
Semantic Hybrid Multi-Model Multi-Platform (SHM3P)
Databases
Sven Groppe

Institute of Information Systems (IFIS), University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany

Abstract
Today’s companies have to handle a zoo of data of different models. Multi-model databases promise to simplify data admin-
istration for the parallel usage of different data models. Compared to the other data models, semantic data models introduce
an additional abstraction layer for reasoning purposes, such that semantic data models provide superior capabilities. Hence
semantic multi-model databases use the semantic data model as main glue between the different data models. Furthermore,
applications as well as databases are today running on different platforms like mobile devices, web, desktops, servers, clouds
and post-clouds (e.g., fog and edge computing). Hybrid multi-model multi-platform (HM3P) databases and its semantic
counterpart (SHM3P databases) integrate the different platforms in order to offer their advantages and benefits for data dis-
tribution, query processing and transaction handling to their users. In this paper we introduce and discuss the novel concept
of SHM3P databases and its open challenges.

Keywords
Semantic Web, databases, multi-platform, multi-model, cloud, post-cloud, edge computing, fog computing, dew computing,
hardware acceleration, Internet-of-Things, mobile database, parallel database, main-memory database

1. Introduction
Today companies have to deal with and process data
in various data formats: The backends of their web
shops with databases about customers and their or-
ders are typically connected to relational databases.
Product catalogs of companies are often exchanged us-
ing XML, JSON or RDF. The boom of social networks
leads to a high demand to process their graph data,
other social media like wikis offer their data as un-
structured data. Key-value stores are often used when-
ever data must be accessed in a simple way just via
keys. However, there is also a need for schema-free
or schema-less databases, which don’t ask the data to
stay in the inflexible corset of a schema, but still work-
ing on complex data formats like document stores. The
data is hence stored according to and processed using
different models (multi-model data [1]). The big chal-
lenge for today’s companies are the synchronization
and integration of their multi-model data into a sin-
gle view of and for the customer [2]. Multi-Model
Database Management Systems (MM-DBMSs) of-
fer the management of different data models in one
single database [1] in order to overcome the disadvan-
tages of polyglot persistence, where applications use
several databases at the same time to handle multi-

ISIC’21: International Semantic Intelligence Conference, February
25–27, 2021, New Delhi, India
" groppe@ifis.uni-luebeck.de (S. Groppe)
� 0000-0001-5196-1117 (S. Groppe)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

model data [3] hindering optimizations down to the
physical layer of connected DBMSs [4]. Furthermore,
we propose the semantic data model in order to unify
the other data models, because the semantic data model
offers the ontology layer as additional abstraction layer,
which can be utilized for data integration purposes of
the other data models.

While in the past database management systems
(DBMSs) run mainly on parallel servers, there are to-
day various different platforms like mobile devices,
web, desktops, servers (maybe additionally hardware
accelerated by GPUs, FPGAs and in future scenarios
even quantum computing), clouds and post-clouds (e.g.,
fog and edge computing) offering execution environ-
ments for running a DBMS1.

Multi-platform development (as supported by e.g.
the programming language Kotlin [5]) allows to share
common code between different platforms like desk-
top, server, web, mobile and IoT. Multi-platform de-
velopment reduces the development costs for a DBMS
running on multiple platforms drastically.

Puzzling all pieces together we propose the follow-
ing definitions ((H)M3P DBMS are defined according
to [4]):

Definition 1 (M3P/HM3P/SHM3P DBMS). A Multi-
Model Multi-Platform Database Management System
(M3P DBMS) is a MM-DBMS that can be executed on
different platforms. A hybrid M3P (HM3P) DBMS spans
over different platforms in operation. A Semantic HM3P

1Note that clients of DBMSs typically run on different plat-
forms, but we are considering the database server here.

mailto:groppe@ifis.uni-luebeck.de
https://orcid.org/0000-0001-5196-1117
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

17

IoT DB
On the Edge

Cloud DB
Cloud

GPU

Quantum DB
Quantum
Computer

Mobile DB
Mobile Devices
& Infrastructure

Main-
Memory DB

GPU-accelerated
Parallel Server

Single instance of SHM3P Database
offers (fully cross-platform optimized) functionality of & replaces

Lightweight reasoning on Heavyweight reasoning Heavyweight reasoning Reasoning on small data sizes
large data sizes of IoT devices on moderate data sizes on large data sizes of mobile devices

How to integrate the different reasoning capabilities and requirements into one transparent global reasoner?

Reasoning:

Figure 1: SHM3P database spanning over multiple platforms. Here, an SHM3P database replaces an IoT database in an
Industry 4.0 scenario (using edge-computing), a GPU-accelerated parallel database (on a parallel server) for archiving and
generating long-term statistics of the IoT data, which is further supported by a quantum computer for query and reasoning
optimization, a database in the cloud for natural language processing tasks and a mobile database (on mobile devices and
infrastructure) for monitoring and controlling of the production line in the company. Platforms are marked with an italic
font. Green text marks discussion about reasoning in these scenarios. Figure is based on [4] and extended by the discussion
on reasoning.

(SHM3P) DBMS supports a (global) semantic layer (for
querying and reasoning purposes) over all platforms of
an HM3P DBMS.

Whereas today’s M3P DBMSs are typically devel-
oped for platforms of the same type (like windows and
linux servers, see Section 2.1), some other even span
over a (locally installed) private cloud and a public cloud
(in a so called hybrid cloud2). In contrast, we envi-
sion SHM3P DBMSs over platforms of different type
(like IoT and hardware-accelerated parallel servers) in-
tegrating the features of databases developed for these
platforms (like energy-savings on IoT devices and high
throughput on servers) while offering advanced global
reasoning capabilities over all platforms. Hence SHM3P
databases support any data model at any platform by
tightly integrating them with a semantic layer. For an
example installation, see Figure 1.

