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Abstract

Quantifying the probability of a machine learning pre-
diction being correct on a given test point enables users
to better decide how to use those predictions. Confi-
dence scores are pointwise estimates of such probabil-
ities. Ideally, these would be the label probabilities
(a.k.a. the labeling rule) of the data generating distri-
bution. However, in learning scenarios the learner does
not have access to the labeling rule. The learner aims
to figure out a best approximation of that rule based on
training data and some prior knowledge about the task
at hand, both for predicting a label and for possibly
providing a confidence score. We formulate two goals
for confidence scores, motivated by the use of these
scores for safety-critical applications. First, they must
not under-estimate the probability of error for any test
point. Second, they must not be trivially low for most
points. We consider a few common types of learner’s
prior knowledge and provide tools for obtaining point-
wise confidence scores based on such prior knowledge
and the relation between the test point and the train-
ing data. We prove that under the corresponding prior
knowledge assumptions, our proposed tools meet these
desired goals.

1 Introduction
The reliability of machine learnt programs is of course a
major concern and has been the focus of much research.
Theory offers quite a selection of tools for evaluating re-
liability, from generalization bounds to experimental re-
sult of test sets. However, most of those guarantees are
statistical, in the sense that they only hold with high
probability (over the generation of the training data
and of the test points) and they provide no informa-
tion about the correctness of prediction on any specific
instance. In cases where an error on a specific in-
stance may incur a very high cost, like in safety-critical
applications, the common statistical guarantees do not
suffice. We would also wish to be able to identify pre-
dictions with low confidence so that one could apply
some safety procedures (such as a review by a human
expert). Ideally, no low confidence prediction should go
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undetected, At the same time, since expert intervention
could be expensive, one also wishes to minimize the oc-
currence of false positives in the predictions flagged as
low confidence.

Can one do better than the overall statistical esti-
mates when it comes to evaluating reliability on a given
test case?

Arguably, the most common reason for an statisti-
cally reliable machine learning program to fail on a test
point is that that point is an ‘outlier’, in the sense of not
being well represented by the sample the program was
trained on. This research aims to quantify this ‘out-
lierness’. We propose theoretically founded confidence
bounds that take into account the relation between the
training sample and the specific test point in question
(on top of the commonly used parameters of the learn-
ing algorithm, the size of training sample and assump-
tions about the processes generating both the training
data and the test instance).

Clearly, the confidence of any prediction of an
unknown label (or any piece of information) hinges
upon some prior knowledge or assumptions. In this
work we consider a few forms of prior knowledge that
are commonly employed in machine learning theory,
and develop and analyse confidence score for prediction
of individual test points under such assumptions.

We consider the following types of prior knowledge:
Known hypothesis class with low approxima-

tion error: We discuss two cases - the realizable set-
ting (i.e., when that approximation error is zero) and
the agnostic setup (both in Section 2).

• In the realizable case, we show that there are indeed
hypothesis classes for which it is possible to define
a confidence score that does not overestimate con-
fidences for any points, while providing high confi-
dences to many points. However, there are also hy-
potheses classes, that do not allow non-trivial confi-
dence scores fulfilling such a guarantee.

• For the agnostic setup, assuming the learner has
knowledge of a hypothesis class with low (but not
necessarily 0) approximation error, we show that in
this case it is not possible to give any non-trivial con-



fidence score that does not overestimate confidence
for some instances.

The data generating distribution is Lipschitz:
We provide a an algorithm that calculates confidence
scores under such an a Lipschitzness assumption. We
show that with high probability over samples, the re-
sulting confidence score of every point is an underesti-
mate of its true confidence while the confidence score we
obtain is non-trivial. We provide bounds on the proba-
bility (over points and samples) of assigning a low con-
fidence score to a point with high true confidence that
converge to zero as a function of the training sizes. For
more details, see Section 5.

