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Abstract
In the recent years there has been a growing interest in techniques able to automatically recognize
activities performed by people. This field is known as Human Activity recognition (HAR). HAR can
be crucial in monitoring the wellbeing of the people, with special regard to the elder population and
those people affected by degenerative conditions. One of the main challenges concerns the population
diversity problem, that is, the natural differences between users’ activity patterns, which implies that
executions of the same activity performed by different people are different. Previous experiments have
shown that personalization based on similarity between subjects and signals can increase the accuracy
of recognition models of human activities obtained by traditional machine learning techniques. In this
article, we investigate whether personalization applied to deep learning techniques can lead to more
accurate models with respect to those obtained both by applying personalization to machine learning
models, and to traditional deep learning models. In particular, the experiments have been done on
two public domain datasets and using the AdaBoost classifier and two Convolutional Neural Networks.
Preliminary results show that, on average, traditional deep learning outperforms both personalized deep
learning and personalized machine learning techniques.
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1. Introduction

Nowadays smartphones are able to acquire, store, share, and elaborate huge amount of data in
a very short time. This technological advancement has attracted the interest of many research
fields, including the one dealing with Human Activity Recognition (HAR). Using a smartphone
to detect activities, identify potential risks such as falls, and highlight behavioral changes, leads
to many advantages, including pervasiveness and low realization costs. Moreover, the increased
computational power makes possible to consider not only traditional machine learning, but
also more complex deep learning techniques.

Traditional machine learning methods (ML) are low cost in terms of time consumption, data
availability, and complexity, however the dependency on expert knowledge in the features
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extraction phase often generates weak models difficult to compare [1, 2, 3]. On the other side,
deep learning methods (DL) rely on a (mainly) automated feature extraction procedure, but
the training phase requires more data, and, consequently, it is either very time consuming or
requires expensive hardware [4, 5].

Regardless of the underlying learning method (either classic machine learning or deep
learning), real-world HAR systems achieve non satisfying recognition accuracy in real world
applications mostly because HAR techniques struggle to generalize to new users and/or new
environments [6, 7]. One of the most relevant difficulty to face with new situations is due to
the population diversity problem [8], that is, the natural differences between users when they
perform the same activities. According to Zunino et al. [9], two factors cause the same activity
to be performed differently.

• Inter-subject variability, which refers to anthropometric differences of body parts or to
incongruous personal styles in accomplishing the scheduled action.

• Intra-subject variability, which represents the random nature of a single action class and
reflects the fact that the same subject never performs an action in the same way.

To face subjects variability, algorithms should be trained on a representative number of
subjects and on as many cases as possible. The number of subjects present in the dataset
does not just impact the quality and robustness of the induced model, but also the ability to
evaluate the consistency of results across subjects [10]. Nevertheless, in the sensor-based HAR
community, datasets are in a low number.

Another way to face variability is to consider similarity as a key factor to obtain more robust
recognition models. Indeed, previous experiments have shown that personalization based on
similarity between subjects and signals can increase the accuracy of recognition models of
human activities obtained by traditional machine learning techniques [11].

The rationale behind similarity-based personalizations is based on two considerations.

1. Users with different physical characteristics, such as age or weight, walk or run in a
different way. This results in a different accelerometer signal. We refer to this aspect as
physical-based similarity.

2. Independently from similarities based on physical characteristics, accelerometer signals
from two different users may be more similar with respect to other users performing the
same activity. We refer to this aspect as signal-based (or sensor-based) similarity.

In this article, we investigate whether personalization applied to deep learning techniques
can lead to more accurate models than the ones obtained by applying personalization to tradi-
tional machine learning models. Moreover, we investigate whether personalized deep learning
techniques are more effective with respect to non-personalized deep learning techniques. The
evaluation has been performed on two public domain datasets [12, 13] and using AdaBoost
as a traditional machine learning classifier and two Convolutional Neural Networks as deep
learning techniques.

Preliminary results show that personalization applied to CNNs leads to more accurate models
with respect to the ones obtained by applying personalization to AdaBoost only in one dataset,



namely Motion Sense. Moreover, traditional CNN in average obtained better results in most of
the configurations used.

The paper is organized as follows. Section 2 discusses similarity and specifies how it is
employed in traditional machine and deep learning techniques; Section 3 describes the set up of
our experiments; Section 4 presents the results of the experiments; finally, Section 5 presents
the conclusions and outlines future research on personalization.

2. Proposed Methods

To take into account the population diversity, we introduce the concept of similarity between
subjects. The similarity between subjects is used to weight the training data in order to give
more importance to data that are more similar to the data of the user under test.