Our main contributions are:
• the introduction of SHM3P DBMS as new type of

DBMS,
• a detailed discussion of the current state of the art

about and comparative analysis of DBMS designed
for different platforms with special attention to Se-
mantic Web DBMS, and

• a discussion about open research challenges for
HM3P DBMS and SHM3P DBMS.
The remainder is as follows: Section 2 describes the

basics and an analysis of current state-of-the-art con-

2Please note that private and public clouds are platforms of the
same type.

cerning MM-DBMSs, multi-platform development,
databases running on different platforms, polyglot per-
sistence and further related work. Section 3 introduces
SHM3P DBMSs and explores the advantages, and anal-
yses envisioned platforms and common properties of
their combinations. Finally we summarize the results
and provide an overview of future work in Section 4.

2. Basics

2.1. Databases for Multi-Model Data
Polyglot persistence uses different databases support-
ing different data models (and maybe running on dif-
ferent platforms) within one application [3]. Federated
query languages enable polyglot persistence by sup-
porting queries over heterogeneous data stores within
one single query. One example of such a query lan-
guage is CloudMdsQL [6], with which one can for-
mulate queries over SQL and NoSQL databases. The
proposed prototype even optimizes the queries glob-
ally and pushes operations down to the integrated SQL
and NoSQL databases as much as possible. A similar
approach is taken by [7] offering to query cloud-based
NoSQL like Google’s Bigtable and relational databases
with the Google Bigtable query language GQL. The fo-
cus of Apache Drill3 is interactive ad-hoc analysis of
large-scale datasets with low-latency handling up to
petabytes of data spread across thousands of servers.

3https://drill.apache.org/ (accessed on 17.12.2020)

https://drill.apache.org/

18

Drill optimizes a query plan to leverage the datastore’s
internal processing capabilities and by considering data
locality. Commercial multi-store products like IBM
BigInsights, Microsoft HDInsight and Oracle Bigdata
Appliance as well as open source projects like PrestoDB4

integrate diverse data sources by using database con-
nectors (like JDBC drivers). Tatooine [8] uses a se-
mantic layer as glue between databases for different
data models supporting a semantic integration. How-
ever, all these polystores also don’t support to fully op-
timize queries across the integrated, but independent
data sources, which limit data processing.

Federation Databases [9] and multidatabases [10]
place a mediator between different autonomous
databases for integration purposes by reformulating
queries according to a global schema to the native
schemes of the integrated databases, which afterwards
execute these queries. Today, some research focus on
federating databases following the polyglot persistence
approach: For example, DBMS+ [11] provides unified
declarative processing for the integration of several
processing and database platforms. BigDAWG [12] of-
fers location transparency while running queries
against the three different integrated systems
PostgreSQL, SciDB and Accumulo.

Multi-Model Databases: A multi-model database
is one single database for multiple data models, which
fully integrates a backend to offer advanced perfor-
mance, scalability and fault tolerance [13]. One of the
first of this type are Object-Relational DataBase Man-
agement Systems (ORDBMSs), which support various
data models like relational, text, XML, spatial and ob-
ject. ORDBMSs use the relational technology for im-
plementing the support of their data models, i.e., the
relational model is the first-class citizen. In compari-
son and in general, in multi-model databases the dif-
ferent models can be all first class citizens and sup-
ported in a native way (utilizing e.g. specialized in-
dices for them). The authors in [14] propose to use a
semantic layer as glue between the different data mod-
els in order to support global querying and reasoning
over all data. We extend this idea to multi-platform
databases integrating the technologies and features of
different types of databases.

[4] contains an overview of current state-of-the-art
multi-model databases, their type of extension, their
supported data models, query languages and platforms.
The investigated multi-model databases support at most
5 from 8 data models, such that no multi-model database
offers all data models to their users. From the investi-
gated 21 MM DBMS only 5 support RDF as data model,

4https://prestodb.io/ (accessed on 17.12.2020)

where most of which, i.e. 4 of these 5 MM DBMS with
RDF support, also manage graph data. The graph model
seems to be more popular (12 from 21 MM DBMS).
MM DBMS with RDF support typically don’t support
reasoning at all or only in a rudimentary way, such
that users should look for native semantic DBMS if
reasoning is needed. Hence reasoning seems to be chal-
lenging in the MM DBMS context. Most multi-model
databases run SQL, SQL-like or extensions of SQL
queries. Binaries of these databases are offered in ma-
chine code (often compiled from C/C++) or for the Java
virtual machine (JVM). They usually run on all or a big
subset of the major desktop operating systems linux,
windows, macOS, unix and their variants. Few multi-
model databases like IBM DB2 run on mainframes op-
erating e.g. z/OS. While all offer to run in the cloud,
some are also enabled for the hybrid cloud. In the
hybrid cloud, a (locally installed) private cloud is to-
gether used with a public cloud. Hybrid clouds de-
crease costs spent to the public cloud provider while
still having on-demand resources with the illusion of
infinite capacity at the public cloud for a surprising
high resource demand.

While all multi-model databases run on different plat-
forms, they don’t integrate database instances on dif-
ferent types of platforms and different types of databases.
Databases in hybrid clouds combining the resources of
a locally installed private cloud with a public cloud are
approximations of the idea of operating on multiple
platforms of different types. An HM3P DBMS extends
this idea and supports multiple types of platforms like
main-memory, cloud, Internet-of-Things (with e.g. edge
computing) and hardware-accelerated databases using
their different advantages at runtime for database tasks
like data distribution, transaction handling and query
processing. A SHM3P DBMS offers a semantic layer as
glue between the different data models and supports
global semantic querying and reasoning by tightly in-
tegrating local query engines and reasoners.

2.2. Multi-Platform Development
There are several programming languages like C/C++
available compiling to various platform targets in their
native machine code best suitable for high performance
programs. Calls to the operating system for disk ac-
cesses or developing a (native) graphical user interface
must be ported to the different platforms. There is no
special support for multi-platform development like
code-sharing of common code and allowing to define
platform-specific modules to code the differences be-
tween the different platforms. Java was one of the first
programming languages for developing one code run-

https://prestodb.io/

19

ning on different platforms, which is still the key for
the success of Java. It has been implemented by com-
piling to bytecode, which is processed in the Java vir-
tual machine (JVM) available for many platforms. The
JVM introduces an intermediate abstraction layer, but
also some performance overhead, although the byte-
code is often just-in-time (JIT) compiled to native ma-
chine code. Scripting languages like JavaScript also
run on different platforms (i.e., wherever browsers and
Node.js environments can be started). JavaScript be-
sides HTML 5 is the basis of cross-platform libraries
like React Native and PhoneGap. Advanced multi-
platform support introducing a module concept for shar-
ing common code between the different platforms, and
platform-specific modules for coding remaining dif-
ferences, is introduced by modern programming lan-
guages like Kotlin [5]. Kotlin offers multi-platform sup-
port for the JVM (Desktop, Server and Android),
JavaScript engines (browser and server via Node.js)
and via LLVM Windows, Linux, Android (arm32/64),
MacOS, iOS, Raspberry Pi and WebAssembly.