2 Related work

The closest previous work to ours is Jiang et al [5]. They
consider a very similar problem to the one we address
here - the problem of determining when can a classifier’s
prediction on a given point be trusted. For the sake of
saving space, we refer the reader to that paper for a
more extensive review of previous work on this topic.
Their theoretical results differ from our work in two es-
sential aspects. First, they consider only one setup - a
data generating distribution that satisfies several tech-
nical assumptions. In particular they rely on the follow-
ing strong condition: ”for any point x ∈ X , if the ratio
of the distance to one class’s high-density-region to that
of another is smaller by some margin γ, then it is more
likely that x’s label corresponds to the former class.”
We analyse our notion of confidence under several differ-
ent incomparable assumptions, arguably, none of which
is as strong as that. The second significant difference is
that the main result on trust of labels there (theorem 4
of [5]) states that if a certain inequality holds then the
predicted label agrees with that of the Bayes optimal
predictor, and if another inequality holds, there is dis-
agreement between them. However, those inequalities
are not complementary. It may very well be that in
many cases every domain point (or high probability of
instances) fails both inequalities. For such points, that
main result tells nothing at all. That paper does not
offer any discussion of the conditions under which their
main result is not vacuous in that respect. Additionally
their result holds with high probability over the domain
and is not a point-wise guarantee.

Selective Classification/ Classification with
Abstension: One line of work that is related to our
paper is learning with abstention. Similar to our set-
ting, the classification problem does not only consist
of the goal of classifying correctly, but to also allows
the classifier to abstain from making a prediction, if
the confidence of a prediction is too low. Many works
in this line provide accuracy guarantees that hold with
high probability over the domain ([1],[11], [3], [4], [6]).
This is different from our goal of point-wise guarantees.

Point-wise guarantees are provided in [2] and [10].
El-Yaniv et al [2] gave a theoretical analysis of the se-
lective classification setup in which a classification func-

tion and a selective function are learned simultaneously.
The risk of a classification is then only accessed on the
set of instances that was selected for classification. The
selective function is evaluated by their coverage - how
many instances in expectation are selected for classi-
fication. They analyse the trade-off between risk and
coverage, and introduce the notion of ”perfect classi-
fication” which requires risk 0 with certainty. This is
similar to our requirements on a confidence score in
the deterministic setting, where we require 0 risk with
high probability. Their notion of coverage is similar to
our notion of non-redundancy - in fact non-redundancy
corresponds to worst-case coverage over a family of dis-
tributions. They provide an optimal perfect learning
strategy in the realizable setting and show that there
are hypothesis classes with a coverage that converges
to 1 and hypothesis classes for which coverage is always
0 for some distributions. We use their results in our
Section 4. In contrast to their paper our setup also con-
siders probabilistic labeling functions and our analysis
also considers other assumptions on the family of prob-
ability distributions, besides generalization guarantees
for some fixed hypothesis space.

3 Problem definition

Let the domain of instances be X and the label set
be {0, 1}. A learning task is determined by a proba-
bility distribution P over X × {0, 1}. We denote the
marginal distribution over the domain by PX and the
conditional labeling rule by `P (namely, for x ∈ X,
`P (x) = Pr(x′,y′)∼P [y′ = 1|x′ = x]).

The Bayes classifier,

hBP (x) = 1 iff Pr
(x′,y′)∼P

[y′ = 1|x′ = x] ≥ 0.5,

is the pointwise minimizer of the zero-one prediction
loss. We sometime refer to its prediction hBP (x) as the
majority label of a point or the Bayes label of a point.

We are interested in point-wise confidence. For a
point x ∈ X, the confidence of a label y ∈ {0, 1} is

CP (x, y) = Pr
(x′,y′)∼P

[y′ = y|x′ = x].

Note that the label assigned by he Bayes predictor max-
imizes this confidence for every domain point x.

A Confidence score of the label confidence is an
empirical estimate (based on some training sample S)
of the true label confidence. Inevitably, the reliability
of a confidence score is dependent on some assump-
tions on the data generating distribution (or, in other
words, prior knowledge about the task at hand). Given
a family of data generating distributions P (fulfilling
some niceness assumption that reflect the learners prior
knowledge or beliefs about the task), a training sample
S, and a parameter δ, the empirical confidence estimate
for a point x and label y is a function C(x, y, S, δ). We
want the following property to hold: For every proba-
bility distribution P ∈ P, with probability of at least



1− δ over an i.i.d. generation of S by P , we have

Pr
y′∼Bernoulli(`P (x))

[y′ = y] ≥ C(x, y, S, δ).

