
Story Fragment Stitching: The Case of the Story of Moses

Mohammed Aldawsari1 , Ehsaneddin Asgari2 , Mark A. Finlayson3

1,3Florida International University
2University of California, Berkeley

asgari@berkeley.edu, {malda021,markaf}@fiu.edu

Abstract
We introduce the task of story fragment stitching,
which is the process of automatically aligning and
merging event sequences of partial tellings of a
story (i.e., story fragments). We assume that each
fragment contains at least one event from the story
of interest, and that every fragment shares at least
one event with another fragment. We propose a
graph-based unsupervised approach to solving this
problem in which events mentions are represented
as nodes in the graph, and the graph is compressed
using a variant of model merging to combine nodes.
The goal is for each node in the final graph to con-
tain only coreferent event mentions. To find coref-
erent events, we use BERT contextualized embed-
ding in conjunction with a tf-idf vector representa-
tion. Constraints on the merge compression pre-
serve the overall timeline of the story, and the final
graph represents the full story timeline. We evalu-
ate our approach using a new annotated corpus of
the partial tellings of the story of Moses found in
the Quran, which we release for public use. Our
approach achieves a performance of 0.63 F1 score.

1 Introduction
Understanding stories is a long-held goal of both artificial in-
telligence and natural language processing [Charniak, 1972;
Schank and Abelson, 1977; Wilensky, 1978; Dyer, 1983;
Riloff, 1999; Frank et al., 2003; Mueller, 2007; Winston,
2014]. Stories are found throughout our daily lives, e.g., in
news, entertainment, education, religion, and many other do-
mains. Automatically understanding stories implicates many
interesting natural language processing tasks, and much in-
formation can be extracted from stories, including concrete
facts about specific events, people, and things, commonsense
knowledge about the world, and cultural knowledge about

Copyright c� 2020 by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0).
In: A. Jorge, R. Campos, A. Jatowt, A. Aizawa (eds.): Proceed-
ings of the first AI4Narratives Workshop, Yokohama, Japan, January
2021, published at http://ceur-ws.org

the societies in which we live. One interesting and chal-
lenging task which has not yet been solved is what we call
here story fragment stitching. In this task we seek to merge
partial tellings of a story—where each partial telling con-
tains part of the sequence of events of a story, perhaps from
different points of view, and may be found across different
sources or media—into one coherent narrative which may
then be used as the basis for further processing. Conceptu-
ally, this task is similar to both cross-document event coref-
erence (CDEC) and event ordering in NLP. However, story
fragment stitching, as we define it, presents a more challeng-
ing problem for at least two reasons. First, and unlike event
coreference, the overall timeline of the story’s events need to
be preserved across all fragments. Second, and unlike event
ordering which targets only events related to a single entity,
this work considers all events across all fragments.

For the purposes of this work, we define a story as a se-
quence of events effected by characters and presented in a
discourse. This is in accord with fairly standard definitions:
for example, [Forster, 1927] said that “A story is a narrative of
events arranged in their time sequence.” As a simplifying as-
sumption, we additionally assume that the events in the story
are presented in the chronological order in which the events
of a story take place (i.e., the fabula time order) [Bordwell,
2007]. We leave the problem of extracting the chronological
ordering of events within a text for other work.

We present an approach to story fragment stitching prob-
lem inspired by [Finlayson, 2016] which in turn based on
model merging, a regular grammar learning algorithm [Stol-
cke and Omohundro, 1993], using similarity measures based
on BERT contextualized embedding and tf-idf weights of
events and their arguments. We apply this approach to a
concrete example of this problem, namely, the story of the
prophet Moses as found in the Quran, the Islamic holy book.
The story of Moses is not found in one single telling in the
Quran; rather, it is found in eight fragments spread across six
different chapters (the chapters of the Quran are called suras),
with the story comprising 7,931 total words across 283 verses
of anywhere from 2 to 94 words in length. In this work we
demonstrated our approach using the seven fragments with
coherent timelines.

The story of Moses is especially useful for this work be-
cause it has been subject to detailed event analysis, in par-
ticular, [Ghanbari and Ghanbari, 2008] identified a canoni-

Joao Paulo Cordeiro
47

cal timeline of events for the story. Further, the Quran verse
structure provides a natural unit of analysis, where nearly ev-
ery verse is related to only a single event in the story timeline.
We manually extracted 573 event mentions from 273 verses
(omitting 11, as described later) and annotated all events cor-
responding to the Ghanbari’s event categories. We used this
data to test our approach, resulting in a proof of concept of
story fragment stitching. We release both our code and data
to enable reimplementations1.

