
Proceedings of the
2nd Workshop on Artificial Intelligence and Formal Verification, Logics, Automata and Synthesis (OVERLAY),

September 25, 2020

Learning How to Monitor: Pairing Monitoring and
Learning for Online System Verification ∗

Andrea Brunello1, Dario Della Monica1, Angelo Montanari1, and Andrea Urgolo2

1,2University of Udine, Italy
1{andrea.brunello,dario.dellamonica,angelo.montanari}@uniud.it

2urgolo.andrea@spes.uniud.it

Abstract

In several domains, the execution of a system is associated with the generation
of continuous streams of data. Such streams may contain important telemetry
information, which can be used to perform tasks like predictive maintenance and
preemptive failure detection, in order to issue early warnings. In critical contexts,
formal methods have been recognized as an effective approach to ensure the correct
behaviour of a system. However, they have at least two significant weaknesses: (i) a
complete, hand-made specification of all the properties that have to be guaranteed
during the execution of the system turns out to be often out of reach when complex
systems have to be handled and, for the same complexity reasons, (ii) it may
be difficult to derive a complete model of the system against which to check the
properties of interest. In this paper, to overcome these limitations, we extend a
recently presented framework that pairs monitoring with machine learning, in order
to allow for the preemptive detection of critical system behaviours in an on-line
setting. The framework is tested on a practical use-case based on the public NASA
C-MAPSS dataset, and is shown to obtain promising performance in terms of its
ability to forecast the approach of failures, and to provide interpretable results.

1 Introduction
Typically, during its execution a system generates several streams of data, which may contain important
telemetry information. This is the case, for instance, with logs produced by web servers, smart sensors, or
machinery in modern industrial plants. System behaviours may be arbitrarily convoluted, as they can be
the result of the interaction among several components as well as with the surrounding environment.

In such a complex setting, formal methods can be exploited as effective tools for the automatic
verification of software and hardware systems, a task which is of paramount importance in many critical
domains. However, the inherent complexity of system’s components and of their interactions make it
very difficult (and sometimes impossible) to specify in advance all the relevant properties that have to be
guaranteed (or, dually, avoided) during their execution. In addition, the definition of a complete model of
the system against which to check the properties of interest may also be out of reach.

∗The authors acknowledge the partial support by the Italian INdAM-GNCS project Ragionamento Strategico e Sintesi
Automatica di Sistemi Multi-Agente.

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



88 Andrea Brunello, Dario Della Monica, Angelo Montanari, Andrea Urgolo

To overcome these limitations, some approaches that complement formal verification with model-based
testing and monitoring have been recently proposed in the literature (see, for instance, [5, 6]). In this
work, we focus on monitoring [8], a runtime verification technique whose key feature is that of allowing
one to detect the satisfaction or violation of a property (usually expressed in terms of some temporal
logic formula) by analyzing a single run of the system, which makes such a technique naturally applicable
to data streaming contexts. Specifically, we extend a recently-proposed framework for online system
verification [3] that integrates monitoring with machine learning and can be applied to preemptive failure
detection and predictive maintenance tasks in data streaming contexts. The framework is evaluated on a
use-case based on the public NASA C-MAPSS (Commercial Modular Aero-Propulsion System Simulation)
dataset [14], and is shown to obtain promising results regarding the preemptive detection of engine failures.
Moreover, the approach is highly interpretable, meaning that a domain expert can easily read and validate
the generated model. Last but not least, by looking at the formulas extracted by the framework, it may
be possible to gain some insights on the causes that ultimately led to a failure, and act accordingly.

2 Learning How to Monitor
As we already pointed out, the framework combines machine learning with monitoring, in order to obtain
a system that can be exploited for online system verification. Its operation consists of five main steps.

1. Specification of the initial set of properties. Domain experts are asked to specify the most
significant (monitorable) properties that the system under consideration should exhibit. The latter
are then formalized in a suitable temporal logic and a monitor that checks them against incoming
execution traces is synthesized.

2. Monitoring of system properties. The monitor checks whether the system satisfies/violates the
specified properties during its execution.