That is, with high probability, we do not overestimate
the probability of y being the correct label for x. Ide-
ally, this should hold for every point x in the domain.
Of course, there is a trivial solution for this - just let
C( , , , ) be the constant 0 function. The goal therefore
is to get a confidence score that fulfils the condition
above, while still being as high as possible for ‘many’
x′s. That is, we aim for a confidence score, such that
Ex∼P,S∼Pm [max{C(x, 1, S, δ), C(x, 0, S, δ)}] is high. As
mentioned above, given a data generating distribution
P and a data representation available to the learner, the
highest confidence on every instance x ∈ X is achieved
by the Bayes predictor hBP (x) and it is easy to see that
it is max{`P (x), (1− `P (x))}.

In contrast with the common notion of a PAC style
error bound is that confidence scores may vary over in-
dividual instances, capturing the heterogeneity of the
domain and the specific training sample the label pre-
diction relies on. To demonstrate this point, consider
the following example:

Example 1. Let X1 be the 0.1 grid over [0, 1]d, let
X0 the 0.01 grid over [0, 0.1]d and let our domain be
X = X0 ∪ X1 (for some large d). Consider the fam-
ily P of all probability distributions over X that have
a deterministic labeling rule satisfying the 10- Lipschitz
condition (so points of distance 0.1 or more have no
effect on each other). Assume further that all the dis-
tributions in P have half of their mass uniformly dis-
tributed over X1 grid points and the other half of the
mass uniformly distributed over X0.

Since outside the [0, 0.1]d cube, every labeling is pos-
sible, for every learner there is a distribution P ∈ P
w.r.t. which it errs on every domain point in X1 \ SX
(where SX = {x : ∃y ∈ {0, 1} s.t. (x, y) ∈ S}). On
the other hand, due to the Lipschitz condition, all the
points in the [0, 0.1]d grid, X0, must get the same la-
bel. Therefore, given a sample S that includes a point
in X0, a learner that labels all the points in X0 by the
label of the sample points in it induces confidence 1 for
all these points.

We conclude that, for sample sizes between 2 and,
say, 10d/2, for most of the samples a learner can
achieve confidence 1 for points in X0 and no learner can
achieve confidence above 0 for even a half of the domain
points in X1. Note also that the No Free Lunch theorem
(as formulated in, e.g., [8]) implies that for sample sizes
smaller than 10d/2, for every learner there exists some
probability distribution P ∈ P for which its expected
error is at least 1/8 (1/4 over a subspace X1 that has
probability weight 1/2).

4 Confidence scores for hypothesis
classes

In the following we will analyze the point-wise confi-
dence when all the prior knowledge available about the

data generating distribution P is a bound on the ap-
proximation error of a class of predictors. We will dis-
tinguish two cases here,

1. The family PH,0 of distributions P which are realiz-
able w.r.t. H, i.e. infh∈H LP (h) = 0 and

2. The family PH,ε of distributions P for which the ap-
proximation error of class H is low but not guaran-
teed to be zero, i.e. infh∈H LP (h) ≤ ε, for some ε > 0.

Note that, given a class of predictors, H, the second
family of possible data generating distributions is a
superset of the first. Consequently, the pointwise er-
ror guarantees one can give in that non-necessarily-
realizable case are weaker1.

Definition 1 (Confidence Score, fulfilling the no-over-
estimation guarantee for all instances). We say a func-
tion C, that takes as input a sample S, a point x, a
hypothesis h and a parameter δ and outputs a value
in [0, 1]. We say such a function C is a confidence
score fulfilling the no-overestimation guarantee for all
instances for a family of probability functions P if for
every P ∈ P the probability over S ∼ Pm that there
exists x ∈ X with

Pry∼Bernoulli(`P (x)) [h(x) = y] < C(x, y, S, δ)

is less than δ.

We say a function C(x, y, S, δ), is a confidence score
fulfilling the fulfilling the no-overestimation guarantee
for positive mass instances if the above guarantee holds
not for all x, but for all x with P ({x}) > 0.

It is obvious, that this guarantee to achieve, if we
give the confidence score 0 for all predictions. In order
to measure the informativeness of a confidence score
for a particular distribution we introduce the notion of
non-triviality of a confidence score.