Many DBMSs are implemented in C/C++ for per-
formance reasons and run in native machine code for
operating systems like Windows, Linux, Unix and Ma-
cOS (see [4]). Some modern DBMSs and most Seman-
tic Web tools (see [15]) are implemented in Java fur-
ther decreasing development costs, but still running
on clusters and servers operating Windows, Linux, Unix
and MacOS. Real multi-platform tools by e.g. using
Kotlin multi-platform projects are missing so far for
Semantic Web tools.

2.3. Databases for different Platforms
Most DBMSs and their clients run on different plat-
forms. There exist usually also numerous language
bindings for APIs calling database functionalities from
database applications.

Multi-Platform DBMSs are typically either imple-
mented in C/C++ or in Java. Ports are often available
for Windows, Linux, Unix (sometimes for Solaris) and
MacOS (see [4]). Only few DBMSs still run on main-
frames. Modern DBMSs run in the Cloud and some-
times they are offered only as managed service in the
Cloud (e.g., Cosmos DB). Some few are also running in
a Hybrid Cloud, where the DBMS is running in a local
installation of a cluster (private cloud) as well as in a
public cloud (of a cloud provider). [15] contains a se-
lection of 18 widely-used Semantic Web tools includ-
ing triple stores and Semantic Web databases. Over
half of these tools are implemented in Java (i.e., 6 of
these tools run on any platform, which supports java)
or support java language bindings (4 of these tools).

Semantic Web tools with native binaries run usually
on any desktop and server computers, some only on
linux operating systems.

Hence these DBMSs can be called Multi-Platform
DBMSs, but don’t bring the multi-platform approach
to its full potential. They are typically developed for
one type of platform: server, cluster or cloud. DBMSs
designed for different types of platforms like cluster,
mobile, IoT and the web are not considered so far. HM3P
DBMSs span over different platforms at runtime, which
may be the case for hybrid cloud installations, but which
are also not deployed at different platform types. Hence,
full-fledged HM3P DBMSs have to consider various
different properties (e.g., availability of nodes, stor-
age and computing resources), the data (like security
concerns) and queries (like one-time versus continu-
ous queries) of the supported platforms at runtime for
data distribution and processing. Reasoning support
is not available for all platforms and types of queries
[16]: While many contributions exist for RDFS and
OWL support during one-time query processing on
server and desktop computers, there exist only few ap-
proaches for the cloud and for P2P networks. There
exist only few approaches for trigger and continuous
queries with RDFS and OWL support on server and
desktop computers as well as for the cloud. Ontology
inference for trigger and continuous queries in P2P
networks haven’t been considered so far. The devel-
opment of an SH3MP database may help to support
ontology inference in trigger and continuous queries
with reasonable efforts also on these platforms.

Multi-Platform Clients offering to set up queries
and displaying their results are available for all DBMSs5:
DBMSs typically offer clients for platforms like the Web,
major desktop operating systems like Windows, Linux,
Unix and MacOS, mobile apps like android and iOS.
Some clients are even implemented as cross-platform
application6, which also support different DBMSs. The
situation is quite comfortable for the Semantic Web:
The W3C standardized the protocol to query SPARQL
endpoints in [17]. The protocol [17] is widely sup-
ported and hence the Semantic Web DBMSs as well
as the clients can be easily exchanged.

The user may have the impression that a database
may be running on different platforms, because (s)he
gets in touch with clients for the database available for
different platforms. However, the DBMS does neither
store nor process the data on the clients’ computer, but
only transfers the query result to it. We envision a
SHM3P DBMS, where the advantages of the different

5We consider PostgreSQL and its clients as example here.
6For example, DBeaver available at https://dbeaver.io/ (accessed

on 17.12.2020).

https://dbeaver.io/

20

Multi-
Cloud

Binary: 21 210 220 230 240 250 260 270 280 2167

Decimal: 10 103 106 109 1012 1015 1018 1021 1024 1050

B
yt

e
B

yt
e

K
ilo

K
ib

i

M
eg

a
M

eb
i

G
ig

a
G

ib
i

Te
ra

Te
b

i

Pe
ta

Pe
b

i

Ex
a

Ex
b

i

Ze
tt

a
Ze

b
i

Yo
tt

a
Yo

b
iSize:

Data:

Company:
Devices:

Databases:

Platforms:

Historical
Home

Computer

IoT Device

Embedded

Server

Desktop

Cluster

Cloud

Internet

SMEs: Small and medium-sized enterprises
* social media, search engines

Big Data*

IoT

SMEs Global Player

Office

Main Memory Cloud

IoTCentralized

Web Cloud

Hardware

Cloud

Fog/Edge/Dew

P2P

Web/Mobile

Desktop

Mobile

Mobile

A
to

m
s

o
n

 E
ar

th

Figure 2: Data sizes in companies, devices, databases and
platforms. See [18] for the estimation of atoms on earth.

platforms are utilized for data storing and processing,
and the overall best approaches are chosen according
to the platform properties.

