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Karsten Roscher 1, Anselm Haselhoff 2

1Fraunhofer Institute for Cognitive Systems IKS, Munich, Germany
2Ruhr West University of Applied Sciences, Bottrop, Germany

{franziska.schwaiger, maximilian.henne, felippe.schmoeller.da.roza}@iks.fraunhofer.de
{fabian.kueppers, anselm.haselhoff}@hs-ruhrwest.de

Abstract
Confidence calibration is a major concern when applying ar-
tificial neural networks in safety-critical applications. Since
most research in this area has focused on classification in the
past, confidence calibration in the scope of object detection
has gained more attention only recently. Based on previous
work, we study the miscalibration of object detection models
with respect to image location and box scale. Our main con-
tribution is to additionally consider the impact of box selec-
tion methods like non-maximum suppression to calibration.
We investigate the default intrinsic calibration of object de-
tection models and how it is affected by these post-processing
techniques. For this purpose, we distinguish between black-
box calibration with non-maximum suppression and white-
box calibration with raw network outputs. Our experiments
reveal that post-processing highly affects confidence calibra-
tion. We show that non-maximum suppression has the poten-
tial to degrade initially well-calibrated predictions, leading to
overconfident and thus miscalibrated models.

1 Introduction
Modern deep neural networks achieve remarkable results on
various tasks but it is a well-known issue that these net-
works fail to provide reliable estimates about the correctness
of predictions in many cases (Niculescu-Mizil and Caru-
ana 2005; Guo et al. 2017). A network outputs a score
attached to each prediction that can be interpreted as the
probability of correctness. Such a model is well-calibrated
if the observed accuracy matches the estimated confidence
scores. However, recent work has shown that these con-
fidence scores neither represent the actual observed accu-
racy in classification (Niculescu-Mizil and Caruana 2005;
Naeini, Cooper, and Hauskrecht 2015; Guo et al. 2017) nor
the observed precision in object detection (Küppers et al.
2020). Calibrated confidence estimates integrated in safety-
critical applications like autonomous driving can provide
valuable additional information with respect to situational
awareness and can reduce the risk of hazards resulting from
functional insufficiencies by decreasing the space of un-
known unsafe scenarios which is a critical part for the safety
of the intended functionality (SOTIF ISO/PAS 21448).
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In the past, most research in this area has focused on
classification (Naeini, Cooper, and Hauskrecht 2015; Kull,
Silva Filho, and Flach 2017; Guo et al. 2017; Seo, Seo, and
Han 2019; Mukhoti et al. 2020), whereas calibration in ob-
ject detection has recently gained more attention (Neumann,
Zisserman, and Vedaldi 2018; Feng et al. 2019; Küppers
et al. 2020). Object detection is a joint task of classifica-
tion and regression of the predictions’ position and scale.
Recent work has shown that the regression branch of ob-
ject detection models also affects confidence calibration
(Küppers et al. 2020). However, the observable detections
of a model are commonly processed by non-maximum sup-
pression (NMS) and/or thresholded by a certain confidence
score. In this work, our goal is to investigate the influence of
such post-processing techniques on the model calibration.
For this purpose, we adapt common object detection mod-
els and examine their miscalibration before NMS on the one
hand (white-box scenario). In this way, we have access to
the raw predictions of a network and are thus able to exam-
ine the network’s calibration properties by default. On the
other hand, we further apply NMS with increasing intersec-
tion over union (IoU) thresholds (black-box scenario), which
varies the number of boxes that are suppressed. Changing
the parameters of the NMS enables us to examine to what
extent the models are intrinsically calibrated and how this is
affected by postprocessing techniques. An illustrative rep-
resentation for the problem setting is demonstrated in Fig.
1. Furthermore, we use a Faster R-CNN architecture (Ren
et al. 2015) that uses the cross entropy loss during training
and compare it to a RetinaNet (Lin et al. 2017) that uses a
focal loss. It is already known that models trained with fo-
cal loss produce much less confident predictions (Mukhoti
et al. 2020). This enables us to further investigate the ef-
fect of post-processing methods by comparing the default
calibration properties of both model architectures with and
without NMS.

