 𝐺 = 〈𝑉, 𝐸〉 
  1: Q=∅ 

  2: 𝐺 = 〈𝑉, ∅〉 
  3:  for all 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣 do 

  4:     if  𝑊𝑢 ∩ 𝑊𝑣 ≠ ∅ & 𝑊𝑢 ∩ 𝑊𝑣 ∉ 𝑄 then 

  5:         𝑄 ← 𝑊𝑢 ∩ 𝑊𝑣 

  6:     end if 

  7: end for 

  8: while 𝑄 ≠ ∅ do 

  9:     𝑞 ← 𝑄 

10:     𝑆 = ∅ 

11:     for all 𝑣 ∈ 𝑉 do 

12:         if 𝑞 ⊂ 𝑊𝑣  & 𝑣 ∉ 𝑆 then 

13:             if 𝑆 ≠ ∅ then 

14:                 d = delegate(S)  

15:                 S = S ∪component(G,v,q) 

16:                 𝐺. 𝐸 ← (𝑑, 𝑣)  

17:             else 

18:                 S = component(G,v,q)  

19:             end if 

20:         end if 

21:     end for 

22: end while 

 

The algorithm sequentially traverses all possible pairwise intersection of loads of q (called 

separators). For each such intersection, an empty set of S is created. For each vertex of v, the load of 

which contains the current separator q, but which is not yet in the set S, the set S is combined with the 

connectivity component of the graph G, which contains v, in restriction to the load q. If the S was not 

empty, then in the graph G adds an edge between the vertex v and the arbitrary vertex of the set S. As 

a result, G will contain a minimal joint graph. 



4. Introduction 

Let’s settle first with a known upper estimate of complexity, and then try to improve it. 

Let us have sets of A and B. Mark for 𝛼, 𝛽 and 𝛾 the time necessary to perform a check of 𝐴 ⊂ 𝐵, 

to perform a check of 𝑎 ∈ 𝐴 and to perform the operation of 𝐴 ∪ 𝐵 respectively. The number of 

vertices and the number of edges, respectively, are also given for n and m. 

Estimate the cycle time in rows 8-22 then. The outer cycle while makes |𝑄| iterations. Since the 

set Q contains pairwise interceptions vertex loads of no more than 
(𝑛−1)

2
, asymptotically this cycle can 

be estimated as 𝑂(𝑛2). 

The inner cycle for is iterated over all vertices, that is, makes n worth of iterations. The checks 

from line 12 are for 𝛼 + 𝛽. The check from line 13 is done in constant time. The delegate(S) function 

is knowingly performed for O(n) by supporting a vector of the logical type that contains information 

about ith vertex is included in S or not. The component(G,v,q) function can be performed for     

𝑂((𝑛 + 𝑚)𝛼) by modifying the depth first search [4] with an additional check of 𝑞 ⊂ 𝑊𝑣. The 

operation of union in the accepted notation is performed for 𝛾. Finally, adding an edge to the graph is 

performed in constant time. The resulting estimate is 𝑂(𝑛2 ∙ 𝑛 ∙ (𝛼 + 𝛽 + 𝛾 + 𝑛 + 𝛼(𝑛 + 𝑚))). 

Now let’s start improving this score. First of all, get rid of the summand of 𝛽, 𝛾 and n. We can use 

the disjoint-set-union (DSU) data structure [4], [5]. Tarjan showed [5] that queries of the species «to 

choose a representative» and «to unite sets» are executed for O(a(n)), where a(n) is the inverse 

Ackermann function (this estimate, however, is discussed [6], [7]). This function grows so slowly 

that, for example, its value from the Shannon number [8] is less than five, allowing DSU to be 

neglected in the assessment of asymptotics. Now the estimate is 𝑂(𝑛2 ∙ 𝑛 ∙ (𝛼 + 𝛼(𝑛 + 𝑚))). 

Asymptotically it is the same as 𝑂(𝑛2 ∙ 𝑛 ∙ 𝛼(𝑛 + 𝑚)). 