We begin by discussing prior work on cross-document
event coreference, event ordering, as well as the description
and analysis of story structure (§2). Then we introduce our
method, including the task definition (§3.1) and specific as-
pects of our approach (§3.2–§3.3). We then describe our eval-
uation, including construction of the gold standard for the
Moses story in the Quran (§4.1), the experiment setup (§4.2),
the result of our model (§4.5), as well as an error analysis
(§5). We conclude with a list of contributions (§6).

2 Related Work
The most closely related problems to story stitching are the
problem of cross-document event coreference (CDEC) and
cross-document event ordering. In CDEC systems, the goal is
to group expressions that refer to the same event across mul-
tiple documents. [Bagga and Baldwin, 1999; Lee et al., 2012;
Goyal et al., 2013; Saquete and Navarro-Colorado, 2017;
Kenyon-Dean et al., 2018; Barhom et al., 2019]. In event
ordering task, which was introduced in SemEval-2015 [Mi-
nard et al., 2015], the goal is to order events cross-document
in which a specific target entity is involved. That is, a sys-
tem should produce a timeline for a specific target entity
and that timeline consists of the ordered list of the events
in which that entity participates. Similarly, within document
event sequence detection task, which was introduced in TAC
KBP 2017 event track [Mitamura et al., 2017], aims to iden-
tify event sequence (i.e., after links) that occurs in a script
[Schank and Abelson, 1977].

Despite this very interesting and useful prior work, these
systems are not directly applicable to the task of story frag-
ment stitching as we define it. In particular, CDEC systems
ignore the timeline of the story’s events (i.e., the overall time-
line of the story’s events is not guaranteed to be preserved
across all fragments), while event ordering systems only or-
der certain events related to a specific target.

Researchers have explored several ways of assessing sim-
ilarity between stories [Schank and Abelson, 1975; Roth and
Frank, 2012; Finlayson, 2012; Iyyer et al., 2016; Nikolentzos
et al., 2017; Chaturvedi et al., 2018]. These works provided
valuable ways to capture similarity between stories. How-
ever, the story similarity task is not directly applicable to the
task of stitching fragmented stories, where the goal is to order
events across multiple stories (fragments), except in the sim-
ple baseline sequence alignment approach [Needleman and
Wunsch, 1970; Reiter, 2014].

1The code and data are available at https://doi.org/10.34703/
gzx1-9v95/28GC2M

3 Approach
We now discuss the precise definition of the story fragment
stitching task (§3.1) and the details of the two main com-
ponents of our approach: model formulation (§3.2), and the
graph merge to align fragments events into a full, ordered,
end-to-end list of story events (§3.3).

3.1 Task
We define the goal of story fragment stitching as: align a set
of story fragments into a full, ordered, end-to-end list of story
events. We assume that the story fragments are ordered lists
of events, where the order is that of the fabula, namely the
order of events as they happen in the story world. In many
stories, the fabula order is different from the discourse order,
but we do not consider this case here; we leave the problem
of extracting the chronological order of events to other work.
We also assume that each fragment shares at least one event
with another fragment. The output of the system is an or-
dered list of nodes, where each node is a collection of event
mentions (corefering events) that all describe one particular
single event, and these nodes are in the same order as the
overall fabula.

3.2 Model Formulation
The first step of the approach is model initialization which
is shown Algorithm 1 lines 1–3. Using the function
constructLinearBranch, we convert each fragment’s
list of events into a linear directed graph (linear branch)
where each node contains only a single event. Each event
is represented by a vector which is a concatenation of the
event contextualized embedding from the BERT model and
tf-idf weights of the event lemma and its semantic arguments.
BERT [Devlin et al., 2018] is a multi-layer bidirectional trans-
former trained on plain text for masked word prediction and
next sentence prediction tasks, while tf-idf is the standard
term weighting approach to reflect how important a word is
in a document in comparison to the rest of documents [Salton
and McGill, 1986]. Using the function linkGraphs we
link all linear branches to a start and an end node, resulting
in one directed graph of all the set of fragments, as shown in
Figure 1.