This work is structured as follows: we give a review of
the current state-of-the-art research in confidence calibration
in Section 2. We further give a definition of white-box and
black-box calibration and a description of our calibration tar-
gets in Section 3. In Section 4, our experimental results are
demonstrated and in Section 5 we discuss our findings.
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Figure 1: Typically a non-maximum suppression (NMS) is applied to all detections of a detection model to fuse and reduce
redundant bounding boxes. In our work, we investigate how NMS affects confidence calibration. Thus, we study the difference
in calibration before NMS (white-box) and afterward (black-box).

2 Related Work
Numerous methods have been developed in the past to ad-
dress the miscalibration of neural networks. One of the first
representatives of post-processing calibration methods has
been histogram binning (Zadrozny and Elkan 2001), iso-
tonic regression (Zadrozny and Elkan 2002), Bayesian bin-
ning (Naeini, Cooper, and Hauskrecht 2015), and Platt scal-
ing (Platt 1999), whereas more recently temperature scaling
(Guo et al. 2017), beta calibration (Kull, Silva Filho, and
Flach 2017), and Dirichlet calibration (Kull et al. 2019) have
been developed to tackle miscalibration in the scope of clas-
sification. In object detection models, dealing with miscali-
bration presents a different set of challenges and was first ad-
dressed by (Neumann, Zisserman, and Vedaldi 2018), who
proposed an additional model output to be utilized as a reg-
ularizing temperature applied to the remaining logits. Re-
cently, (Küppers et al. 2020) have studied the effect of posi-
tion and scale of detected objects to miscalibration and con-
cluded that calibration also depends on the regression out-
put of a detection model. They further provide a framework
to include position and scale information into a calibration
mapping.

For the task of classification, a common way to mea-
sure miscalibration is to adapt the expected calibration er-
ror (ECE), proposed by (Naeini, Cooper, and Hauskrecht
2015), which uses a binning scheme to measure the gap be-
tween observed frequency and average confidence. (Kumar,
Liang, and Ma 2019) show in their work that the common
ECE underestimates the true calibration error in some cases
and provide a differentiable upper bound called maximum
mean calibration error (MMCE) that can also be used dur-
ing model training as a second regularization term. For mea-
suring miscalibration in object detection tasks, an extension
of the ECE called detection expected calibration error (D-
ECE) was proposed by (Küppers et al. 2020), consisting of a
multidimensional binning scheme to assess the miscalibra-
tion over all predicted features of an object detection model.

Since the standard cross-entropy loss is prone to favor
overly confident predictions, further research directions in-

vestigate how to directly obtain well-calibrated models after
training. Besides the previously mentioned MMCE, the au-
thors in (Pereyra et al. 2017) introduce a regularization term
penalizing high confident predictions. In contrast, (Müller,
Kornblith, and Hinton 2019) show that label smoothing
yields good probabilities after training. Recently, (Mukhoti
et al. 2020) investigate the effects of focal loss, originally
proposed as a loss term for RetinaNet (Lin et al. 2017),
on confidence calibration. They show that using focal loss
in conjunction with an adaptive parameter significantly im-
proves the confidence calibration of classification models.
We also observe that using focal loss prevents overconfi-
dent predictions in our experiments on the RetinaNet with
standard hyperparameters (Lin et al. 2017). While well-
known object detection models like Faster-RCNN (Ren et al.
2015) commonly tend to output overconfident predictions,
the probability scores of a RetinaNet rather underestimate
the observed frequency.

3 Defining Confidence Calibration for Object
Detection Models

In this section, we describe the definition of black-box and
white-box calibration. The idea behind this distinction is to
analyze the impact of bounding-box postprocessing on cali-
bration.

An object detector takes an image as input x and out-
puts predictions in form of a class label y ∈ Y with cor-
responding confidence score p ∈ [0, 1] and bounding box
r = (cx, cx, h, w) ∈ RJ , with (cx, cy) being the center
position, (h,w) the box height and width and J the size
of the used box encoding. The authors in (Küppers et al.
2020) propose a confidence calibration that not only consid-
ers the confidence score p but also includes the box infor-
mation r. The performance of a detector is thus evaluated by
matching its predictions (ŷ, p̂, r̂) with the ground-truth an-
notations, where m = 1 denotes a matched box and m = 0
a mismatch. More formally, perfect calibration in the scope



of object detection is defined by

P(M = 1|P̂ = p, Ŷ = y, R̂ = r)︸ ︷︷ ︸
precision given p,y,r

= p︸︷︷︸
confidence

, (1)

∀p ∈ [0, 1], y ∈ Y, r ∈ RJ .