The next step is to show that not every iteration of the cycle requires a depth-first search of the 

entire graph. Fix a separator of q. The connectivity components in a graph do not intersect. Similarly, 

the connectivity components in a restriction of q do not intersect. This means that we do not need to 

make a series of n search for 𝑂(𝑛 ∙ 𝛼(𝑛 + 𝑚)), but only 𝑂(𝛼(𝑛 + 𝑚)). In fact, if the search 

conditions are completed, then the current vertex is not yet in S, which means that the connectivity 

component of the current vertex is not yet in S. In turn, the latter means that no vertex or edge will be 

viewed twice in a series of depth-first searches, meaning that it is necessary to do nothing more than 

one depth-first search of the entire graph. This is for 𝑂(𝛼(𝑛 + 𝑚)). Thus, the asymptotic with   

𝑂(𝑛2 ∙ 𝑛 ∙ 𝛼(𝑛 + 𝑚)) decreased to 𝑂(𝑛2 ∙ 𝛼(𝑛 + 𝑚)). 

Let we give you a little bit of a distraction here. Any permutation can be represented as a product 

of disjoint cyclic permutations - such a representation is called a cyclic decomposition. The more 

cycles this decomposition contains, the more of them have a single length. That is, the more elements 

in a cyclic decomposition, the less transpositions are needed to obtain the identical from the current 

permutation. This statement is formalised as follows: the minimum number of transpositions required 

to produce an identical permutation is equal to the difference in permutation length and the number of 

cycles in the cyclic decomposition [9]. 

This approach can also be applied in the case under study. Note that in depth-first search for an 

edge corresponding to the separator counts exactly as many times as the ancestors (not only in the 

first generation) in the Hasse diagram [10] relative to the «contained» constructed over the set of 

separators. Vertices are slightly more common: the number of occurrences is the sum of the number 

of ancestors of all separators in the load of the vertex. The following theorem holds: 

Theorem: The height of the Hasse diagram over the set of pairwise intersection of set from 

multiset the power of n is strictly less than n. 

Prove this by induction. This is true for two vertices simply because the set of separators contains 

only one element. Now let’s make the statement fair for n, prove it for n+1. Let there be a set of loads 

that the Hasse diagram has a height of n+1. Mark for t the end vertex of the path length of n+1. Since 

it is a separator, there are at least two loads of tx and ty containingt. Consider a third s load such that 

its crossing with ty lies in the path of the length of n+1 in the diagram. Mark this crossing with w. 

Then 𝑤 ⊂ 𝑡𝑥 ∩ 𝑠. Then when you remove a load of ty, the height of the Hasse diagram will be 

reduced by at most one, because the only separator in the n+1 length path that may cease to exist is 



the t separator. Then we can construct Hasse’s diagram of height n over n vertex, and by induction 

assumption, that’s impossible.  

Because knowledge pattern loads consist of not many elements, the Hasse diagram comes out 

sparse. This means that asymptotically the vertices and edges in the depth-first searches series are 

counted O(n) times. This allows us to further improve the evaluation of the algorithm by reducing the 

exponent from 𝑂(𝑛2 ∙ 𝛼(𝑛 + 𝑚)) to 𝑂(𝑛 ∙ 𝛼(𝑛 + 𝑚)). 

Let’s estimate now the time of preprocessing 3-7. The cycle makes 𝑂(𝑛2) iterations, each of 

which performs search for intersection of the sets, test the attachment of the set Q, add the set to the 

set Q, and test the set for emptiness. The last operation can be performed in constant time, while other 

operations on sets depend on their size. Limit their size to a constant of k. Then the intersection can be 

found, for example, for 𝑂(𝑘 log 𝑘), supporting the sets as self-balancing search trees [11], or for 

O(k+k) by two pointers, supporting the sets as ordered vectors. By supporting Q as a self-balancing 

search tree, you can add and search items for 𝑂(𝑘 log|𝑄|), where a factor of k is responsible for 

comparing the two sets. Since the size of Q is less than n2, you can replace 𝑂(log|𝑄|) with 

𝑂(log 𝑛2) = 𝑂(2 log 𝑛) = 𝑂(log 𝑛). Once summed, we get 𝑂(1 + 2𝑘 + 2𝑘 log 𝑘), which is 

asymptotically equivalent to 𝑂(𝑘 log 𝑘). Thus, the preprocessing can be performed for 𝑂(𝑛2𝑘 log 𝑘). 

5. Conclusion 

The work carried out an asymptotic analysis of the minimal joint graph synthesis algorithm and 

specified implementation methods to achieve an optimal estimate. The main result is that the 

algorithm runs for 𝑂(𝑛 ∙ 𝛼(𝑛 + 𝑚)) with a preprocessing of 𝑂(𝑛2𝑘 log 𝑘). The results lead to the 

conclusion that computational complexity is acceptable. The algorithm seems appropriate. 
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