Definition 2 (Non-triviality). Given a confidence
score C for some family of distributions P, we define
the non-triviality ntP (C, x, y) w.r.t. to a distribution
P ∈ P for a given sample size m and parameter δ, to
be the extected difference between the estimated and the
true confidence,i.e.:

ntP (C,m, δ) =

Ex∼P,S∼Pm [1− min
y∈{0,1}

|CP (x, y)− C(x, y, S, δ)|)]

Next we consider a specific confidence score that
takes into account whether a hypothesis class is un-
decided on a point x given a sample S.

CH(x, y, S, δ) ={
0 if there is h ∈ H s.t. LS(h) = 0 and h(x) 6= y

1 otherwise
1To not have to deal with the ambiguity of the labeling

function for points with mass 0, we will restrict this discus-
sion to the family of distributions which have positive mass
on all points. This implies that in the realizable setting all
labeling function `P we consider are part of H.



Proposition 1. For the family of distributions P that
are realizable with respect to H, CH is indeed a con-
fidence score fulfilling the no-overestimation guarantee
for all instances.

This statement was made in a different setup by El-
Yaniv et al [2]. We note that our confidence score CH is
equivalent to their notion of consistent selective strat-
egy. Using our terminology, they show that if the real-
izability assumption holds, if an instance (x, y) is classi-
fied as 1 by CH then x is guaranteed to have true label
y (with probability 1). Furthermore, their Theorems 11
and Theorem 14 as well as their Corollory 28 give rise
to the following observation about confidence scores.

Observation 1. It turns out that ntP (C,m, δ) for
this confidence scoring rule CH under the realizability
assumption displays different behaviours for different
classes (even when they have similar VC dimension):

• For some hypothesis classes, e.g. the class of thresh-
olds on the real line Hthres or the class of linear sep-
arators in Rd, ntP (C,m, δ) converges to 1 for every
δ > 0 and every P ∈ P as the sample size go to
infinity.

• On the other hand, for some hypothesis classes with
finite VC-dimension for every ε > 0 there exist
P ∈ PH,0 with ntP (C,m, δ) = 0 for every sample
size m and every δ < 1. This phenomenon occurs for
example for H being the class of singletons.

For a more detailed analysis of which hypothesis
classes have high non-triviality, we refer the reader to
[2], noting that our notion of non-triviality corresponds
to their notion of coverage.

We now look at the second case we wanted to ad-
dress in this section: The family of probability distri-
butions such that the approximation error of a class H
is bounded by some ε. We fix a hypothesis class H and
let PH,ε be the family of all probability distributions P
such thatH has approximation error at most ε w.r.t. P .
We show that for for any (non-trivial) hypothesis class
H, it is not possible to find any satisfying confidence
score for such a family.

Proposition 2. Let H be any hypothesis over an infi-
nite domain. Then there is no confidence score C such
that the following two statements are true simultane-
ously:

• C fulfills the no-overestimation guarantee for all
positive-mass instances w.r.t. PH,ε

• there exists some η > 0 such that for every P ∈ PH,ε
there are δ ∈ (0, 1), m ∈ N such that C has non-
triviality ntP (C,m, δ) > η.

This shows us that restricting ourselves to a family
of probability distributions that allow for good gener-
alization is not sufficient for allowing satisfying con-
fidence scores. In the following section we will make
stronger, more local assumptions and show that under
these assumptions more satisfying confidence scores can
be found.

5 Confidence scores under Lipschitz
assumption

Lipschitz Assumption : We say that the probability
distribution P over X × {0, 1} satisfies λ-Lipschitzness
w.r.t. a metric d(., .) over X, if for every x, x′ ∈ X
, |`P (x) − `P (x′)| ≤ λd(x, x′). When the domain is a
subset of a Euclidean space, we will assume that d is
the Euclidean distance unless we specify otherwise.

We provide an algorithm (1) to estimate the labelling
probability of points using labelled samples. The algo-
rithm partitions the space into cells. The algorithm
outputs the same answer for points in the same cell.
The input parameter r dictates the size of the cells.
The algorithm estimates the average labelling probabil-
ity for each cell. A confidence interval for this estimate
is calculated based on the number of sample points in
the cell. The interval is narrow when there are more
sample points in the cell.

