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Abstract. In this paper, we discuss stochastic and failure rate com-
parisons of two-component mixture distributions and the properties of
conditional excess distribution of two-component mixture. We consider
the uniform distance between conditional excess mixture distribution and
it’s parent distribution. Then we apply the failure rate comparison and
stochastic ordering techniques to construct the upper and lower bounds
for the steady-state performance indexes of a multiserver model. This
theoretical analysis is further illustrated by the comparison of condi-
tional excesses of service times, the waiting times and queue sizes in the
queueing systems with mixed service time distribution.
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1 Introduction

The analysis of the behaviour of mixtures of random variables has a long history,
see for instance, [4,6]. The mixtures arise in many applications, for example in
biology, when population consists of several subpopulations referred to a different
components of mixture. In the communication networks they can be used to
model queueing systems with several classes of customers.

This paper is dedicated to the properties of conditional excess distribution
of two-component mixtures. The excesses over given and increasing thresholds
play a fundamental role in many applications when we study the asymptotic be-
haviour of the performance indexes describing queueing systems. For instance,
the conditional distribution Fu (defined by (5) is known as the excess–life or
residual lifetime distribution function in reliability theory and also in medi-
cal statistics [7]. In the insurance context, Fu is usually referred to as the ex-
cess–of–loss [7]. In the analysis of communications systems the conditional excess
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distribution is often used to estimate the probability that a performance measure
(for instance, the waiting time) exceeds a high threshold [12].

In previous research, we developed the comparison of the performance mea-
sures (rather than excess) in the systems with different service time distribu-
tion and with (two-component) mixture of given distributions. In particular,
we have considered the following two-component distributions: Hyperexponen-
tial distribution, Pareto distribution, Exponential-Pareto mixture distribution.
The corresponding stationary measures in such systems have been compared
with the corresponding measures in the systems with (one-component) Expo-
nential distribution and Pareto distribution. As a result, some useful bounds for
the performance measures have been obtained, see [14,13].

The main new contribution of this research is as follows. Using the stochastic
and failure rate ordering, monotonicity properties (with respect to the interar-
rival time and service times [1,17]) we can compare the conditional excesses
of service times and performance indexes in queueing system with the two-
component mixture service time and the corresponding measures in the system
in which service time distribution coincides with the distribution of a mixture
component.

The structure of the paper is as follows. In Section 2, we define finite two-
component mixture distributions and consider properties of stochastic and fail-
ure rate comparison of mixture components. In Section 3, we introduce the con-
ditional excess distribution Fu over the threshold u and discuss some its prop-
erties. In Section 4, we consider the uniform distance between the conditional
excess mixture distribution and it’s parent distribution which is illustrated by
two examples: for the Hyperexponential distribution and two-component Pareto
distribution. These results are further applied in Section 5 to the conditional
excess distributions of service times and distributions of queue size and waiting
time in the multiserver systems.

2 Stochastic and Failure Rate Ordering

In this section we give some basic definitions which are used below. Let X be a
non-negative random variable with distribution function F and density f . For
each x such that the tail distribution F (x) = P(X > x) > 0, we define the failure
rate function as

rF (x) =
f(x)

F (x)
, x ≥ 0.

An absolutely continuous distribution F with density f is said to have an
increasing failure rate (IFR) if rf (x) is an increasing function. Analogously, the
distribution F (with density f) has decreasing failure rate (DFR) if the function
rF (x) is decreasing.

The distribution function F is said to be new better than used (NBU) if for
x, u ≥ 0

F (x+ u) ≤ F (x)F (u).



We say that df F is new worse than used (NWU) if for x, u ≥ 0

F (x+ u) ≥ F (x)F (u).

One can show that the IFR (DFR) property of a distribution function implies
the NBU (NWU) property of the corresponding failure rate function, see [4].

Consider two non-negative random variables X and Y with distribution func-
tions F and G, respectively. We say that X is less than Y stochastically, and
denote it as X ≤

st
Y , if

F (x) ≤ G(x), x ≥ 0.

We say that X is less than Y in failure rate, and denote it X ≤
r
Y , if

rF (x) ≥ rG(x), for all x ≥ 0.

It is well-known [15] that the failure rate ordering implies stochastic ordering,
that is,

X ≤
r
Y ⇒ X ≤

st
Y .