As the detections rarely match the ground-truth perfectly,
true positives (TP, m = 1) and false positives (FP, m = 0)
are obtained by comparing the IoU to a fixed threshold τ . TP
and FP correspond to boxes with IoU ≥ τ and IoU < τ , re-
spectively. The process of inference is commonly followed
by a non-maximum suppression since an object detection
model outputs a huge amount of mostly less confident and
redundant detections. On the one hand, we can consider the
definition of calibration given by Equation 1 to the raw out-
puts of a detector without any post-processing. We denote
this case as the white-box calibration case for the following
of this paper. On the other hand, we can also view the NMS
as part of the detector and treat the output of the NMS as
our desired calibration target. This is denoted as black-box
calibration.

In (Küppers et al. 2020), the detection expected calibra-
tion error (D-ECE) is defined as an extension of the com-
monly used ECE (Naeini, Cooper, and Hauskrecht 2015) for
object detection tasks. The D-ECE also includes the box in-
formation r by partitioning the space of each variable k into
Nk equally spaced bins. The total amount of bins is given by
Ntotal =

∏K
k=1Nk and the D-ECE is defined as

D-ECEK =

Ntotal∑
n=1

|I(n)|
|D|

· |prec(n)− conf(n)|, (2)

where I(n) is the set of all samples in a single bin and |D|
the total amount of samples, while prec(n) and conf(n) de-
note the average precision and confidence within each bin,
respectively. We use this metric to measure miscalibration in
both cases: For white-box, we consider all possible box pre-
dictions whereas for black-box only the winning boxes after
NMS are considered. This is explained in more detail in the
following section.

4 Experimental Evaluation
In order to analyze the confidence calibration under different
conditions, we use the COCO 2017 validation dataset (Lin
et al. 2014) with a random split of 70% and 30% for training
and testing the calibration, respectively.

Evaluation Protocol
We perform both black-box and white-box calibration by
following the evaluation protocol of (Küppers et al. 2020)
and use their provided calibration framework. The final cal-
ibration results are obtained as an average over 20 indepen-
dent training and testing results. For inference, we use a pre-
trained RetinaNet (Lin et al. 2017) and a Faster R-CNN (Ren
et al. 2015) model provided by the Detectron2 framework
(Wu et al. 2019). While the classification branch of the for-
mer model is trained by cross entropy loss, the latter one

uses a focal loss that enables to focus on hard examples dur-
ing training with low confidence. On the other hand, good
predictions with high confidence are less weighted during
training that in turn leads to less confident predictions (Lin
et al. 2017; Mukhoti et al. 2020). Our experiments are re-
stricted to the predictions of class person.

To study the effect of non-maximum suppression, we ap-
ply different IoU thresholds to merge boxes denoted by
NMS@{0.5, 0.75, 0.9}. In the white-box case without NMS,
we use the raw predictions for measuring and performing
calibration on the one hand. On the other hand, we further
adopt top-k box selection where only k bounding boxes with
the highest confidence are kept using k = 1000. This is the
common case during inference to reduce low confidential
and mostly redundant predictions. Following (Küppers et al.
2020), the predictions of all models are obtained by infer-
ence with a probability threshold of 0.3 which means dis-
carding all predictions with a confidence score less than this
threshold. As the relative amount of predictions per image
with low confidence score is significantly higher than the
relative amount of the remaining predictions, this probabil-
ity threshold ensures that the D-ECE is not dominated by
these low confidence samples.

For confidence calibration, we use multivariate histogram
binning (Zadrozny and Elkan 2001; Küppers et al. 2020) for
calibration as a fast and reliable calibration method. We also
evaluate several setups with different subsets of box infor-
mation to evaluate the effect of the used feature set. We ei-
ther use the confidence only, also including the box centers
(ĉx, ĉy) or box scales (h,w), or we use all features for mea-
suring and performing calibration. For the histogram-based
calibration, we use 15 bins for confidence only, Nk = 5

bins for (p̂, ĉx, ĉy) and (p̂, ĥ, ŵ), andNk = 3 when using all
available features. In contrast, for D-ECE computation we
use 20 bins for confidence only, Nk = 8 bins for (p̂, ĉx, ĉy)
and (p̂, ĥ, ŵ), andNk = 5 when using all available informa-
tion. We increase the robustness of the D-ECE calculation
by also neglecting bins with less than 8 samples (Küppers
et al. 2020).