3. Multi-Platform Multi-Model
Databases

Figure 2 provides an overview over data sizes of differ-
ent types of data used in companies, devices, databases
and platforms. It already becomes obvious that some
types of databases fit better to the considered types
of data and company, used devices and platforms than
the others. Hence the different types of data are stored
on and processed at different platforms dependent on
their size, the devices they are generated at and other
properties like their velocity. Integrating these data
sets implies to support multiple models and also dif-
ferent platforms at the same time. This also requires to
support and integrate different types of databases run-
ning on different platforms. For example, one might
combine the data of IoT devices (stored in an IoT
database running on the edge of the network) with
the accounting data containing the remaining time for
charging off (stored in a main memory database run-
ning on an employee’s desktop computer). These dif-
ferent types of databases have different properties and

advantages because they have been developed for dif-
ferent application scenarios, devices, properties of their
indexed data (velocity, heterogeneity, size etc.) and
so on. Table 1 contains a rough evaluation of these
databases. Databases have tailored their architectures
according to the properties of the different platforms,
but often also to the required properties coming from
their applications. Especially distributed databases can-
not offer all: The well known PAC theorem [19] de-
scribes trade-offs, where developers of distributed sys-
tems (and hence also distributed databases) can choose
to fully support only two features with high efficiency
out of three: Partition-tolerance, Availability and
Consistency. For example, if the system works cor-
rectly also in the case of network partitions and is highly
available, then consistency must be relaxed, such that
some replicas may contain older states and not the
most recent ones. The PACELC theorem [20] refines
the PAC theorem and states that in the case of network
Partitions only Availability or Consistency is guaran-
teed. In case of no failures when the databases run nor-
mally (Else), then there is a trade-off between Latency
and Consistency, i.e., only small latency or high con-
sistency can be guaranteed, but not both at the same
time. Distributed triple stores, which are built on top
of NoSQL databases, inherit the properties of their un-
derlying systems: For example, D-SPARQ [21] sup-
ports PA/EC, because it is based on MongoDB7. Jena-
HBase [22], H2RDF [23] and H2RDF+ [24] inherit the
PC/EC properties of HBase8. CM-Well9 is based on
Cassandra10 supporting PA/EL. Remaining research
challenges include hybrid approaches supporting PA
and PC (as well as EL and EC) for different fragments
of the data at the same time according to their appli-
cations.

Hence there is a need to run these different types of
databases at the same time, but there might be also
the need for integrating the data of these databases
(like in the scenario of combining the data of IoT de-
vices with accounting data). For an advanced process-
ing of this different types of data stored in different
databases and other database tasks it is indispensable
to break the boundaries of single installations of these
DBMSs and to run one single DBMS. Furthermore, it
is desirable that this single DBMS provides a seman-
tic layer for advanced processing and reasoning capa-
bilities and for a tight integration of the different data
models. This would also allow to offer the best features

7https://www.mongodb.com/ (accessed on 17.12.2020)
8https://hbase.apache.org/ (accessed on 17.12.2020)
9https://github.com/CM-Well/CM-Well (accessed on

17.12.2020)
10https://cassandra.apache.org/ (accessed on 17.12.2020)

https://www.mongodb.com/
https://hbase.apache.org/
https://github.com/CM-Well/CM-Well
https://cassandra.apache.org/

21

of the different types of databases to applications and
users “under one hood” transparently or with an in-
telligent integration into one query language and API.
This single SHM3P DBMS installation runs over all
platforms at the same time offering the advantages of
all the different types of DBMSs (to the data that has
been previously processed by the single installations)
tightly integrated in a semantic layer, but to have e.g.
a global optimization of data distribution, transaction
handling and global queries and reasoning tasks with
full potential by having freedom of processing down to
the physical layer (e.g., index accesses)11. One single
SHM3P DBMS would also reduce development costs
of applications and periods of vocational adjustment
of developers by offering one API and query language
with an additional semantic layer for all different plat-
forms. A very big challenge for SHM3P DBMSs is to
provide a global distributed reasoner, which integrates
different types of reasoners to be processed on the dif-
ferent platforms, where reasoning is optimized for this
heterogeneous environment minimizing overall costs
combining weighted costs of different types (commu-
nication, processing, lifetime of IoT devices etc.).

3.1. Platforms
We describe shortly the different platforms running
execution environments for different types of DBMSs
here.

Server Platforms are typical platforms for database
servers of small to medium-sized enterprises (SMEs).
The DBMSs running on servers are usually centralized
databases, which are operating in parallel on multi-
core and sometimes many-core systems, often in vir-
tual machines. Relational DBMSs, most Semantic Web
DBMSs and Reasoners are typically running on server
platforms, and all other types of DBMSs usually offer
a local mode to run on a single server.

Hardware-Accelerated Servers speed up database
tasks by utilizing the massive parallelism of special
hardware behind today’s multi-core CPUs.

Modern Graphical Processing Units (GPUs) consist
of several thousand computing cores, which follow the
single-instruction multiple-data paradigm, i.e., the same
instruction is executed on different data on different
cores at the same time. GPUs are often regarded as
special form of many-core CPUs. Hence, neither all
parallel algorithms are suitable for nor benefit from
GPUs. However, the massive parallel processing of ex-

11Note that single installations of DBMSs can only be accessed
via their offered APIs or by setting up subqueries (of the global
query) to them, which hinders the full potential of optimized pro-
cessing of e.g. joins between the data of the different DBMSs.

ecution plans are ideal for many-core CPUs and GPUs
as well as whenever the best possibilities among enu-
merated ones must be found (like in query optimiza-
tion and multi-version concurrency control (MVCC)).
Complex operations like joins processing large data
inputs are very suitable for GPU-acceleration, too (see
e.g. [25] for especially designed joins for SPARQL pro-
cessing on GPUs).

Field-programmable gate arrays (FPGAs) can recon-
figure interconnects for connecting programmable logic
blocks with each other. This property makes FPGAs
ideal suitable for data-flow-driven algorithms (like pro-
cessing an execution plan for evaluating queries in a
streaming way without block-wise materialization of
intermediate steps like it is the case for many-core CPUs
and GPUs), but also any arbitrary type of parallelism
can be offered by FPGAs. FPGA-acceleration of SPARQL
query processing as discussed in e.g. [26] achieves
scalable speedups even increasing with larger data sets.
Dynamic partial reconfiguration enables FPGAs to dy-
namically exchange their configurations to process dif-
ferent queries at runtime [26].

Universal quantum computers try to combine the
full power of classical computers with quantum com-
puters that manipulate (some few) qubits in super po-
sition by applying quantum logic gates. In compari-
son, quantum annealers - operating on up to several
thousand qubits - only run special types of quantum
algorithms to solve adiabatic (as special form of com-
binatorial) optimization problems, which is e.g. the
case for traffic control12, selecting the execution plan
with the best estimated costs (from a set of enumer-
ated plans) [27], concurrency control between transac-
tions [28] as well as optimizing transaction schedules
[29, 30].