Distribution function

H(x) = pF (x) + (1− p)G(x), x ≥ 0, (1)

where a constant p ∈ (0, 1), is said to be a two-component mixture of distri-
butions F and G. The constant p is called mixture parameter. Suppose that
the random variables X, Y with distribution functions F,G, respectively, are
independent, and let I be indicator function independent of X, Y , taking value
1 with probability p (value 0 with probability 1 − p). Then it is said that the
variable

Z = I X + (1− I)Y (2)

has two-component mixture distribution (1).
It is proved in [13] that if the components X,Y are ordered stochastically

(in failure rate) then the mixture Z has the following natural stochastic (failure
rate) bounds:

X ≤
st
Y ⇒ X ≤

st
Z ≤

st
Y ; (3)

X ≤
r
Y ⇒ X ≤

r
Z ≤

r
Y. (4)

3 Conditional Excess Distribution of Two-Component
Mixture

Let X be a non-negative random variable with distribution function F and right
endpoint xr, defined as

xr = sup{x ≥ 0 : F (x) < 1} ≤ ∞.



For a fixed u < xr denote, conditionally on the event {X > u}, the excess
Xu := X − u. Then conditional distribution

Fu(x) = P(Xu ≤ x) = P(X − u ≤ x|X > u), u < xr, x ≥ 0, (5)

is called the conditional excess distribution of X over the threshold u [3]. The
tail of conditional excess distribution, defined as

Fu(x) = P(X − u ≥ x|X > u) =
F (x+ u)

F (u)
, u < xr, x ≥ 0,

plays an important role in the reliability theory and called the residual lifetime. It
represents the survival function of a unit of age u, i.e., the conditional probability
that a unit of age u will survive for an additional x units of time [2]. The failure
rate of Fu given by

rFu(x) =
f(x+ u)

F (x+ u)
= rF (u+ x).

For a given two-component mixture distribution

H(x) = pF (x) + (1− p)G(x),

we define the tail of conditional excess distribution over the threshold u:

Hu(x) =
H(x+ u)

H(u)
=
pF (x+ u) + (1− p)G(x+ u)

pF (u) + (1− p)G(u)
, u < xr, x ≥ 0. (6)

Theorem 1. If the components of (2) are ordered in failure rate, X ≤
r
Y , then,

for each u ≥ 0,
Xu ≤

r
IXu + (1− I)Yu ≤

r
Yu. (7)

Proof. The proof of theorem follows from the preservation property of the failure
rates order for conditional excess distribution, that is X ≤

r
Y implies Xu ≤

r
Yu

[7]. Then ordering (4) implies (7). ut

Theorem 2. If the components of (2) are stochastically ordered, X ≤
st
Y , and

X is NBU, Y is NWU, then

Xu ≤
st
IXu + (1− I)Yu ≤

st
Yu. (8)

Proof. It is enough to prove that Xu ≤
st
Yu, that is follows from NBU and NWU

properties of X and Y , respectively:

F (x+ u)

G(x+ u)
≤ F (x)F (u)

G(x)G(u)
≤ F (u)

G(u)
,

and then

Fu(x) =
F (x+ u)

F (u)
≤ G(x+ u)

G(u)
= Gu(x).

Now the statement of the theorem follows from (3). ut



We note that ifX or Y or both have an exponential distribution andX ≤
st
Y , then

relations (8) hold. As an example we consider the Exponential-Pareto mixture
distribution with tail distribution function

H(x) = pe−λx + (1− p)
(

x0
x0 + x

)α
, α, λ, x0 > 0, x ≥ 0

and failure rate

rH(x) =
p λb(x) + (1− p)α/(x0 + x)

p b(x) + (1− p)
,

where

b(x) = e−λx
(

1 +
x

x0

)α
, x ≥ 0.

It can be verified that, under condition

λ ≥ α

x0
,

the relations (8) hold for this distribution.

It is known that the mixture of two DFR distributions is DFR and F is DFR
if and only if Fu(x) is increasing in u for all x ≥ 0 [7]. Then we immediately
obtain the following statement.

Theorem 3. Let F and G be DFR distributions. Then for all u such that

H(u) = pF (x) + (1− p)G(x) > 0,

the tail

Hu(x) =
H(x+ u)

H(u)
is increasing in u for all x ≥ 0.