3. Detection of a failure. Upon the detection of a failure, the part of the system trace for which
the monitor reaches a verdict of failure is extracted, and considered to be a failure trace. Intuitively,
it corresponds to the subtrace that is closer to the failure event. In addition, the remaining part of
the trace, generated by the system during previous normal execution is extracted, and considered to
be a normal trace. Of course, the length of the time window that is used to distinguish between
normal and failure traces depends on the specific application domain, and it must be carefully chosen
according to the results of a dedicated tuning phase, possibly with the help of domain experts.

4. Mining of the relevant behaviour patterns. Failure and normal traces are put together to
generate a dataset for supervised machine learning. Each of the two instances is characterized by
a (possibly multivariate) trace that can contain numerical (as in the case of a temperature signal)
or categorical (e.g., a sequence of system calls made in a Unix system) values. Traces are first
converted into timelines (see, e.g., [9, 15]); then, pattern mining algorithms are run, with the goal of
extracting the (temporal) logic formulas that best characterize and discriminate between normal
and failure traces (following, for instance, the approaches described in [2, 4, 7, 10]). In doing that,
some attention has to be paid to avoid overfitting, for instance putting a constraint on the maximum
nesting level of the extracted formulas, or considering only a set of predefined patterns (see, e.g.,
[12]).

5. Extension of the pool of properties. The temporal logic formulas extracted during the mining
phase are added to the pool of properties to be monitored, and the process restarts from the
monitoring phase. Notice that it might be possible for the added formulas to be redundant (i.e.,
entailed by other ones) but they cannot be in contradiction with the existing ones.

The framework works in an iterative way, which we may refer to as its online phase, in which incoming
traces are considered. It starts from a set of basic properties, and new, related ones are then added over
time, with the idea that, in principle, they should allow the system to discover anomalous behaviours
earlier and with ever increasing accuracy and coverage. In order for the pool of properties to converge,



89

we are investigating the possibility to define some stopping criteria, e.g., based on the accuracy of the
extracted formula or the complexity of the corresponding decision trees. Based on the organization of the
above five steps, two different framework phases and learning modes may be identified.
Warmup and online execution phases. Sometimes, data pertaining to past system failures may be
available, or approximate data may be generated by means of simulations. In that case, it makes sense to
exploit these pieces of information to perform monitor learning even before its online phase. To do that,
intuitively, it is sufficient to mimic the continual arrival of the available traces, and to iteratively follow
the five steps which we described. Thanks to this initial warmup phase, the framework can then deal with
the subsequent online phase starting with an already-extended pool of properties.
Semi-supervised and unsupervised learning. Let us focus on the task of preemptive machinery fault
detection. According to the first step of the framework, a domain expert may be required to specify an
initial set of properties to be monitored against the execution of the system, thus acting, in her/his vision,
as fault early warnings. Since there is, at first, a human intervention, we can refer to this strategy as a
kind of semi-supervised learning. Nevertheless, domain expert knowledge may sometimes not be available.
In such a case, the monitor is initialized with just a single, trivial property, that is, “the machinery is in
operation”. Then, once a failure is detected (indeed not in a preemptive way), the framework may proceed
with the usual steps in order to detect some properties that may help it in forecasting the fault before it
actually happens. Since in this operation mode there is no human intervention (except for the trivial,
initial, “machinery in operation” property), we can refer to it as a kind of unsupervised learning.

3 Application
In order to better describe the operation of the framework, we now turn our attention to its application
to the NASA C-MAPSS FD001 dataset [14], which includes run-to-failure simulated data of turbo fan
jet engines and is considered as a benchmark in the literature (see, for example, [13]). Specifically, in
dataset FD001, engines are simulated according to a single condition (called Sea level), and their failures
are attributable to one possible cause (HPC degradation). Each engine simulation is represented by a
multivariate time series obtained from 21 engine’s sensors and 3 operational settings. Although each
instance represents the simulation of a different engine, the data can be considered to be from a fleet of
engines of the same type. Data are sampled at one value per second, and the average time series length is
206. The dataset includes 100 training and 100 test instances. However, test instances are not ideal for
our purposes as they do not end at a failure, but at an arbitrary preceding point. Thus, for the sake of
this early stage evaluation, we focus on training set instances with at least 200 points, and we randomly
split them into training and test instances. As a result, we end up using 30 training and 18 test samples.