Cloud Databases are designed to be run in the
cloud, where (storage and computing) resources can
be dynamically allocated and freed according to users’
demands. Hence, cloud databases must consider that
nodes (for storing and computing) are joining and leav-
ing, such that it may be necessary to redistribute data
and to react for processing jobs on leaving nodes. Fur-
thermore, as the nodes are typically not high-end hard-
ware like servers with redundant components and
clouds consist of many more nodes (up to several thou-
sand nodes), hardware and communication failures may
occur more often. Hence, cloud computing architec-
tures apply simple fault-tolerance mechanisms by re-
peating crashed jobs. Table 2 contains an overview

12investigated by Volkswagen, see
https://www.volkswagenag.com/en/news/stories/
2018/11/intelligent-traffic-control-with-quantum-computers.html
(accessed on 17.12.2020)

https://www.volkswagenag.com/en/news/stories/2018/11/intelligent-traffic-control-with-quantum-computers.html
https://www.volkswagenag.com/en/news/stories/2018/11/intelligent-traffic-control-with-quantum-computers.html

22

Table 1
Rough Evaluation of different Types of Databases.

Feature

DBMS
Main

Memory
Paral-

lel
Distri-
buted

Fede-
rated

Cloud Web
Cloud

Mobile IoT

Scalability – O + + + + + + + + + +

Transaction rates + + + + + O / + O + + + – – –

Intra-Transaction
Parallelism

+ + + + + O / + – / O + O – –

Atomicity + + + + + + + + + + + + +

Durability + + + + + + + + + – O –

Consistency + + + + + + + + + + + + +

Extensibility – + O / + O + + + + + – + + +

Schemaless – – – – – – – – – – + + + + + + + + + +

Availability + + + + – – – – – – – – – –

Transparency of
Distribution

+ + + + + O + + – – – –

Geographical Dis-
tribution

– – – + + + + + + + + + + +

Mobility – – – O O O + + +

Node Autonomy – – – O + O – – + + +

Heterogeneity of
DBMS

– – – – + – – + + + + +

Administration O O – – / – – – + + – – – – –

Hardware Costs – – – – – + + + + + – + + +

Reasoning + + + + + + + – – + + + – – – – –

Table 2
Evolution of Big data analytics engines. Based on [16] and extended by the rows “Impact on Databases” and “Impact on
Reasoning”.

Generation: 1 2 3 4
Features: Batch + Interactive + Near-Real-Time + Real-Time Streaming

+ Iterative Processing + Native Iterative Processing
Processing
Model:

MapReduce DAG Dataflows Resilient Distributed
Datasets (RDD)

Cyclic Dataflows

Impact on
Databases:

Long-Running
Queries

Query Answering
with lower latency

+ Continuous Queries + Real-Time Continuous Queries

Impact on
Reasoning:

Long-Running
Reasoning

Reasoning with
lower latency

+ Capabilities for Stream
Reasoning

+ Cap. for Real-Time Stream
Reasoning

Engine: Hadoop TEZ Spark Flink

over important state-of-the-art Big Data analytics en-
gines working in cloud environments. Additionally
to one-time queries, Apache Spark and Apache Flink
offer to process data streams and continuous queries,
such that they also belong to the type of
stream databases. There exists various examples of
Semantic Web databases on top of the different Cloud
technologies like [31] (HBase, Pig), [32] (Spark) and
[33] (Flink), but also other contributions avoiding to
use the well-known technologies like [34] in order to
support local joining. Web Cloud Databases rely on

a new form of cloud: the web cloud [35]: One just
visits with his/her web browser a certain webpage in
order to connect his/her computer to the web cloud.
In this way the setup of the web cloud is much easier
than those of traditional clouds. Furthermore, the web
cloud has a much larger number of potential nodes, as
any computer running a browser may connect to and
be integrated in the web cloud. New challenges arise
when setting up a cloud by web browsers: The nodes
may be more often disconnected. Data is processed
within the browser and hence we must use the tech-

23

nologies offered by the browser for data management
purposes. New technologies like WebAssembly [36]
introducing a virtual machine for the browser may help
to speed up processing in the browser. There exist first
approaches to distribute SPARQL queries in some kind
of web clouds [37].

Mobile Databases [38] involve the technical infras-
tructure of mobile providers like base stations (being
near-by to their connected mobile devices) in order to
speed up processing, lower communication (and hence
also energy) costs, increase availability and durability
(by logging at the base stations instead on mobile de-
vices) in order to overcome limitations of the mobile
devices. Some RDF stores like [39] are especially de-
signed to run on mobile devices, but they do not con-
sider the backend of mobile providers so far.

P2P Databases [40, 41] use peer-to-peer (P2P) net-
works as underlying backend technology to master a
frequent joining and leaving of nodes for data stor-
ing and processing. In comparison to clouds, they are
designed for a much more frequent change in their
topology and for an equal distribution of functional-
ity without distinction of master and slave nodes. P2P
databases have to introduce more redundancy in data
storing as well as even in processing in order to over-
come the frequent disconnections to their nodes. Fur-
thermore, P2P databases must consider heterogeneity
in the connected nodes much more than other types of
databases. There exist already quite many approaches
for semantic data processing in P2P networks like [41],
but ontology inference is considered only on a rudi-
mentary basis and for trigger and continuous queries
not at all [16].

IoT Databases [42] are especially developed to serve
as data store for large-scale installations of the Internet-
of-Things (IoT). IoT databases often operate in the cloud,
but the communication bootleneck from the IoT de-
vices to the cloud doesn’t scale especially for IoT de-
vices with high velocity and large-scale installations.

In companion with the cloud, fog computing [43]
stores and processes data and application logic on near-
things edge devices with higher capabilities (rather than
primarily in cloud data centers), which saves commu-
nication avoiding the route over the internet backbone.
However, fog computing is not really scalable in the
number of connected things, as the near-things edge
devices do not increase in number and capabilities in
the same way.