This initial model will be used to generate possible solu-
tions by merging different nodes on the basis of a similarity
measure, discussed below. When two nodes A and B are
merged, the new node C should contain an average vector of
both A and B. In the next section, we introduce the merge
approach.

3.3 Graph Merge
The second step of the approach is model merging, shown in
Algorithm 1 lines 4–15. We first compute a threshold ↵ using
computeTFIDFAvgSim function, which takes the average
of the highest and lowest cosine similarity values between all
fragments using tf-idf weights. ↵ sets the minimum similarity
required to merge two nodes; for our data ↵ was 0.39. Next,
using a cosine similarity measure, the computeNodesSim
function computes the full set of similarity scores between
all pairs of nodes. Then the algorithm starts by searching for

https://doi.org/10.34703/gzx1-9v95/28GC2M
https://doi.org/10.34703/gzx1-9v95/28GC2M
Joao Paulo Cordeiro
48

e1:1 e1:2 e1: n

e2:1 e2:2 e2: n

en:1 en:2 en: n

end...
start

Figure 1: The initial model constructed using Moses story frag-
ments. Each node represents an event’s vector. Each fragment gen-
erates its own linear branch running from the start node to the end
node where i in ei:j represents the fragment’s number and j repre-
sents the event’s number.

the most similar nodes using findMostSim function, lines
6 and 13, and merges the most similar nodes using merge
function. Because the fragments are assumed to be already
in fabula time order, the pairsIntroduceCycle boolean
function disallows merges that would introduce cycles, ignor-
ing (and removing) self-loops (the no-cycles constraint), and
thereby preserves the overall order of the events. Note that
disallowing cycles also prevents merges of non-neighboring
nodes within the same fragment. The new merged node then
contains a weighted average vector of the old nodes vectors
and nodes similarity are updated using updateNodesSim
function. The algorithm continues to merge nodes until the
similarity measure drops below ↵. Because the final result-
ing graph is not guaranteed to contain only one path from
start to end, by using bestPath function, the path with the
maximum merged nodes (based on the number of events) is
considered to be the final output of the model.

Algorithm 1
F : set of text fragments f
E : map of f to sets ef of gold event annotations

/* Create initial model */
G ;
foreach f 2 F do

1 g constructLinearBranch(f, E.get(f))
G.add(g)

2 end
3 model linkGraphs(G)

/* Merging process */
4 ↵ computeTFIDFAvgSim(F)
5 nodesSim computeNodesSim(model)
6 (maxPairSim,pairs) findMostSim(nodesSim)

repeat
7 if ¬ pairsIntroduceCycle(model, pairs) then
8 model merge(pairs)
9 nodesSim updateNodesSim(model,nodesSim)

10 else
11 nodesSim setSimToZero(pairs,nodesSim)
12 end
13 (maxPairSim,pairs) findMostSim(nodesSim)
14 until maxPairSim < ↵;
15 bestPath findBestPath(model)

4 Experiment
We evaluate our approach against a gold-standard annotation
of Moses’ from the Quran. We first describe how we collected
and annotated the data (§4.1). After that we demonstrate the
experiment setup (§4.2) and the evaluation (§4.3). Then we
report the performance of our approach (§4.5). Finally, we do
an error analysis of the performance of our system (§5).

4.1 Data
Moses was an important figure whose story is central to
the major Abrahamic religions, including Judaism, Christian-
ity, and Islam. Moses’ story is found in fragmentary form
throughout the holy books of these religions, with some parts
repeated, but in different contexts and sometimes from differ-
ent perspectives. In the Quran, the holy book of Islam, the
story of Moses appears in eight different fragments across six
different chapters (suras) comprising 283 verses. Thus the
story of Moses serves as an excellent example for the evalua-
tion of our approach to story fragment stitching. The relevant
suras and verses are listed in Table 1, along with the number
of events present in the fragments of each chapter.

We annotated verses based on a comparative analysis of
Moses’ story in the Old Testament and the Quran by [Ghan-
bari and Ghanbari, 2008]. The Ghanbari study breaks Moses’
story 43 event categories, shown in Table 3 in chronological
order. For the annotation, three annotators labeled each verse
with its single relevant event. We measured a Fleiss’ kappa of
0.76, which represents excellent agreement. The annotation
was originally done on the Arabic version of the Quran, but
we transferred the annotations to an English translation [Ali,
1973] for the remainder of the study.