The following lemmas show how to estimate probabil-
ity weights and average labelling probabilities of subsets
of the domain:

Lemma 1. Let P be a distribution over domain X.
Let X ′ be a subset of X. Let S be an i.i.d. sample of
size m drawn from the distribution P . Let p̂(X ′, S) be
the fraction of the m samples that are in X ′. For any
δ > 0, with probability 1− δ over the generation of the
samples S,

|P (X ′)− p̂(X ′, S)| ≤ wp(m, δ)

where

wp(m, δ) =

√
1

2m
ln

2

δ
.

Lemma 2. Let D be distribution over X × {0, 1}. Let
X ′ be a subset of X. Let S be an i.i.d. sample of size

m drawn from D. Let ˆ̀(X ′, S) be the fraction of the m
labelled samples with label 1 in S ∩X ′. For any δ > 0,
with probability 1−δ over the generation of the samples
S, if p̂(X ′, S)− wp(m, δ/2) > 0, then

|¯̀P (X ′)− ˆ̀(X ′, S)| < w`(m, δ, p̂(X
′, S))

w`(m, δ, p̂(X
′, S)) =

1

p̂(X ′, S)− wp(m, δ/2)

·

(
wp(m, δ/2) +

√
1

2m
ln

4

δ

)
,

where p̂(X ′, S) is the fraction of the samples from S
in X ′ that have label 1, wp(m, δ/2)) is as defined in
Lemma 1.

The following theorem shows that the true labelling
probability of a point lies within the estimate interval
provided by Algorithm 1, with high probability over the
sample used to find the estimate.

Theorem 1. Let the domain be [0, 1]d. Suppose the
data generating distribution P satisfies λ-Lipschitzness.



Algorithm 1 Lipschitz labelling probability estimate

Input: Test point x, Labelled samples S =
(xi, yi)

m
i=1,

Radius r, Estimation parameter δ,
Lipschitz constant λ

Output: Labelling probability estimate, confidence
width of estimate
Split the domain X = [0, 1]d into a grid of (1/r)d

hypercube cells each of side length r.
Find the cell tx containing the test point x.
p̂[tx] := fraction of samples in tx.
ˆ̀[tx] := fraction of samples in the cell tx with label 1.
w[tx] := 1
if p̂[tx]− wp(m, δ/2) then

w[tx] = w`(m, δ, p̂[tx])
end if
Return ˆ̀[tx], min(1, w[tx] + rλ

√
2)

For any r > 0, δ > 0, m ∈ N, for any x ∈ [0, 1]d, define
the confidence score based on Algorithm 1 as

Ĉr,λLipschitz(x, y;S, δ) =

{
1− ˆ̀

S(x)− wS(x) if y = 1
ˆ̀
S(x)− wS(x) if y = 0

where (ˆ̀
S(x), wS(x)) is the output of the Algorithm with

input r, δ, λ. Then with probability 1 − δ over samples
S of size m,

Ĉr,λLipschitz(x, y;S, δ) ≤ CP (x, y)

We now show that as sample size increases, for an
appropriately chosen input parameter r, Algorithm 1
returns narrow estimate intervals for the labelling prob-
abilities for most points. This implies that for most
points, the confidence score is not much lower than the
true confidence (2|`P (x)− 1

2 |)
Theorem 2. For every λ-Lipschitz distribution, for
every εx, εc, δ > 0, there is a sample size m(εx, εc, δ)
such that with probability 1 − δ over samples S of size
m(εx, εc, δ),

Pr
x∼P

[wS(x) > εc] < εx

where wS is the width of labelling probability estimate
obtained from Algorithm 1 with input parameter of grid
size r = 1/m

1
8d

Note, that this theorem implies that the expected
non-triviality is high.

6 Proofs
Useful lemmas
The following lemma appears as Theorem 2.2.6 of the
book of [9], where the reader can find its proof.