The scalability issue is solved in a better way by
edge computing [44], which utilizes additionally all
IoT devices for data storage and processing, and ex-
ecuting application logic: As more IoT devices are de-
ployed, as more data needs to be stored and processed,

but as more IoT devices are also available.
Dew computing [45, 46] overcomes availability prob-

lems, where the communication between cloud and
IoT devices is disturbed, by placing an additional local
server near to the IoT devices taking over the tasks of
the cloud during downtimes and synchronizing with
the cloud at uptimes.

Besides many approaches to semantic IoT like cor-
responding ontologies [47] and interoperability issues
[48], there are not so many contributions to seman-
tic IoT databases. IoT databases are often organized
as P2P database, especially if they work on the fog or
edge, or follow the dew computing concept. Hence
contributions to P2P networks processing Semantic Web
data like [41] are relevant for semantic IoT databases
as well. One of the big challenges here is the distribu-
tion of data and processing tasks between cloud and
IoT infrastructure including the devices themselves.
Furthermore, IoT devices often generate data streams,
such that organizing the IoT database as stream database
is a reasonable choice: The IoT application design may
especially consider to reduce data by aggregation and
focusing on only relevant data, which should be done
nearby the things. One research direction may con-
sider how to use Semantic Web technologies for defin-
ing such aggregation tasks. Reasoning at data sources
or nearby, or in clouds is another difficult question and
not so easy to answer in comparison to query process-
ing on the fog or edge, as reasoning consumes much
more processing resources.

3.2. (S)HM3P Databases and their
Challenges

HM3P databases are single installations of a M3P DBMS,
which are not only able to run on multiple platforms,
but runs and tightly integrates different types of DBMSs
for ease of use and optimization purposes at runtime.
SHM3P databases integrate the different types of DBMSs
in an additional semantic layer and supports global
reasoning over all integrated DBMSs.

IoT databases operating at the same time in clouds
and on fog, edge or dew computing are reasonable ex-
amples for H3MP DBMSs: They span over different
platforms, the edge of the IoT network and the cloud
data centers, and have to distribute functionality like
data aggregation at or near to the things and complex
operations, e.g., natural language processing and rea-
soning, at the cloud data centers. Furthermore, IoT
databases have to consider different types of query pro-
cessing by dealing with traditional (one-time) queries
on static data, continuous queries on data streams and
spatial-temporal queries on archived data of data streams.

24

IoT devices are often heterogeneous because they are
e.g. developed by different manufacturers: the use of
ontologies and hence of semantic databases simplifies
the integration of these devices. Semantic IoT databases
sometimes manage data at the IoT devices in the tradi-
tional way for performance reasons and only support
reasoning and semantic querying at the cloud centers
after transforming the data of IoT devices to semantic
data [16]. Other approaches support even reasoning
on streams [16].

Multi-platform DBMSs are already highly ambitious
even for large, established database companies since it
requires data management skills in an extremely wide
spectrum (i.e., data management issues in sensors and
smart objects for IoT databases are completely differ-
ent from the challenges of in-memory databases of P2P
data oriented systems and semantic querying and rea-
soning of Semantic Web databases). Hence current ap-
proaches are more on interoperability between the va-
riety of DBMSs, each one focusing on its specific issues
related to its specific functionalities. However, we pro-
pose to support a global approach to integrate all these
specific functionalities in order to use their different
benefits in an uniform way and to increase the overall
benefits of the global approach.

New challenges of M3P and HM3P DBMSs in
comparison to traditional DBMSs and MM-DBMSs are
• developing only one code base for the different plat-

forms, but not introducing performance overhead in
comparison to single platform databases13

• identifying common properties of several platforms
and reusing those approaches (like fault tolerance
mechanisms) in different combinations, which are
best suitable for these considered platforms

• data distribution among different platforms (apply-
ing different data distribution approaches as well)

• efficient binary serialization and communication pro-
tocols for integrating the different platforms

• data distribution strategies considering overall the
different properties of used platforms and models
(like fast reads in relational databases on parallel
servers and fast updates in cloud databases)

• query optimization and other database tasks across
different platforms, which apply different database
approaches

• dealing with and integrating different privacy
and security mechanisms supporting different pri-
vacy and security levels in the different platforms
(with research e.g. on querying heterogeneous en-
crypted data)

13We are of the opinion that this is possible by applying Kotlin
features like expected and actual declarations for classes and types,
and inline functions and classes.

• developing multi-platform transaction synchroniza-
tion approaches and supporting global transaction
synchronization approaches over distributed differ-
ent transaction synchronization approaches running
on different platforms

• combining different types of databases (on different
platforms) to offer the best of these databases and
platforms under one hood to applications and users
transparently or via intelligent integration into query
language and API, e.g., guaranteeing atomicity and
isolation in transactions for the data stored on a par-
allel server, but not for those data in the cloud sup-
porting fast updates

Specific challenges of SHM3P DBMSs are
• integrating different data models in a semantic layer

on top of the underlying data models
• efficient transformations from and to the semantic

model in an operational system
• developing efficient semantic querying and reason-

ing over the integrated data of different models
• global reasoning over reasoners running on differ-

ent platforms supporting some kind of distributed
heterogeneous reasoning

• developing a combination of stream reasoning over
streaming data (e.g. of IoT devices) with static rea-
soning over large-scale data sets (stored e.g. in clouds)

• supporting transactions over semantic data by inte-
grating the reasoner in transaction synchronization

We are sure that this is not an exhaustive list of new
challenges. Many further challenges will arise during
developing the (S)(H)M3P DBMSs and considering es-
pecially combinations of different platforms and mod-
els at runtime.

4. Summary and Conclusions
Multi-model databases provide the infrastructure to han-
dle the zoo of data models managed in today’s compa-
nies. Multi-model databases that are able to run on
a variety of platforms, which are typically deployed
and in use in parallel in today’s companies, are called
multi-model multi-platform database management sys-
tems (M3P DBMSs). Hybrid M3P (HM3P) DBMSs span
over different platforms at run-time. Our focus is on its
semantic counterpart: Semantic HM3P (SHM3P) DBMSs
offer its additional semantic layer for simple integra-
tion of the DBMS technologies of its operational plat-
forms. Furthermore, we describe and analyze different
types of DBMSs and platforms concerning their prop-
erties, chances and challenges for DBMSs with spe-

25

cial focus on Semantic DBMSs. Current state-of-the-
art (S)M3P DBMSs don’t exploit the multiple platform
idea to its full potential, because they typically only
tightly integrate one type of platform and database.
We see great further optimization possibilities in data
and functionality distribution like query processing,
reasoning and transaction handling, and ease of usage
when different types of platforms and databases are
supported in one single installation of a M3P DBMS
by tightly integrating them based on a semantic layer.