Results
In Tables 2 and 3, the results for black-box and white-
box calibration for RetinaNet and Faster R-CNN are pre-
sented, respectively. Three different IoU threshold values
of τ = {0.5, 0.6, 0.75} are considered to match predic-
tions with ground-truth annotations. In the tables, each cell
presents the D-ECE for the baseline (without calibration)
and the corresponding D-ECE after histogram-based cali-
bration (HB). The Tables 2 and 3 show the results of the
black-box models with varying strength of NMS as well as
the calibration results for the white-box case without NMS.
The D-ECE is evaluated with different additional box infor-
mation: The first column shows the confidence only calibra-
tion, the second and third columns the calibration with box
centers and box scales, and the last columns show the results
for the calibration with all box information considered. The
best D-ECE scores are highlighted for each set of features
and IoU value across all variants.



(p̂) (p̂, cx, cy) (p̂, h, w) full
NMS@0.5 0 1 29 528

NMS@0.75 0 0 20 485
NMS@0.9 0 0 12 435

Without NMS 0 0 9 414
Baseline 20 256 256 1024

Table 1: Amount of neglected bins within D-ECE calcula-
tion of the three black-box models and the white-box model
for Faster R-CNN (Ren et al. 2015; Wu et al. 2019). A simi-
lar amount of bins is also neglected during the examinations
for RetinaNet (Lin et al. 2017; Wu et al. 2019).

For Faster R-CNN, we observe that the white-box model
calibrates consistently better by default than the black-box
models in most cases. In contrast, we observe the oppo-
site behavior for the RetinaNet model. Therefore, we fur-
ther study the calibration properties of those networks by
inspecting their reliability diagrams shown in Fig. 3 for
the black-box and white-box cases. The RetinaNet white-
box model without NMS offers underconfident predictions
which is a known property of models trained by focal loss
(Lin et al. 2017). After NMS, a particular behavior can be
observed in Fig. 3e with overconfident predictions in the
low confidence interval (p̂ < 0.5) and underconfident pre-
dictions in the high confidence interval (p̂ > 0.5). Also,
when comparing the calibrated results shown in Fig. 3b and
3f, it is evident that the calibration for the white-box model
leads to a better D-ECE score. In contrast, Faster R-CNN
outputs reasonably well calibrated predictions before NMS
but is highly overconfident after NMS. Again, we observe
that the white-box D-ECE score is much better compared to
the black-box model after calibration has been applied.

We also study the effect of position-dependent miscali-
bration as in (Küppers et al. 2020), shown in Fig. 4. We
compare the white-box and black-box models before and
after calibration for each object detector. These figures al-
low to analyze if calibration is influenced by the position
of predicted bounding boxes. All images show a tendency
of higher miscalibration close to the borders. That may be
caused by the difficulty of detecting objects correctly which
are cropped out of the frame. However, this is of minor rel-
evance considering that most of the positional discrepancies
are mitigated after calibration in all cases.

As shown in Tables 2 and 3, the calibration for the white-
box model performs better than the calibration for the black-
box model for the first and second columns. The opposite
happens when including the box scales into the computation
of the D-ECE. Here, the black-box model with NMS@0.5
provides the best results. A possible explanation for this ob-
servation could be, that by increasing the NMS value, the
number of samples also increases from 4,229 and 4,496 to
117,292 and 37,355 for RetinaNet and Faster R-CNN, re-
spectively. As expected, the more we go in the white-box
direction, the less predictions are discarded. Having more
samples for the miscalibration computation also means that
there are possibly more samples within each bin leading to
a more robust miscalibration estimation (Kumar, Liang, and
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Figure 2: Confidence histogram and reliability diagram (left)
and position-dependent heatmap (right) for RetinaNet (Lin
et al. 2017; Wu et al. 2019) (top row) and Faster RCNN (Ren
et al. 2015; Wu et al. 2019) (bottom row) after white-box cal-
ibration and then further application of non-maximum sup-
pression with NMS@0.5.