We note that mixtures of IFR distributions need not be IFR and can even
be DFR [7]. An important source of DFR mixtures is the mixture of exponential
distributions, which arises in the real applications. For instance, consider the
Hyoerexponential distribution with parameters λ1, λ2, λ1 6= λ2 and tail

H(x) = pe−λ1x + (1− p)e−λ2x, λ1, λ2, x ≥ 0. (9)

Then the tail of conditional excess distribution Hu is increasing and, for each x,
satisfies

H(x+ u)

H(u)
→ e−min(λ1,λ2) x as u→∞.



4 Uniform Distance Between Conditional Excess Mixture
and Parent Distributions

First we define the uniform distance between two distributions F and G, as [5]

∆(F,G) = sup
x
|F (x)−G(x)|,

which is used in the sensitivity analysis measures. The uniform distance between
conditional excess mixture distribution tail (6) and it’s parent distribution tail
Fu is

∆(Hu, Fu) = sup
x
|Hu(x)− Fu(x)|

= (1− p) sup
x

∣∣∣∣G(x+ u)F (u)−G(u)F (x+ u)

F (u)(pF (u) + (1− p)G(u))

∣∣∣∣ . (10)

If the densities for distribution functions F and G exist, and there exists x∗ that
delivers the supremum in equation (10), then x∗ satisfies the equality

rG(x∗ + u)

rF (x∗ + u)
=
Fu(x∗)

Gu(x∗)
. (11)

For example, for Hyperexponential distribution (9) solution of equation (11) has
the following form

x∗ =
log λ2 − log λ1

λ2 − λ1
,

and coincides with the solution x∗ obtained for the uniform distance ∆(H,F )
between Hyperexponential distribution H with λ1 > λ2 and the parent (Expo-
nential) distribution F with parameter λ1 [12]. The expression (10) in this case
becomes

∆(Hu, Fu) =
1− p

pe−(λ1−λ2)u + (1− p)
|λ2 − λ1|

λ2

(
λ1
λ2

)− λ1
λ1−λ2

=
1

pe−(λ1−λ2)u + (1− p)
∆(H,F ),

and it follows that

∆(Hu, Fu) →
u→∞

∆(H,F )

1− p
. (12)

For Pareto mixture

H(x) = p

(
x0

x0 + x

)α1

+ (1− p)
(

x0
x0 + x

)α2

, α1 > α2, x0 > 0, x ≥ 0,

we find from (11)

x∗ = (x0 + u)

(
α2

α1

)1/(α2−α1)

− x0 − u.



Then, according to (12), we obtain

∆(Hu, Fu) = sup
x

∣∣∣∣∣∣
p
(

x0
x0+x+u

)α1

+ (1− p)
(

x0
x0+x+u

)α2

p
(

x0
x0 + u

)α1

+ (1− p)
(

x0
x0 + u

)α2
−
(

x0 + u

x0 + x+ u

)α1

∣∣∣∣∣∣
= sup

x

∣∣∣∣∣∣∣
p+ (1− p)

(
1 + x+ u

x0

)α1−α2

p+ (1− p)
(

1 + u
x0

)α1−α2
− 1

(x0 + x+ u

x0 + u

)−α1

∣∣∣∣∣∣∣
=

(x0 + u)α1−α2

pxα1−α2
0 + (1− p)(x0 + u)α1−α2

∆(H,F )

→ 1

1− p
∆(H,F ), u→∞,

where, as it is shown in [12],

∆(H,F ) = (1− p)α1 − α2

α2

(
α2

α1

) α1
α1−α2

.

It then follows that

lim
u→∞

∆(Hu, Fu) =
α1 − α2

α2

(
α2

α1

) α1
α1−α2

.

5 Application to Queueing Systems with Service Time
Mixture

In this section, we first compare the steady-state excesses of performance mea-
sures in the buffered multiserver queueing systems with renewal input flow. Con-
sider two systems with the same number N of servers working in parallel. (In
what follows the superscript (i) denotes the index of system i.) The service dis-

cipline is assumed to be First-Come-First-Served. We denote by S
(i)
n the service

time of customer n, and by t
(i)
n his arrival instant. The sequence of the indepen-

dent identically distributed (iid) interarrival times τ
(i)
n = t

(i)
n+1 − t

(i)
n , n ≥ 1, and

the sequence of the iid service times {S(i)
n , n ≥ 1} are assumed to be indepen-

dent, i = 1, 2. Denote by S(i) the generic service time, and by τ (i) the generic

interarrival time, i = 1, 2. At the arrival instant t
(i)
n of customer n, denote by

Q
(i)
n the queue size, by ν

(i)
n the number of customers and by W

(i)
n the waiting

time of customer n. Denote, when exists, the limits (in distribution)

Q(i)
n ⇒ Q(i), W (i)

n ⇒W (i), n→∞, i = 1, 2.