The main goal of this experiment is the extraction of temporal properties in order to enhance the
preemptiveness of engine failure predictions. In order to encode the temporal properties extracted by
the framework, we chose here to rely on Linear Temporal Logic (LTL) [11] and, for this reason, before
applying the framework, time series are converted into discrete-valued timelines. Intuitively, given a
real-valued time series, we want to translate it into a sequence of symbols belonging to a finite dictionary.
In order to perform the translation, we chose to rely on Symbolic Aggregate approXimation (SAX) [9], a
well-established solution which has already been used in several data mining applications.

3.1 Experiment setup
As for the execution of the framework, we proceed as follows. The monitoring pool is set up with just a
single, trivial, “engine in operation” property (unsupervised setting). Then, the arrival of engine telemetry
data is simulated, as in the warmup phase. To do so, considering that only one kind of engine is included
in the dataset, we act as if we were observing a single instance: we concatenate all training timelines one
after the other, choosing their order by means of a random seed. Then, the monitoring phase is started,
and the framework is fed with the incoming data one point at a time. Upon the detection of a failure, two
sub-traces are extracted: the failure window, which is the portion of the time series that immediately
precedes the failure event, and the normal trace, which lasts from the beginning of the timeline or from
the last failure occurrence until the failure window. Next, contrastive LTL specifications describing how



90 Andrea Brunello, Dario Della Monica, Angelo Montanari, Andrea Urgolo

Figure 1: Average and standard deviation of RUL, and number of LTL formulas in the monitoring pool
for each framework iteration (warmup phase).

the two traces differ are generated by means of a publicly available tool [1] based on a probabilistic
Bayesian generative model [7] which exploits a Markov Chain Monte Carlo (MCMC) algorithm with linear
complexity with reference to traces length × number of iterations. Such specifications are based on a set
of predefined LTL templates representing the basic operators and properties globally, eventually, until,
release, response, stability, and sometimes before. It should be noticed that the generated formulas capture
high-level qualitative temporal relations and are unable to fully store the analyzed traces (e.g., formulas
like p1 ∧Xp2 ∧XXp3 ∧XXXp4 . . . are never generated), thus they are not able to distinguish between
failure and normal sub-traces based on their difference in length. At this point, by means of a decision
tree trained to distinguish between the two kinds of traces, the most useful specifications are selected
and combined into two Boolean formulas. Finally, once fitted, the resulting decision tree is added to the
monitoring pool. After that, the monitoring process resumes its operation on the remaining concatenated
data, as if the engine was fixed and started again. Each time the monitor reaches a verdict of failure (due
to a decision tree in the pool predicting it, or to observing an actual engine breakdown), the remaining
useful lifetime (RUL) of the engine is calculated. The entire process is run 100 times varying the random
seed, so to collect statistical data regarding the evolution of RUL. In this way, based on the collected
statistics, it is possible to decide when to interrupt the warmup phase of the framework, according to the
desired preemptiveness level of failure prediction. Operationally, for the procedure we empirically chose a
time window of 30 seconds and a desired preemptiveness threshold of 140 seconds.

3.2 Results
As shown in Figure 1, in the warmup phase the 140 second threshold is reached after 16 iterations of
the framework, with a standard deviation of 24.34 seconds and 32 LTL formulas learned. Moreover, it
can be noticed that a law of diminishing returns applies regarding the pool size and RUL estimates.
In order to confirm the consistency of the RUL values, we applied one of the trained monitors to
the 18 test instances, obtaining an average RUL of 142.0 seconds with a standard deviation of 25.36.
Considering the interpretability of the results, we may refer to the formulas f1 = (sensor12_B ∧
¬sensor2_E)R ¬sensor2_E and f2 = sensor15_D U sensor2_E learned respectively in the iteration 1
and 2: f1 means that if sensor2_E occurs then sensor_12_B occurred in the past and f2 means that
sensor15_D has to be true until sensor2_E eventually becomes true. A monitor execution on a test set
trace is shown in Figure 2. While f1 identifies the window immediately preceding the failure, f2, which

Figure 2: Example of a trace portion with predicted failure windows.



91

was extracted at the second iteration, allows us to anticipate the prediction to an earlier instant.