Lemma 3 (Hoeffding’s inequality for general bounded
random variables). Let X1, . . . , XN be independent ran-
dom variables. Assume that Xi ∈ [mi,Mi] for every i.
Then, for any t > 0, we have

Pr

[
N∑
i=1

(Xi − E[Xi]) ≥ t

]
≤ exp

(
− 2t2∑N

i=1(Mi −mi)2

)
.

Proof of Lemma 1. Let Xi be a random variable in-
dicating if the ith sample belongs to set X ′. Xi = 1 if
the ith sample belongs to X ′ and zero otherwise. For

each i, E[Xi] = P (X ′). p̂(X ′, S) =
∑N

i=1Xi

m . Apply-
ing Hoeffding’s inequality, we get the inequality of the
theorem.

Proof of Lemma 2. Let Xi be a random variable
such that

Xi =

{
1 If ith sample is in X ′ and has label one,

0 otherwise.

E[Xi] = P (X ′)¯̀
P (X ′), for each i.

∑m
i=1Xi =

mp̂ˆ̀
P (X ′, S). Note that by triangle inequality,

|P (X ′)ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|
≤ |p̂ˆ̀

P (X ′, S)− P (X ′)¯̀
P (X ′)|+ |p̂− P (X ′)|ˆ̀P (X ′, S)

≤ |p̂ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|+ wp.

For any ε > 0,

Pr[|¯̀P (X ′)− ˆ̀(X ′, S)| > ε]

= Pr[P (X ′) · |¯̀P (X ′)− ˆ̀(X ′, S)| > P (X ′)ε]

≤ Pr[|p̂ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|+ wp > (p̂− wp)ε]
= Pr[|mp̂ˆ̀(X ′, S)−mP (X ′)¯̀

P (X ′)|
> m(p̂− wP )ε− wp]

= Pr[

m∑
i=1

|Xi − E[Xi]| > m((p̂− wP )ε− wp)]]

≤ 2 exp
(
−2m((p̂− wP )ε− wp)2

)
When p̂− wp > 0, choosing

wl(m, δ, p̂) >
wp

p̂− wp
+

1

p̂− wp

√
1

2m
ln

4

δ
,

we get that with probability 1−δ, |¯̀P (X ′)− ˆ̀(X ′, S)| <
w`(m, δ, p̂).

Confidence scores for hypothesis classes

We start by recalling the definition of confidence scores
fulfilling the no-overestimation guarantee for all in-
stances:

Definition 1 (Confidence Score, fulfilling the no-over-
estimation guarantee for all instances). We say a func-
tion C, that takes as input a sample S, a point x, a
hypothesis h and a parameter δ and outputs a value
in [0, 1]. We say such a function C is a confidence
score fulfilling the no-overestimation guarantee for all
instances for a family of probability functions P if for
every P ∈ P the probability over S ∼ Pm that there
exists x ∈ X

Pry∼Bernoulli(`P (x)) [h(x) = y] < C(x, y, S, δ)

is less than δ.



6.1 Proof of Proposition 1

Proposition 1. For the family of distributions P that
are realizable with respect to H, CH is indeed a con-
fidence score fulfilling the no-overestimation guarantee
for all instances.

We need to show that CH fulfills Definition 1, that is,
we need to show that for every hypothesis class H and
every distribution P that fulfills the realizable condition
w.r.t. H, the probability over S ∼ Pm that there exists
x ∈ X

Pry∼Bernoulli(`P (x)) [h(x) = y] < CH(x, y, S, δ)

is less than δ. Since CH only assigns values 0 and 1 and
the condition is trivially fulfilled for instances with con-
fidence score 0, we will now only discuss the case where
CH assigns confidence score 1. Recall, that CH only
assigns confidence 1 if and only if there is no h ∈ H
with LS(h) = 0 and h(x) 6= y. Since we know, that
realizability holds, we know that `P ∈ H and since S
is an i.i.d sample from P we know LS(`P ) = 0. Now
let CH(x, y, S, δ) = 1, then by definition we know that
LS(h) = 0 implies h(x) = y. Thus `P (x) = y. Thus,
this confidence score does not overestimate the confi-
dence of a point in any label.

6.2 Proof of Observation 1

We start by noting that our definition of the confidence
score CH is equivalent to the consistent selective strat-
egy from [2]. In order to state their definition, we will
first need to introduce some other concepts. First, we
will state the definition of version space from [7].