We excluded one fragment (Sura 2 [Al-Baqarah], verses
50–60) from the analysis because its timeline is quite differ-
ent from the fabula order. We manually extracted 708 total
event mentions from the remaining seven fragments. Our an-
notation procedure followed the standards outlined for events
in the TimeML standard [Saurı et al., 2006]. We omitted 135
Reporting mentions (e.g., say, reply, etc.) because these usu-
ally are just indicators of direct speech, and do not correspond
to plot events. This resulted in 573 event mentions relevant
to the plot, which we labeled as to which specific event it
referred in the Moses timeline (Table 3). 301 of the event
mentions were labeled with an event described in the time-
line, while 272 were not relevant.

4.2 Experimental Setup
We used the netwrokx library [Hagberg et al., 2008] for
graph operations. We extracted event contextualized em-
bedding using the flair implementation [Akbik et al.,
2018] of the BERT model with the default parameters2.
The tf-idf weights for the lemmas of all tokens excluding
stop words are computed using spaCy [Honnibal and Mon-
tani, 2017] and scikit-learn libraries [Pedregosa et al.,
2011]. The event arguments are extracted and resolved us-
ing the AllenNLP semantic role labeling (SRL) and coref-

2bert base uncased, layers=-1,
pooling operation=first

Joao Paulo Cordeiro
49

of Total # of # of Moses # of Event
Sura Verses Verses Event Mentions Event Mentions Categories

2. Al-Baqarah 50–60, 63–73, 92–93 13 (11+2) 36 (25+11) 9 (6+3) 6
7. Al-A’raf 103–161 59 149 99 23
10. Yunus 75–92 18 36 12 6
20. Ta-Ha 9–98 90 195 78 28
26. Ash-Shuara 10–67 58 63 37 8
28. Al-Qasas 7–40 34 94 66 14

Total 283 272 573 301

Table 1: Number of verses (inclusive ranges), event mentions, and events of the Moses story in each fragment. Listed are the total number
of non-Reporting Event mentions, the total number of event mentions labeled as an event from the Moses timeline, and the total number of
distinct labels found in that fragment. The first fragment (Al-Baqarah verses 50–60) is omitted from the data because it violated the linear
time order constraint.

erence systems [Gardner et al., 2018; He et al., 2017;
Lee et al., 2017].

4.3 Evaluation
For the evaluation, we used the temporal awareness mea-
sure [UzZaman et al., 2013] used in both event ordering
task SemEval-2015 [Minard et al., 2015] and event sequence
task TAC-KBP-2017 [Mitamura et al., 2017]. The temporal
awareness metric calculates precision and recall values based
on the closure and reduction graphs. For a directed graph, a
reduced graph is derived from the original graph by having
the fewest possible edges that have the same reachability re-
lation as the original graph. In this work, the final directed
path of nodes in the final model represents the reduced graph.
For example, consider the final directed path of nodes in the
final model to be:

start! n1 ! n2 ! n3 ! end

where, for example, events e1, e2 2 n1, e3 2 n2, and
e4, e5 2 n3. The reduced graph (G�) is represented as the
following edges: h(e1, e3), (e2, e3), (e3, e4), (e3, e5)i and the
transitive closure graph (G+) is represented as the following
edges: h(e1, e3), (e2, e3), (e1, e4), (e1, e5),
(e2, e4), (e2, e5), (e3, e4), (e3, e5)i ,where the relation be-
tween (ei, ej) is defined as before relation. The temporal
awareness metric calculates the precision and recall as fol-
low:

precision =
|System� \Reference+|

|System�| (1)

recall =
|Reference� \ System+|

|Reference�| (2)

,where System and Reference are the proposed approach
and the gold standard, respectively. The final F1 score is the
harmonic mean of the precision and recall values.