Ma 2019). As previously mentioned, bins with less than 8
samples are neglected for the computation of the D-ECE.
The total amount of neglected bins for each configuration
is illustrated in Table 1. Especially using all available infor-
mation for calibration (full case), more and more bins are
left out when going from white-box (bottom) to black-box
(top) resulting in less bins contributing to the miscalibration
score.

A critical question arises how to integrate white-box cal-
ibration into the object detection pipeline. As demonstrated
in the previous results, NMS has a significant impact in the
calibration affecting the precision as well as the confidence
scores of the detections. It has been shown that NMS has the
potential to degrade the calibration results. Therefore, we
investigate the calibration properties of the detection models
that are processed by a NMS with histogram-based calibra-
tion beforehand. The results are shown in Fig. 2: It can be
seen that calibration before NMS leads to higher miscali-
bration as the confidence is calibrated before NMS as well.
However, as NMS also affects the precision, the detection
model gets too overconfident in both cases. In order to pre-
serve good calibrations from the white-box method, alterna-
tive box suppression methods should be investigated. One
option would be to integrate the confidence calibration with
the box merging strategies compared by (Roza et al. 2020),
such as weighted box fusion and variance voting and test
how such methods influence the model calibration.
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Figure 3: Confidence histograms and reliability diagrams of the miscalibration for RetinaNet (left) and Faster R-CNN (right)
black-box (NMS@0.5) and white-box (without NMS) models with IoU@0.6 before and after histogram-based calibration.
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(b) Calibrated white-box model
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(c) Uncalibrated white-box
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(d) Calibrated white-box model
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(e) Uncalibrated black-box
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(f) Calibrated black-box model
with D-ECE = 6.620%
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(g) Uncalibrated black-box
model with D-ECE = 15.975%
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(h) Calibrated black-box model
with D-ECE = 7.156%

Figure 4: Position-dependent miscalibration of the RetinaNet (left) and Faster R-CNN (right) black-box (NMS@0.5) and white-
box (without NMS) models with IoU@0.6, before and after the histogram-based calibration.



(p̂) (p̂, cx, cy) (p̂, h, w) full
IoU@0.5
Baseline 16.200 12.004 14.963 13.478

HB 1.636 6.335 2.775 5.391
IoU@0.6
Baseline 20.862 15.303 18.743 16.546

HB 1.673 6.091 2.991 5.743
IoU@0.75
Baseline 31.659 24.684 28.864 25.765

HB 1.436 6.095 3.110 5.704

(a) Black-box calibration with NMS@0.5, |D| = 4, 229.

(p̂) (p̂, cx, cy) (p̂, h, w) full
IoU@0.5
Baseline 15.448 15.750 14.246 12.586

HB 1.388 6.123 4.252 6.665
IoU@0.6
Baseline 3.435 7.486 6.710 7.064

HB 1.441 6.273 4.192 6.444
IoU@0.75
Baseline 20.980 20.840 20.041 17.504

HB 1.227 4.847 3.315 4.974

(b) Black-box calibration NMS@0.75, |D| = 7, 923

(p̂) (p̂, cx, cy) (p̂, h, w) full
IoU@0.5
Baseline 30.748 30.672 30.436 29.427

HB 1.212 5.290 3.671 6.686
IoU@0.6
Baseline 21.773 21.954 21.612 21.350

HB 1.195 5.717 3.981 7.647
IoU@0.75
Baseline 3.057 6.907 8.489 10.143

HB 1.367 5.675 4.468 7.847

(c) Black-box calibration with NMS@0.9, |D| = 20, 005

(p̂) (p̂, cx, cy) (p̂, h, w) full
IoU@0.5
Baseline 28.027 28.127 28.014 28.176

HB 0.855 4.947 2.895 6.114
IoU@0.6
Baseline 23.097 23.290 23.118 23.482

HB 1.033 5.331 3.306 6.912
IoU@0.75
Baseline 8.487 10.190 10.190 11.992

HB 1.132 5.892 4.207 8.266

(d) White-box calibration without NMS, |D| = 117, 292

Table 2: D-ECE results (%) for RetinaNet (Lin et al. 2017; Wu et al. 2019) for different IoU scores. Each column shows the
baseline D-ECE and the calibrated one using histogram-based (HB) calibration with different subsets using either confidence
only p̂, including the box centers (cx, cy), box scales (h,w) or using all features. Note that comparing the D-ECE scores of
columns to each other is not applicable since different subsets of data have been used for D-ECE measurement and calibration.