References
[1] J. Lu, I. Holubová, Multi-model databases: A new

journey to handle the variety of data, ACM Com-
puting Surveys (CSUR) 52 (2019).

[2] R. Kotorov, Customer relationship management:
strategic lessons and future directions, Business
Process Management Journal 9 (2003) 566–571.

[3] S. Leberknight, Polyglot persis-
tence, Scott Leberknight’s Weblog,
http://www.sleberknight.com/blog/sleberkn/
entry/polyglot_persistence, 2008.

[4] S. Groppe, J. Groppe, Hybrid multi-model multi-
platform (hm3p) databases, in: Proceedings
of the 9th International Conference on Data
Science, Technology and Applications (DATA),
2020.

[5] JetBrains s.r.o., FAQ - Kotlin Programming Lan-
guage, 2020. URL: https://kotlinlang.org/docs/
reference/faq.html.

[6] B. Kolev, P. Valduriez, C. Bondiombouy,
R. Jiménez-Peris, R. Pau, J. Pereira, Cloudmdsql:
querying heterogeneous cloud data stores with
a common language, Distributed and Parallel
Databases 34 (2016) 463–503.

[7] M. Zhu, T. Risch, Querying combined cloud-
based and relational databases, in: International
Conference on Cloud and Service Computing,
2011, pp. 330–335.

[8] R. Bonaque, T. D. Cao, B. Cautis, F. Goasdoué,
J. Letelier, I. Manolescu, O. Mendoza, S. Ribeiro,
X. Tannier, M. Thomazo, Mixed-instance query-
ing: a lightweight integration architecture for
data journalism, PVLDB 9 (2016) 1513–1516.

[9] M. Hammer, D. McLeod, On Database Manage-
ment System Architecture., Technical Report,
MIT, Cambridge Laboratory for Computer Sci-
ence, 1979.

[10] J. M. Smith, P. A. Bernstein, U. Dayal, N. Good-
man, T. Landers, K. W. T. Lin, E. Wong, Multibase:
Integrating heterogeneous distributed database

systems, in: AFIPS National Computer Confer-
ence, 1981, pp. 487–499.

[11] H. Lim, Y. Han, S. Babu, How to fit when no one
size fits., in: CIDR, 2013.

[12] A. Elmore, J. Duggan, M. Stonebraker, M. Bal-
azinska, U. Cetintemel, V. Gadepally, J. Heer,
B. Howe, J. Kepner, T. Kraska, S. Mad-
den, D. Maier, T. Mattson, S. Papadopoulos,
J. Parkhurst, N. Tatbul, M. Vartak, S. Zdonik, A
demonstration of the bigdawg polystore system,
Proc. VLDB Endow. 8 (2015) 1908–1911.

[13] J. Lu, Z. H. Liu, P. Xu, C. Zhang, UDBMS: road
to unification for multi-model data management,
in: ER Workshops, 2018, pp. 285–294.

[14] I. Holubova, S. Scherzinger, Nextgen multi-
model databases in semantic big data architec-
tures, Open Journal of Semantic Web (OJSW) 7
(2020) 1–16.

[15] W3C, Semantic Web Development Tools, ac-
cessed on 23/4/2020. https://www.w3.org/2001/
sw/wiki/Tools.

[16] S. Groppe, Emergent models, frameworks, and
hardware technologies for big data analytics, The
Journal of Supercomputing 76 (2020) 1800–1827.

[17] L. Feigenbaum, G. T. Williams, K. G.
Clark, E. Torres (editors), SPARQL 1.1
Protocol, 2013. W3C Recommendation,
https://www.w3.org/TR/sparql11-protocol/.

[18] D. Weisenberger, How many atoms are there
in the world?, accessed on 17.12.2020. http://
education.jlab.org/qa/mathatom_05.html.

[19] E. A. Brewer, Pushing the CAP: strategies for
consistency and availability, Computer 45 (2012)
23–29.

[20] D. Abadi, Consistency tradeoffs in modern dis-
tributed database system design: CAP is only
part of the story, Computer 45 (2012) 37–42.

[21] R. Mutharaju, S. Sakr, A. Sala, P. Hitzler, D-
sparq: Distributed, scalable and efficient rdf
query engine, in: Proceedings of the 12th In-
ternational Semantic Web Conference (Posters &
Demonstrations Track), Sydney, Australia, 2013,
p. 261–264.

[22] V. Khadilkar, M. Kantarcioglu, B. Thuraisingham,
P. Castagna, Jena-hbase: A distributed, scalable
and efficient rdf triple store, in: Proceedings of
the 2012th International Conference on Posters
& Demonstrations Track, Boston, USA, 2012, p.
85–88.

[23] N. Papailiou, I. Konstantinou, D. Tsoumakos,
N. Koziris, H2RDF: Adaptive query processing on
rdf data in the cloud, in: Proceedings of the 21st
International Conference on World Wide Web,

http://www.sleberknight.com/blog/sleberkn/entry/polyglot_persistence
http://www.sleberknight.com/blog/sleberkn/entry/polyglot_persistence
https://kotlinlang.org/docs/reference/faq.html
https://kotlinlang.org/docs/reference/faq.html
https://www.w3.org/2001/sw/wiki/Tools
https://www.w3.org/2001/sw/wiki/Tools
https://www.w3.org/TR/sparql11-protocol/
http://education.jlab.org/qa/mathatom_05.html
http://education.jlab.org/qa/mathatom_05.html

26

Lyon, France, 2012, p. 397–400.
[24] N. Papailiou, I. Konstantinou, D. Tsoumakos,

P. Karras, N. Koziris, H2RDF+: high-performance
distributed joins over large-scale RDF graphs, in:
Proceedings of the 2013 IEEE International Con-
ference on Big Data, Santa Clara, USA, 2013, pp.
255–263.