Each subject 𝑖 can be described with a feature vector g𝑖 = {𝑔1, . . . , 𝑔𝐾}. Similarity between
two subjects 𝑖 and 𝑗 is defined as follows.

sim(𝑖, 𝑗) = 𝑒−𝛾𝑑(𝑖,𝑗) (1)

where 𝛾 is a scale parameter and 𝑑(𝑖, 𝑗) is the Euclidean distance between the feature vectors
of two subjects:

𝑑(𝑖, 𝑗) =

⎯⎸⎸⎷ 𝐾∑︁
𝑘=1

(𝑔𝑘,𝑖 − 𝑔𝑘,𝑗)2 (2)

The resulting similarity value ranges from 0 to 1, where 0 means that the two subjects are
dissimilar, and 1 means that the two subjects are equal. The idea is to take advantage of the
similarity between subjects in machine learning and deep learning engines as follows.

• Personalized Machine Learning (PML). Given a subject 𝑖 under test, all the training
data are weighted by using the similarity between the user 𝑖 and the rest of the users. We
can define three types of similarity: physical-based (sim𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙), sensor-based (sim𝑠𝑒𝑛𝑠𝑜𝑟),
and physical combined with sensor-based similarity (sim𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙+𝑠𝑒𝑛𝑠𝑜𝑟). Physical-based
similarity exploits age, weight, and height of the subjects. The choice of these charac-
teristics is inspired by the literature and it is subject to the availability of the metadata
within the public data sets. Details about the types of similarity considered in this study
can be found in [11].

• Personalized Deep Learning (PDL). Starting from a minimum value 𝑚 we select the
most 𝑚 similar subjects, with respect to the test subject. The network is trained with the
samples related to these 𝑚 subjects. We experimented several 𝑚 values starting from 10
to the maximum number of subjects available in the dataset with a step of 5.

These two methods have been compared with a traditional end-to-end deep learning methods
(DL).



3. Experimental setup

The PML technique used is an Adaboost classifier, while both the PDL and the DL techniques
used are Convolutional Neural Networks.

In particular, as for PML we adopt the AdaBoost classifier as described in [11]. As for PDL
and DL we adopted a Residual Network (ResNet) based on the ResNet proposed in [4] and [5].
The input size of the network is 1× 128× 3, that corresponds to 3 segments along the three
axes x, y, and z. The network architecture is made of an initial convolutional block, 3 residual
stages, each containing a variable number 𝑛 of residual blocks, average pooling layer, fully
connected layer, and softmax layer. A convolutional block is made of three layers: convolutional,
batch normalization, and ReLu. A residual block is made of 2 subsequent convolutional blocks
and an additional operator that sums the input of the residual block with the output of the
residual block itself. Each convolutional layer is 1× 3× 𝑓𝑚𝑎𝑝𝑠, where 𝑓𝑚𝑎𝑝𝑠 is the number of
feature maps of the filter. For each dataset, the best values for 𝑛 and 𝑓𝑚𝑎𝑝𝑠 have been found by
following a grid search approach: 𝑛 ranged between 3 and 21, while 𝑓𝑚𝑎𝑝𝑠 ranged between 10
and 200.

Data has been split according to two different configurations [11]: subject-independent (SI) and
hybrid (HYB). The SI data split configuration does not use the end user data for the development
of the activity recognition model, that is, the classification model is trained on the data of the
users except the end user. The HYB data split configuration uses the end user data and the data
of the other users for the development of the activity recognition model, that is, the classification
model is trained both on the data of the users and on a part of the data of the end user.

Two public datasets containing accelerometer signals of Activities of Daily Living (ADLs)
and Falls ave been used in the experimentation.

• UniMiB-SHAR [12] contains tri-axial acceleration data organized in 3s windows around
the peak. The dataset contains 17 different activities (both ADLs and Falls) performed by
30 subjects. Sex, age, weight, and height of each subject are known. The original sampling
rate is 50Hz. We have chosen segments of 3 seconds for this dataset. The subjects placed
the smartphone used for the acquisition (a Samsung Galaxy Nexus I9250) half of the times
in the left trouser pocket and the remaining times in the right one.

• Motion Sense [13] contains time-series data generated by the accelerometers in an
iPhone 6s worn by 24 participants. Sex, age, weight, and height of each subject are known.
Each of the subjects performed 6 activities (only ADLs). The smartphone were kept in the
participant’s front pocket. The original sampling rate is 50Hz. We have chosen segments
of 5 seconds for this dataset.

4. Results

Table 1 shows results in terms of macro average accuracy (i.e., the average across subjects, splits,
and 𝑚 selection of subjects when deep learning technique is considered).

Comparison between PML and PDL leads to contrasting conclusions. In UniMiB-SHAR
dataset, PML shows better results. In particular, for UniMiB-SHAR the best-performing model



Table 1
Experimental Results - accuracy of PDL and of PML compared on averange with DL.