(p̂) (p̂, cx, cy) (p̂, h, w) full
IoU@0.5
Baseline 7.781 9.060 7.829 7.168

HB 1.789 6.186 2.947 4.960
IoU@0.6
Baseline 9.370 10.041 9.033 7.810

HB 1.564 6.075 3.105 5.142
IoU@0.75
Baseline 31.659 24.684 28.864 25.765

HB 1.436 6.095 3.110 5.704

(a) Black-box calibration with NMS@0.5, |D| = 4, 496.

(p̂) (p̂, cx, cy) (p̂, h, w) full
IoU@0.5
Baseline 7.597 9.927 10.828 9.804

HB 1.523 6.968 3.778 6.134
IoU@0.6
Baseline 16.100 15.226 16.417 14.933

HB 1.343 6.323 3.490 5.610
IoU@0.75
Baseline 34.634 32.535 31.861 27.883

HB 1.123 4.878 3.018 4.996

(b) Black-box calibration with NMS@0.75, |D| = 7, 231.
(p̂) (p̂, cx, cy) (p̂, h, w) full

IoU@0.5
Baseline 7.323 10.431 10.042 10.318

HB 1.354 6.697 4.062 7.121
IoU@0.6
Baseline 7.499 10.328 11.622 11.630

HB 1.184 6.383 4.050 7.141
IoU@0.75
Baseline 25.689 25.539 25.792 25.002

HB 1.139 5.478 4.126 6.908

(c) Black-box calibration with NMS@0.9, |D| = 17, 742.

(p̂) (p̂, cx, cy) (p̂, h, w) full
IoU@0.5
Baseline 6.914 9.619 8.638 10.061

HB 1.038 5.234 3.206 6.239
IoU@0.6
Baseline 4.592 7.720 8.540 9.548

HB 1.099 5.523 3.603 6.959
IoU@0.75
Baseline 13.067 13.883 15.658 16.462

HB 0.999 5.996 4.505 8.652

(d) White-box calibration without NMS, |D| = 37, 355.

Table 3: D-ECE results (%) for Faster R-CNN (Ren et al. 2015; Wu et al. 2019) before and after histogram-based (HB)
calibration using different IoU thresholds for NMS. The structure of this table is comparable to Tab. 2.



5 Conclusion
In this paper, we analyzed the influence of box suppres-
sion methods on confidence calibration for object detec-
tion models. To do so, we adapt models without box sup-
pression methods denoted as white-box models, contrasting
to the black-box approach commonly suggested. We per-
formed histogram-based calibration for both black-box and
white-box scenarios on the COCO dataset. We found that
the initial calibration of detection models is highly impacted
by NMS. Additionally, we observed that calibration also de-
pends on the architecture of the object detection model. For
RetinaNet, the model predictions are underconfident before
applying NMS whereas, for Faster R-CNN, the white-box
model outputs quite well calibrated detections that become
overconfident after NMS.

Knowing that the miscalibration not only depends on the
classification outputs but also on the regression output for
the bounding boxes, we performed histogram-based calibra-
tion using different subsets of the output data. For the con-
fidence only and (p̂, cx, cy) case, the white-box model out-
performs the black-box models while the black-box models
present slightly better results on the other scenarios.

While the white-box calibration has given good results,
the most effective integration of white-box calibration meth-
ods in existing object detectors utilizing NMS remains as
an open issue. As shown by the results in this paper, the
NMS layer affects the results by giving different calibration
profiles before and after the suppression. Corroborating with
further results presented in this paper, the calibrated detec-
tions obtained by the white-box models deteriorated after
NMS for both RetinaNet and Faster R-CNN. However, we
think this problem can be solved by using other suppression
methods which consider a larger set of the overall better cal-
ibrated boxes than NMS.

For future work we suggest alternative applications to the
standard NMS method to verify if they can lead to better
calibrated object detectors. One option would be to integrate
the confidence calibration with box merging strategies com-
pared by (Roza et al. 2020), such as box averaging, weighted
box fusion or variance voting.
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