4.4 Baseline
We used the Needleman-Wunsch algorithm [Needleman and
Wunsch, 1970] as a baseline. Needleman-Wunsch is a well-
known global alignment algorithm used in bioinformatics and
the social sciences. Using dynamic programming, this algo-
rithm searches for optimal alignment of an arbitrary number

Model Prec. Recall F1

Needleman-Wunsch 0.41 0.70 0.52
tf-idf 0.43 0.40 0.42

BERT 0.77 0.50 0.61

Concat 0.81 0.51 0.63

Table 2: Results on the Moses data using F1 temporal awareness
metric. Concat is the proposed model as described in 3.2, whereas
tf-idf and BERT are variant models of the proposed model when
tested alone.

of items (the events lemma in our case) by using a scor-
ing function that penalizes the dissimilarities and the inser-
tion of gaps. We used the default implementation3developed
by [Dekker and Middell, 2011] which follows the group of
progressive alignment algorithms where two sequences are
aligned and then the result is aligned to the next sequence. It
repeats the procedure until all sequences are aligned.

4.5 Result
Table 2 shows our model results compared to the baseline.
In the table, we compare three models: the proposed model
Concat, tf-idf and BERT, which are sub-models of the pro-
posed model when considered alone for graph’s nodes vec-
tor representation as described in 3.2. As shown in bold in
Table 2, the Concat approach achieves 0.63 F1 which out-
performs the baseline by 11 points and both tf-idf and BERT
alone by 21 and 2 points, respectively. Also, the table shows
that concatenating both tf-idf and BERT produced the best re-
sult even though tf-idf alone unperformed the baseline. It is
also clear that BERT contextualized embeddings play a major
role in the model merging approach for nodes’ vector repre-
sentation when assessing similarity between nodes.

5 Error Analysis
Inspection of the results revealed several sources of errors,
aside from the usual noise introduced by the various sub-
components, such as the SRL or co-reference systems. Some

3https://github.com/interedition/collatex

https://github.com/interedition/collatex
Joao Paulo Cordeiro
50

peculiarities of Quranic language cause errors. For example,
the word We is usually present as an event’s argument when
God is speaking of himself. This causes problems for the
coreference resolution system, in that it does not pair we with
such mentions Lord and God, thus introduces additional er-
rors into the system. Also, some events have the same event
mention and arguments but happen at different points in the
timeline. Example 1 shows text from different parts of the
story: the first is when God shows Moses one of the signs
whereas the second is when Moses shows the Pharaoh the
sign. Notably, the two events have the same event triggers
(showed in bold) and the same arguments (underlined).

(20:19–20) “Throw it down, O Moses,” said (the
Voice). So he threw it down, and lo, it became a
running serpent.

(7:106–107) He said: “If you have brought a sign
then display it, if what you say is true.” At this
Moses threw down his staff, and lo, it became a
live serpent.

Example 1: An example to show when two events happen at
different points in the timeline.

Further, the approach is sensitive to the order of merges.
If an incorrect merge is performed early, this can eliminate
correct merges later on account of the no-cycles constraint.
Therefore performing only the highest confidence merges
first is critical, and errors in that process degrade other dis-
tance parts of the model.

6 Contributions
We introduced the story fragment stitching problem, the task
of merging partial tellings of a story into a unified whole.
We have introduced an approach that models the story’s frag-
ments in a graph and applies an adapted model merging ap-
proach to merge similar nodes and produce an ordered, end-
to-end list of story events. Our approach achieves a perfor-
mance of 0.63 F1 using the temporal awareness metric.

7 Acknowledgements
Mr. Aldawsari was funded in part by a doctoral fellowship
from Prince Sattam Bin Abdulaziz University, as well as NSF
Grant IIS-1749917 to Dr. Finlayson. We thank Seyedeh Mo-
hadeseh Taheri Mousavi and Zahra Ejei for their assistance
in annotating the verses from the Quran in the original Ara-
bic. The idea of combining distributional semantics with au-
tomatic story model merging was proposed and developed by
Mr. Asgari in his Master’s thesis at CSAIL MIT supervised
by Dr. Finlayson in 2013–2014 academic year. The creation
of the corpus was also among the contributions of that thesis.