[25] X. Zhang, M. Zhang, P. Peng, J. Song, Z. Feng,
L. Zou, A scalable sparse matrix-based join for
sparql query processing, in: International Con-
ference on Database Systems for Advanced Ap-
plications, Springer, 2019, pp. 510–514.

[26] S. Werner, D. Heinrich, S. Groppe, C. Blochwitz,
T. Pionteck, Runtime adaptive hybrid query en-
gine based on fpgas, Open Journal of Databases
(OJDB) 3 (2016) 21–41.

[27] I. Trummer, C. Koch, Multiple query optimiza-
tion on the d-wave 2x adiabatic quantum com-
puter, Proc. VLDB Endow. 9 (2016).

[28] S. Roy, L. Kot, C. Koch, Quantum databases, in:
CIDR, 2013.

[29] T. Bittner, S. Groppe, Avoiding blocking by
scheduling transactions using quantum anneal-
ing, in: 24th International Database Engineering
& Applications Symposium (IDEAS), Seoul, Re-
public of Korea, 2020.

[30] T. Bittner, S. Groppe, Hardware accelerating the
optimization of transaction schedules via quan-
tum annealing by avoiding blocking, Open
Journal of Cloud Computing (OJCC) 7 (2020) 1–
21. URL: http://nbn-resolving.de/urn:nbn:de:101:
1-2020112218332015343957.

[31] S. Groppe, T. Kiencke, S. Werner, D. Heinrich,
M. Stelzner, L. Gruenwald, P-luposdate: Us-
ing precomputed bloom filters to speed up sparql
processing in the cloud, Open Journal of Seman-
tic Web (OJSW) 1 (2014) 25–55.

[32] D. Graux, L. Jachiet, P. Geneves, N. Layaïda, Spar-
qlgx: Efficient distributed evaluation of sparql
with apache spark, in: ISWC, 2016.

[33] A. Azzam, S. Kirrane, A. Polleres, Towards
making distributed rdf processing flinker, in:
Innovate-Data, IEEE, 2018, pp. 9–16.

[34] S. Groppe, J. Blume, D. Heinrich, S. Werner, A
self-optimizing cloud computing system for dis-
tributed storage and processing of semantic web
data, Open Journal of Cloud Computing (OJCC)
1 (2014) 1–14.

[35] S. Groppe, N. Reimer, Code generation for big
data processing in the web using webassem-
bly, Open Journal of Cloud Computing (OJCC)
6 (2019) 1–15.

[36] A. Rossberg (editor), WebAssembly Core Speci-

fication, W3C Proposed Recommendation, https:
//www.w3.org/TR/wasm-core-1/, 2019.

[37] A. Grall, P. Folz, G. Montoya, H. Skaf-Molli,
P. Molli, M. Vander Sande, R. Verborgh, Ladda:
Sparql queries in the fog of browsers, in: Euro-
pean Semantic Web Conference, Springer, 2017,
pp. 126–131.

[38] V. Kumar, Mobile database systems, Wiley On-
line Library, 2006.

[39] D. Le-Phuoc, J. X. Parreira, V. Reynolds,
M. Hauswirth, Rdf on the go: An rdf storage and
query processor for mobile devices, in: ISWC,
Citeseer, 2010.

[40] K. Graffi, D. Stingl, C. Gross, H. Nguyen, A. Ko-
vacevic, R. Steinmetz, Towards a p2p cloud: Reli-
able resource reservations in unreliable p2p sys-
tems, in: International Conference on Parallel
and Distributed Systems, 2010, pp. 27–34.

[41] R. Mietz, S. Groppe, O. Kleine, D. Bimschas, S. Fis-
cher, K. Römer, D. Pfisterer, A p2p semantic
query framework for the internet of things, PIK-
Praxis der Informationsverarbeitung und Kom-
munikation 36 (2013) 73–79.

[42] ObjectBox Limited, The best IoT Databases for
the Edge – an overview and compact guide,
https://objectbox.io/the-best-iot-databases-for-
the-edge-an-overview-and-compact-guide/,
2019.

[43] M. Abdelshkour, Iot, from cloud
to fog computing, Cisco Blogs,
http://blogs.cisco.com/perspectives/iot-from-
cloud-to-fog-computing, 2015.

[44] P. Garcia Lopez, A. Montresor, D. Epema,
A. Datta, T. Higashino, A. Iamnitchi, M. Barcel-
los, P. Felber, E. Riviere, Edge-centric comput-
ing: Vision and challenges, SIGCOMM Comput.
Commun. Rev. 45 (2015) 37–42.

[45] K. Skala, D. Davidovic, E. Afgan, I. Sovic, Z. Sojat,
Scalable distributed computing hierarchy: Cloud,
fog and dew computing, Open Journal of Cloud
Computing (OJCC) 2 (2015) 16–24.

[46] Y. Wang, Definition and categorization of dew
computing, Open Journal of Cloud Computing
(OJCC) 3 (2016) 1–7.

[47] S. Mishra, S. Jain, Ontologies as a semantic model
in iot, International Journal of Computers and
Applications 42 (2020) 233–243.

[48] A. Cimmino, M. Poveda-Villalón, R. García-
Castro, ewot: A semantic interoperability ap-
proach for heterogeneous iot ecosystems based
on the web of things, Sensors 20 (2020) 822.

http://nbn-resolving.de/urn:nbn:de:101:1-2020112218332015343957
http://nbn-resolving.de/urn:nbn:de:101:1-2020112218332015343957
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://objectbox.io/the-best-iot-databases-for-the-edge-an-overview-and-compact-guide/
https://objectbox.io/the-best-iot-databases-for-the-edge-an-overview-and-compact-guide/
http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing
http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing

	1 Introduction
	2 Basics
	2.1 Databases for Multi-Model Data
	2.2 Multi-Platform Development
	2.3 Databases for different Platforms

	3 Multi-Platform Multi-Model Databases
	3.1 Platforms
	3.2 (S)HM3P Databases and their Challenges

	4 Summary and Conclusions