UniMiB-SHAR Motion Sense
PDL - PML DL PDL - PML DL

SI-physical 30.00 - 57.39 76.57 - 72.45
SI-sensor 42.08 - 57.00 77.51 - 74.03
SI-physical sensor 42.09 - 56.93 77.51 - 73.85
average 38.06 - 57.11 58.88 77.20 - 73.44 81.03
HYB-physical 44.42 - 85.44 79.06 - 77.76
HYB-sensor 46.62 - 84.71 79.65 - 78.06
HYB-physical sensor 46.27 - 84.87 79.81 - 77.86
average 45.77 - 85.00 69.72 79.51 - 77.89 85.75

is the one with the hybrid split and related to the physical similarity. In Motion Sense it is the
personalized deep learning (PDL) that achieves the best performance of 79.81%. In general, the
hybrid model is the best-performing one.

Finally, comparison with traditional deep learning techniques (DL) leads, with these datasets,
to assert that on average DLs achieve better results. The only exception is when dataset
UniMiB-SHAR with a hybrid data split is used.

This preliminary study seems to favor the traditional deep learning techniques. However,
this study does not favor in a clear way one personalized method with respect to the other (PML
vs PDL).

A further investigation is required. In particular it is worth to deepen how similarity of the
subjects is distributed within the dataset. Moreover, other datasets should be experimented.

5. Conclusion

Over last decades, HAR has been a very active field. Nevertheless the lack of availability of
large datasets prevent the traditional algorithms to generalize in real world situation.

Personalized machine learning and deep learning techniques are becoming more and more
popular because of their promising results.

In this study we showed that traditional deep learning outperform personalized technique in
most of the cases. Although, results on UniMiB-SHAR still confirm that personalized machine
learning can yield better results.

Given the contrasting results obtained with UniMiB-SHAR and Motion Sense datasets, we
planned further investigation using other datasets, such as, for instance, MobiAct [14].

References

[1] R. Zhu, Z. Xiao, Y. Li, M. Yang, Y. Tan, L. Zhou, S. Lin, H. Wen, Efficient human activity
recognition solving the confusing activities via deep ensemble learning, IEEE Access 7
(2019) 75490–75499.



[2] N. H. Friday, M. A. Al-garadi, G. Mujtaba, U. R. Alo, A. Waqas, Deep learning fusion
conceptual frameworks for complex human activity recognition using mobile and wearable
sensors, in: 2018 International Conference on Computing, Mathematics and Engineering
Technologies (iCoMET), IEEE, 2018, pp. 1–7.

[3] T. Yu, J. Chen, N. Yan, X. Liu, A multi-layer parallel lstm network for human activity
recognition with smartphone sensors, in: 2018 10th International Conference on Wireless
Communications and Signal Processing (WCSP), IEEE, 2018, pp. 1–6.

[4] A. Ferrari, D. Micucci, M. Marco, P. Napoletano, Hand-crafted features vs residual net-
works for human activities recognition using accelerometer, in: Proceedings of the IEEE
International Symposium on Consumer Technologies (ISCT), 2019.

[5] A. Ferrari, D. Micucci, M. Mobilio, P. Napoletano, Human activities recognition using
accelerometer and gyroscope, in: European Conference on Ambient Intelligence, Springer,
2019, pp. 357–362.

[6] J.-H. Hong, J. Ramos, A. K. Dey, Toward personalized activity recognition systems with
a semipopulation approach, IEEE Transactions on Human-Machine Systems 46 (2016)
101–112.

[7] R. Igual, C. Medrano, I. Plaza, A comparison of public datasets for acceleration-based fall
detection, Medical engineering & physics 37 (2015) 870–878.

[8] N. D. Lane, Y. Xu, H. Lu, S. Hu, T. Choudhury, A. T. Campbell, F. Zhao, Enabling large-scale
human activity inference on smartphones using community similarity networks (csn), in:
Proceedings of the International Conference on Ubiquitous Computing (UbiComp), 2011.

[9] A. Zunino, J. Cavazza, V. Murino, Revisiting human action recognition: Personalization vs.
generalization, in: International Conference on Image Analysis and Processing, Springer,
2017, pp. 469–480.

[10] J. W. Lockhart, G. M. Weiss, Limitations with activity recognition methodology & data
sets, in: Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct Publication, 2014, pp. 747–756.

[11] A. Ferrari, D. Micucci, M. Mobilio, P. Napoletano, On the personalization of classification
models for human activity recognition, IEEE Access 8 (2020) 32066–32079.

[12] D. Micucci, M. Mobilio, P. Napoletano, Unimib shar: A dataset for human activity recogni-
tion using acceleration data from smartphones, Applied Sciences 7 (2017) 1101.

[13] M. Malekzadeh, R. G. Clegg, A. Cavallaro, H. Haddadi, Protecting sensory data against
sensitive inferences, in: Proceedings of the Workshop on Privacy by Design in Distributed
Systems (W-P2DS18), 2018.

[14] G. Vavoulas, C. Chatzaki, T. Malliotakis, M. Pediaditis, M. Tsiknakis, The mobiact dataset:
Recognition of activities of daily living using smartphones., in: Proceedings of Information
and Communication Technologies for Ageing Well and e-Health (ICT4AgeingWell16),
2016.


	1 Introduction
	2 Proposed Methods
	3 Experimental setup
	4 Results
	5 Conclusion