Joao Paulo Cordeiro
51

Event # of fragments # of events F1

Moses’s Birth
1. Moses’ Birth and left in the Nile. 2 6 0.33

Moses is Rescued from the Nile
2. Moses is rescued from the Nile. 2 4 0.45
3. Moses’ sister kept an eye on him. 2 4 0.55
4. Moses brought back to his mother. 2 2 0.34
5. Moses after infancy and through maturity. 1 2 0.68

Moses kills the Egyptian
6. Moses beats and kills the Egyptian. 2 10 0.85

Moses flees to the Madyan
7. Moses ran away to the Madyan. 1 1 0.74

Moses’ Marriage
8. Moses protected Shu’ayb’s daughters. 1 20 0.53
9. Moses traveled with his family. 2 3 0.50

Moses is Chosen to be a Prophet
10. Moses saw the fire from the distance. 2 12 0.60
11. Moses talked to God through the burning bush. 2 4 0.89

God Shows Moses the Miracles
12. God changed the wand to the snake. 2 11 0.69
13. God illuminated Moses’ hand. 2 5 0.63

God Send Moses to the Pharaoh
14. God commanded Moses to meet the Pharaoh. 2 9 0.55

Moses Speaks with the Pharaoh
15. Moses and Aaron went to the Pharaoh with miracles. 4 8 0.47
16. Moses showed Pharaoh the signs. 3 10 0.56
17. Pharaoh refused their message. 3 4 0.55
18. Pharaoh accused Moses. 4 5 0.80
19. Pharaoh requested a competition with Moses. 3 8 0.68
20. Competition between Moses and the magicians. 4 34 0.63
21. Magicians believed in Moses’s message. 3 8 0.88
22. Magicians are threatened by the Pharaoh. 3 6 0.72
23. Pharaoh cruelty to the believers. 1 6 0.28

God Sends Calamities in Egypt
24. Calamities are sent to the Egyptians and the Pharaoh. 1 6 0.58
25. God withdraw the punishment. 1 1 0.65
26. God commanded Moses to travel with his people. 3 6 0.31
27. Pharaoh and his army followed Moses and his people. 3 6 0.63

Parting of the Red Sea
28. Separation of the Sea and drowning of the Pharaoh. 5 14 0.49
29. God saved Moses and his people. 3 5 0

Going to Mt. Sinai to Receive the Commandments
30. Moses went to Sinai for 40 nights. 3 6 0.47
31. God sent down food and brings forth water. 1 4 0.73
32. Moses met God and appeared on mountain. 2 15 0.43
33. Moses delivered the commands and the stone tablets. 3 3 0

The People Betray God
34. Worshipping the Calf in the Absence of Moses. 2 14 0.19
35. Moses returned to his people. 1 3 0.29
36. Samiri explained to Moses what he saw. 2 3 0
37. Moses blamed his brother. 1 10 0
38. Moses returned to God. 1 3 0
39. Moses stroked the stone. 1 9 0

Wandering in the Desert
40. Israelites are commanded to take over the holy region. 1 5 0
41. The disobedient Israelites won’t enter the holy region. 2 4 0
42. God punished them. 2 1 0
43. Sacrifice of a heifer. 1 1 0

Table 3: The 43 events in the Moses timeline. The second column refers the number of fragments in which the corresponding event appears.
The third column refers to the number of events mentions for the event across all fragments. The last column is the standard F1 measure for
extraction of the corresponding event, compared to the gold standard.

Joao Paulo Cordeiro
52

References
[Akbik et al., 2018] Alan Akbik, Duncan Blythe, and

Roland Vollgraf. Contextual string embeddings for se-
quence labeling. In COLING 2018, 27th International
Conference on Computational Linguistics, pages 1638–
1649, 2018.

[Ali, 1973] Abdullah Yusuf Ali. The Holy Qur’an: text,
translation and commentary. Islamic University of Al ima
Mohammad ibn SAUD, 1973.

[Bagga and Baldwin, 1999] Amit Bagga and Breck Baldwin.
Cross-document event coreference: Annotations, experi-
ments, and observations. In Proceedings of the Workshop
on Coreference and its Applications, pages 1–8. Associa-
tion for Computational Linguistics, 1999.

[Barhom et al., 2019] Shany Barhom, Vered Shwartz, Alon
Eirew, Michael Bugert, Nils Reimers, and Ido Dagan. Re-
visiting joint modeling of cross-document entity and event
coreference resolution. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
pages 4179–4189, Florence, Italy, July 2019. Association
for Computational Linguistics.

[Bordwell, 2007] David Bordwell. Poetics of Cinema. New
York: Routledge, 2007.

[Charniak, 1972] Eugene Charniak. Toward a model of chil-
dren’s story comprehension. PhD thesis, Massachusetts
Institute of Technology, 1972.