Definition 3 (Version Space). Given a hypothesis class
H and a labeled sample S, the version space HS the set
of all hypotheses in H that classify S correctly.

Now, we can define the agreement set and maximal
agreement set as in [2].

Definition 4 (agreement set). Let G ⊂ H. A subset
X ⊂ X is an agreement set with respect to G if all
hypotheses in G agree on every instance in X ′, namely
for all g1, g2 ∈ G, x ∈ X

g1(x) = g2(x).

Definition 5 (maximal agreement set). Let G ⊂ H.
The maximal agreement set with respect to G is the
union of all agreement sets with respect to G.

We can now state the definition of consistent selective
strategy. Note, that a selective strategy is defined by a
pair (h, g) of a classification function h and a selective
function g. For our purposes, we will only need to look
at the selective function g.

Definition 6 (consistent selective strategy (CSS)).
Given a labeled sample S, a consistent selective strategy
(CSS) is a selective classification strategy that takes h to
by any hypothesis in HS (i.e., a consistent learner), and
takes a (deterministic) selection function g that equals
one for all points in the maximal agreement set with
respect to HS and zero otherwise.

We now see that for any H and any labeled sample
S the selected function g assigns one to x, if for ev-
ery two h1, h2 ∈ H with LS(h1) = LS(h2) = 0 implies
h1(x) = h2(x). Thus, g(x) = CH(x, h(x), S, δ) for any
h(x) ∈ HS . In [2] the selection function is then anal-
ysed with respect to its coverage, which is defined by
φ(h, g) = Ex∼P [g(x)] for a given distribution P . Note,
that our notion of non-triviality corresponds to this no-
tion of coverage for deterministic distributions and bi-
nary confidence scores. We can now use some of their
results to show our observation.

Theorem 3 (non-achievable coverage, Theorem 14
from [2]). Let m and d > 2 be given. There exist a
distribution P , an infinite hypothesis class H with a
finite VC-dimension d, and a target hypothesis in H,
such that φ(h, g) = 0 for any selective classifier (h, g),
chosen from H by CSS using a training sample S of size
m drawn i.i.d. according to P .

This directly implies the second part of our ob-
servation. For a more concrete example consider
the class of singletons over the real line Hsgl =
{hz : R → {0, 1} : hz(x) = 1 if and only if z = x}.
We note that CHsgl

only gives positive confidence
scores to instances outside the sample if the sample
contains a positively labeled instance. Let P be the
uniform distribution over [0, 1] × {0}. Obviously
P ∈ PH,0. Furthermore any sample generated by P
will not contain any positively labeled sample. Thus,
ntP (C,m, δ) = Px∼PX ,S∼Pm [x ∈ SX ] = 0, where PX
and SX denote the projections of P and S to the
domain X = R.

Let us consider the class of thresholds Hthres = {ha :
R → {0, 1}, ha(x) = 1 if and only if x > a}. We can
define the following two learning rules for thresholds:

A1(S) = ha1 , where a1 = arg max
xi∈R:(xi,0)∈S

xi

A2(S) = h̄a2 , where h̄a2(x) = 1

if and only if x ≥ a2 := arg min
xi∈R:(xi,1)∈S

xi.

Furthermore, The way CHthres
is defined, for any S

and δ ∈ (0, 1) we have A1(S)(x) = A2(S)(x) if and
only if there is y ∈ {0, 1} with CHthres

(x, y, S, δ) = 1.
Furthermore, both of these learning rules are empirical
risk minimizers for Hthres in the realizable case. Thus
both of them are PAC-learners. Thus for any ε, δ, there
is a m(ε, δ), such that for any m ≥ m(, δ) and any
P ∈ PHthres,0,

1− δ ≤ PrS∼Pm,x∼P [A1(S) = A2(S)] =

PrS∼Pm,x∼P [ max
y∈{0,1}

{CHthres
(x, y, S, δ)}]

= ntPHthres,0
(C,m, 0)

Thus limm→∞ ntPHthres,0
(CHthres,m, δ) = 1 for any

δ ∈ (0, 1) and any P ∈ PHthres,0. Furthermore note
that we have uniform convergence.