4 Conclusions and future work
In this paper, a novel framework that integrates machine learning with monitoring to perform tasks such
as predictive maintenance and preemptive failure detection in an online setting is discussed. One of its
major strengths and distinguishing characteristics with respect to other solutions is the interpretability
of the extracted properties that are used to predict the failures. The framework, tested on the NASA
C-MAPSS FD001 dataset, is shown to provide encouraging results. As for future work, it includes (i) the
development of a metric that would allow to estimate the RUL of the monitored system without relying
on the warmup phase, (ii) the testing of other, more sophisticated time series preprocessing techniques,
and (iii) a thorough comparison with other state-of-the-art predictive maintenance approaches.

References
[1] BayesLTL GitHub reference page. https://github.com/IBM/BayesLTL. Accessed online on 21

August 2020.

[2] D. Bresolin, E. Cominato, S. Gnani, E. Muñoz-Velasco, and G. Sciavicco. Extracting interval
temporal logic rules: A first approach. In Proceedings of the 25th International Symposium on
Temporal Representation and Reasoning, volume 120 of LIPIcs, pages 7:1–7:15, 2018.

[3] A. Brunello, D. Della Monica, and A. Montanari. Pairing monitoring with machine learning for smart
system verification and predictive maintenance. In Proceedings of the 1st Workshop on Artificial
Intelligence and Formal Verification, Logic, Automata, and Synthesis, volume 2509 of CEUR Workshop
Proceedings, pages 71–76, 2019.

[4] A. Brunello, G. Sciavicco, and I. E. Stan. Interval temporal logic decision tree learning. In Proceedings
of the 16th European Conference on Logics in Artificial Intelligence, volume 11468 of Lecture Notes
in Computer Science, pages 778–793, 2019.

[5] I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir. A survey of runtime monitoring instru-
mentation techniques. In Proceedings of the 2nd International Workshop on Pre- Post-Deployment
Verification Techniques, pages 15–28, 2017.

[6] M. Gerhold, A. Hartmanns, and M. Stoelinga. Model-based testing of stochastically timed systems.
Innovations in Systems and Software Engineering, 15(3-4):207–233, 2019.

[7] J. Kim, C. Muise, A. Shah, S. Agarwal, and J. Shah. Bayesian inference of linear temporal logic
specifications for contrastive explanations. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5591–5598. AAAI Press, 2019.

[8] M. Leucker and C. Schallhart. A brief account of Runtime Verification. Journal of Logical and
Algebraic Methods in Programming, 78(5):293–303, 2009.

[9] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: A novel symbolic representation of
time series. Data Mining and knowledge discovery, 15(2):107–144, 2007.

[10] D. Neider and I. Gavran. Learning linear temporal properties. In Proceedings of the 18th Conference
on Formal Methods in Computer Aided Design, pages 1–10, 2018.

[11] A. Pnueli. The temporal logic of programs. In Proceedins of the 18th Annual Symposium on
Foundations of Computer Science, pages 46–57. IEEE, 1977.

[12] Property pattern mappings for LTL. https://matthewbdwyer.github.io/psp/. Kansas State
University CIS Department, Laboratory for Specification, Analysis, and Transformation of Software
(SAnToS Laboratory) – accessed online on 17 July 2020.

https://github.com/IBM/BayesLTL
https://matthewbdwyer.github.io/psp/


92 Andrea Brunello, Dario Della Monica, Angelo Montanari, Andrea Urgolo

[13] E. Ramasso and A. Saxena. Performance benchmarking and analysis of prognostic methods for
CMAPSS datasets. International Journal of Prognostics and Health Management, 5:1–15, 11 2014.

[14] A. Saxena, K. Goebel, D. Simon, and N. Eklund. Damage propagation modeling for aircraft engine
run-to-failure simulation. In Proceedings of the 2008 International Conference on Prognostics and
Health Management, pages 1–9. IEEE, 2008.

[15] G. Sciavicco, I. E. Stan, and A. Vaccari. Towards a general method for logical rule extraction from
time series. In Proceedings of the 8th International Work-Conference on the Interplay Between Natural
and Artificial Computation, volume 11487 of Lecture Notes in Computer Science, pages 3–12, 2019.


	Introduction
	Learning How to Monitor
	Application
	Experiment setup
	Results

	Conclusions and future work