[Chaturvedi et al., 2018] Snigdha Chaturvedi, Shashank Sri-
vastava, and Dan Roth. Where have i heard this story be-
fore? identifying narrative similarity in movie remakes. In
Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short
Papers), pages 673–678, 2018.

[Dekker and Middell, 2011] Ronald H Dekker and Gregor
Middell. Computer-supported collation with collatex:
managing textual variance in an environment with vary-
ing requirements. Supporting Digital Humanities, pages
17–18, 2011.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Dyer, 1983] Michael George Dyer. In-depth understanding:
A computer model of integrated processing for narrative
comprehension. MIT press, 1983.

[Finlayson, 2012] Mark Mark Alan Finlayson. Learning
narrative structure from annotated folktales. PhD thesis,
Massachusetts Institute of Technology, 2012.

[Finlayson, 2016] Mark Alan Finlayson. Inferring propp’s
functions from semantically annotated text. The Journal
of American Folklore, 129(511):55–77, 2016.

[Forster, 1927] Edward M. Forster. Aspects of the Novel. E.
Arnold & Co., London, 1927.

[Frank et al., 2003] Stefan L Frank, Mathieu Koppen,
Leo GM Noordman, and Wietske Vonk. Modeling
knowledge-based inferences in story comprehension. Cog-
nitive Science, 27(6):875–910, 2003.

[Gardner et al., 2018] Matt Gardner, Joel Grus, Mark Neu-
mann, Oyvind Tafjord, Pradeep Dasigi, Nelson Liu,
Matthew Peters, Michael Schmitz, and Luke Zettlemoyer.
Allennlp: A deep semantic natural language processing
platform. arXiv preprint arXiv:1803.07640, 2018.

[Ghanbari and Ghanbari, 2008] Bakhshali Ghanbari and
Zohreh Ghanbari. Comparative study of moses’ position
in quran and torah. Journal of Theology, (5):73–90, 2008.

[Goyal et al., 2013] Kartik Goyal, Sujay Kumar Jauhar,
Huiying Li, Mrinmaya Sachan, Shashank Srivastava, and
Eduard Hovy. A structured distributional semantic model
for event co-reference. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages 467–
473, 2013.

[Hagberg et al., 2008] Aric Hagberg, Pieter Swart, and
Daniel S Chult. Exploring network structure, dynam-
ics, and function using networkx. Technical report, Los
Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

[He et al., 2017] Luheng He, Kenton Lee, Mike Lewis, and
Luke Zettlemoyer. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 473–483, 2017.

[Honnibal and Montani, 2017] Matthew Honnibal and Ines
Montani. spacy 2: Natural language understanding with
bloom embeddings, convolutional neural networks and in-
cremental parsing, 2017. https://github.com/explosion/
spaCy; Last accessed on Nov 28 , 2019.

[Iyyer et al., 2016] Mohit Iyyer, Anupam Guha, Snigdha
Chaturvedi, Jordan Boyd-Graber, and Hal Daumé III.
Feuding families and former friends: Unsupervised learn-
ing for dynamic fictional relationships. In Proceedings of
the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pages 1534–1544, 2016.

[Kenyon-Dean et al., 2018] Kian Kenyon-Dean, Jackie
Chi Kit Cheung, and Doina Precup. Resolving event
coreference with supervised representation learning and
clustering-oriented regularization. In Proceedings of the
Seventh Joint Conference on Lexical and Computational
Semantics, pages 1–10, New Orleans, Louisiana, June
2018. Association for Computational Linguistics.

[Lee et al., 2012] Heeyoung Lee, Marta Recasens, Angel
Chang, Mihai Surdeanu, and Dan Jurafsky. Joint entity and
event coreference resolution across documents. In Pro-
ceedings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational
Natural Language Learning, pages 489–500. Association
for Computational Linguistics, 2012.

https://github.com/explosion/spaCy
https://github.com/explosion/spaCy
Joao Paulo Cordeiro
53

[Lee et al., 2017] Kenton Lee, Luheng He, Mike Lewis, and
Luke Zettlemoyer. End-to-end neural coreference resolu-
tion. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 188–197,
Copenhagen, Denmark, September 2017. Association for
Computational Linguistics.