6.3 Proof of Proposition 2

For every ε > 0, every x ∈ X ′ and every n ∈ N with
m > 1

ε , we can construct a distribution Px,n, such
that lPx,n

(x′) = h1(x′) for every x′ ∈ X \ {x} and
h1(x′) 6= lPx,n

(x′) and such that the marginal Px,n,X is
uniform over some Xn ⊂ X ′ with |Xn| = n. For a sam-
ple to distinguish between two such distributions Px1,n

and Px2,n either the point x1 or x2 needs to be visited
by the sample. Thus in order to give a point-wise guar-
antee for all instances with positive mass, only points in
the sample can be assigned a positive confidence in this
scenario. Thus any confidence score fulfilling this guar-
antee would have ntPx,n

(C,m, δ) = Px∼PX ,S∼Pm [x ∈
SX ] ≤ m

n . For every η > 0 we can find n such that
m
n ≤ η, proving our claim.

Confidence scores using Lipschitz
assumption

Proof of Theorem 1. The algorithm partitions the
space into rd cells. Let pc be the probability weight
of a cell c and let p̂c be the estimate of pc that is cal-
culated based on a sample to be the fraction of sample
points in the cell c. From Lemma 1 and a union bound,
we know that with probability 1− δ

2 , for every cell c,

pc ∈ [p̂c − wp(c), p̂c + wp(c)].

Here wp(c) = wp(m, δ/2r
d) (as defined in Lemma 1).

The algorithm also estimates the average label of a

cell c - `c as ˆ̀
c. This is the fraction of the sample point

in the cell that have the label one. This is the same as
the labelling probability estimate defined in Lemma 2.
When the true probability weights of cells lie within the
calculated confidence interval, by Lemma 2, we know
that with probability 1− δ

2 , for every cell c,

ˆ̀
c ∈ [ˆ̀c − w`(c), ˆ̀

c − w`(c))].

Here w`(c) = w`(m, δ/2r
d, p̂c) (as defined in Lemma 2).

The maximum distance between any two points in
any cell is r

√
2. By the λ-Lipshitz, any point in the

cell has labelling probability within λr
√

2 of the aver-
age labelling probability of the cell. Therefore, with
probability 1 − δ, for each cell c, for every point x in
the cell c, the labelling probability of x satisfies:

`P (x) ∈ [ˆ̀c − w`(c)− λr
√

2, ˆ̀
c + w`(c) + λr

√
2].

This is the interval returned by the algorithm. Now
we lower bound true confidence based on the confidence
interval of the labelling probability. For a point x, let
c(x) denote the cell containing the point.

CP (x, 0) = `P (x)

≥ ˆ̀
c(x) − w`(c(x))− λr

√
2

CP (x, 1) = 1− `P (x)

≥ 1− ˆ̀
c(x) − w`(c(x))− λr

√
2.

Proof of Theorem 2. We choose the input to the al-
gorithm to be r = 1

m1/8d . With probability 1− δ
2 , for all

cells with probability weight greater than γ = 1
m1/4 , the

length of the confidence interval of the labelling proba-
bility is less than

1
m1/2

1
m1/4 + 1

m1/2

− 1
1

m1/4 − 1
m1/2

√
1

2m
ln

4m1/8

δ
+
λ
√

2

m1/8

≤ 1

m1/4 − 1
+

1

m1/4 − 1

√
1

16
ln

4m

δ
+
λ
√

2

m1/8
.

This quantity decreases with increase in m and con-
verges to zero. Therefore, for every εc > 0, there is
M1(εc, δ) such that this interval is less than εc. When
sample size is larger than M1(εc, δ), with probability
1− δ

2 , the size of confidence intervals for labelling prob-

abilities of cells with weights greater than γ = 1
m1/4 , is

smaller than εc.
The points for which we can’t say anything about

the interval lengths are points in cells with weight at
most γ. The total weight of such points is at most
γ 1
rd

= 1
m1/8 . For any εx > 0, let M2(εx) be such that

1
M2(εx)1/8

< εx.

Choosing a sample size M greater than M1(εc, δ) and
M2(εx), we get that

Pr
S∼PM

[w` > εc] < εx.
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