These limits exist, in particular, when the interarrival times τ (i), i = 1, 2 are
non-lattice (for instance, when input is Poisson) and the following negative drift
assumption holds [1]:

ES(i) < NEτ (i).



Now we compare the steady-state queue size Q(i) and W (i) in the given systems
i = 1, 2, with the corresponding indexes Q and W in the system with the mixture
service time S defined as

S = IS(1) + (1− I)S(2).

The following statement contains conditions implying an ordering of conditional
excess of service time and performance indexes in given systems and the system
with mixed service time.

Theorem 4. Assume that the following conditions hold:

ν
(1)
1 =

st
ν
(2)
1 = 0, τ (1) =

st
τ (2), S(1) ≤

r
S(2). (13)

Then the excess service times are ordered in failure rate as follows:

S(1)
u ≤

r
IS(1)

u + (1− I)S(2)
u ≤

r
S(2)
u , u ≥ 0, (14)

and queue sizes and waiting times are stochastically ordered:

Q(1) ≤
st
Q ≤

st
Q(2),

W (1) ≤
st
W ≤

st
W (2). (15)

If additionally, S(1) is NBU and S(2) is NWU then also

S(1)
u ≤

st
IS(1)

u + (1− I)S(2)
u ≤

st
S(2)
u . (16)

Proof. Under conditions (13) it follows from relation (4) that S(1) ≤
r
S ≤

r
S(2).

Then Theorem 5 in [17] implies (15). The inequalities (14) and (16) are the direct
corollaries of the Theorems 1 and 2, respectively. ut

It is worth mentioning that indeed the stochastic ordering of service times S(1) ≤
st

S(2) in (13) is sufficient for inequalities (15). However we use failure rate ordering
because, for some distributions, it is more easy to find conditions implying this
ordering. Also we note that we can replace stochastic ordering in (15) by the
ordering w.p.1, using a coupling technique, see [16].

The analysis of performance indexes in multiserver systems with mixtures of
service times is usually a complicated problem which, as a rule, has not analyt-
ical solution. An estimation of these indexes by simulation is often also a hard
problem. In such cases we may separately analyze the systems with component
service times to construct the upper and lower bounds for the target indexes
based on the results of Theorem 4 and simulation method of regenerative en-
velops, recently developed in the works [8,9,10].

Indeed the mixture service time distributions naturally arise in the analy-
sis of the multiclass queueing systems. In such systems, there are K classes of



arrivals, and class-i customers have the iid service times {S(i)
n , n ≥ 1} with

generic element S(i). Assume (for simplicity only) that class-i customers follow

Poisson input with rate λi. Then the total input rate is λ =
∑K
i=1 λi, and each

new customer is class-i one with the probability pi = λi/λ, i = 1, . . . ,K. In
the multiserver queuing system with FCFS service discipline and stochastically
equivalent servers, each new customer entering each server is class-i one with
the same probability pi. Then the (class-independent) service time of the nth
customer entering the system (or arbitrary server) can be written as the mixture

Sn =st

K∑
i=1

I(i)n S(i)
n , n ≥ 1, (17)

where indciator I
(i)
n = 1 if the nth customer is class-i (and I

(i)
n = 0 otherwise).

Thus the service time in the multiclass system has mixture distribution, and the
representation (17) can be used, for instant, to study the asymptotic behaviour
of the remaining service time of the customer being in the server at instant t
as t → ∞. It is worth mentioning that in such an analysis we can obtain not
only some bounds but explicit asymptotic expressions as well. For instance, one
prove, using coupling argument, that the stationary remaining service time in
such an N -server system has the following explicit distribution

F (x) = 1−
K∑
i=1

λi
N

∫ ∞
x

(1− Fi(u))du, x ≥ 0,

where Fi is the distribution of S(i). For more details see [11].

6 Conclusion

In this paper, we study the applicability of the failure rate ordering and stochas-
tic comparison to the steady-state of performance measures in the multiserver
systems with two-component mixture service time distributions. For such sys-
tems, we consider the conditions imposed on service time distributions implying
monotonicity properties of the failure rate functions. Also we discuss how mix-
ture service time distribution arises in the multiclass systems. Some particular
examples are considered as well. The interesting problem for future research
is the preservation property of stochastic ordering for conditional excesses of
performance indexes.
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