[Minard et al., 2015] Anne-Lyse Minard, Manuela Sper-
anza, Eneko Agirre, Itziar Aldabe, Marieke van Erp,
Bernardo Magnini, German Rigau, and Rubén Urizar.
SemEval-2015 task 4: TimeLine: Cross-document event
ordering. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages 778–
786, Denver, Colorado, June 2015. Association for Com-
putational Linguistics.

[Mitamura et al., 2017] Teruko Mitamura, Zhengzhong Liu,
and Eduard H. Hovy. Events detection, coreference and
sequencing: What’s next? overview of the tac kbp 2017
event track. In TAC, 2017.

[Mueller, 2007] Erik T Mueller. Understanding goal-based
stories through model finding and planning. In Intelli-
gent Narrative Technologies: Papers from the AAAI Fall
Symposium, pages 95–101. AAAI Press Menlo Park, CA,
2007.

[Needleman and Wunsch, 1970] Saul B Needleman and
Christian D Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two
proteins. Journal of molecular biology, 48(3):443–453,
1970.

[Nikolentzos et al., 2017] Giannis Nikolentzos, Polykarpos
Meladianos, François Rousseau, Yannis Stavrakas, and
Michalis Vazirgiannis. Shortest-path graph kernels for
document similarity. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pages 1890–1900, 2017.

[Pedregosa et al., 2011] F. Pedregosa, G. Varoquaux,
A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830,
2011.

[Reiter, 2014] Nils Reiter. Discovering Structural Similari-
ties in Narrative Texts using Event Alignment Algorithms.
PhD thesis, Heidelberg University, 2014.

[Riloff, 1999] Ellen Riloff. Information extraction as a step-
ping stone toward story understanding. Understanding
language understanding: Computational models of read-
ing, pages 435–460, 1999.

[Roth and Frank, 2012] Michael Roth and Anette Frank.
Aligning predicates across monolingual comparable texts
using graph-based clustering. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language
Learning, pages 171–182. Association for Computational
Linguistics, 2012.

[Salton and McGill, 1986] Gerard Salton and Michael J
McGill. Introduction to modern information retrieval.
McGraw-Hill, Inc., New York City, 1986.

[Saquete and Navarro-Colorado, 2017] Estela Saquete and
Borja Navarro-Colorado. Cross-document event order-
ing through temporal relation inference and distributional
semantic models. Procesamiento del Lenguaje Natural,
58:61–68, 2017.

[Saurı et al., 2006] Roser Saurı, Jessica Littman, Bob Knip-
pen, Robert Gaizauskas, Andrea Setzer, and James Puste-
jovsky. Timeml annotation guidelines version 1.2. 1, 2006.

[Schank and Abelson, 1975] Roger C Schank and Robert P
Abelson. Scripts, plans, and knowledge. In IJCAI, vol-
ume 75, pages 151–157, 1975.

[Schank and Abelson, 1977] Roger C Schank and Robert P
Abelson. Scripts, plans, goals, and understanding: An
inquiry into human knowledge structures. Hillsdale, NJ:
Lawrence Erlbaum, 1977.

[Stolcke and Omohundro, 1993] Andreas Stolcke and
Stephen Omohundro. Hidden markov model induction
by bayesian model merging. In Advances in neural
information processing systems, pages 11–18, 1993.

[UzZaman et al., 2013] Naushad UzZaman, Hector Llorens,
Leon Derczynski, James Allen, Marc Verhagen, and James
Pustejovsky. Semeval-2013 task 1: Tempeval-3: Evaluat-
ing time expressions, events, and temporal relations. In
Second Joint Conference on Lexical and Computational
Semantics (* SEM), Volume 2: Proceedings of the Seventh
International Workshop on Semantic Evaluation (SemEval
2013), pages 1–9, 2013.

[Wilensky, 1978] Robert Wilensky. Understanding goal-
based stories. Technical report, YALE UNIV NEW
HAVEN CONN DEPT OF COMPUTER SCIENCE,
1978.

[Winston, 2014] Patrick Henry Winston. The genesis story
understanding and story telling system a 21st century step
toward artificial intelligence. Technical report, Center for
Brains, Minds and Machines (CBMM), 2014.

Joao Paulo Cordeiro
54

	Introduction
	Related Work
	Approach
	Task
	Model Formulation
	Graph Merge

	Experiment
	Data
	Experimental Setup
	Evaluation
	Baseline
	Result

	Error Analysis
	Contributions
	Acknowledgements

