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Abstract

Guaranteeing the security of transactional systems is a crucial
priority of all institutions that process transactions, in order to
protect their businesses against cyberattacks and fraudulent
attempts. Adversarial attacks are novel techniques that, other
than being proven to be effective to fool image classification
models, can also be applied to tabular data. Adversarial at-
tacks aim at producing adversarial examples, in other words,
slightly modified inputs that induce the Artificial Intelligence
(AI) system to return incorrect outputs that are advantageous
for the attacker. In this paper we illustrate a novel approach
to modify and adapt state-of-the-art algorithms to imbalanced
tabular data, in the context of fraud detection. Experimental
results show that the proposed modifications lead to a perfect
attack success rate, obtaining adversarial examples that are
also less perceptible when analyzed by humans. Moreover,
when applied to a real-world production system, the proposed
techniques shows the possibility of posing a serious threat to
the robustness of advanced AI-based fraud detection proce-
dures.

1 Introduction
Fraud detection plays a crucial role in financial transactional
systems such as banks, insurances or online purchases. The
ability to detect early whether a transaction is fraudulent has
a very high value and big investments have been made to
make these systems more effective. It is however important
to note that fraudsters are constantly developing new ways
of fooling these systems, a phenomenon known as concept
drift (Widmer and Kubat 1996). A fraud detection system
therefore typically has high maintenance requirements.

Machine Learning (ML) is a classical approach for fraud
detection systems (Abdallah, Maarof, and Zainal 2016; Ngai
et al. 2011). The ability to retrain the models with new
data helps in this need for adaptation to new fraud patterns.
However, given the possibility of errors in the models de-
cisions, which could lead to overlooking frauds or block-
ing licit transactions and sales opportunities, fraud detection
systems often do not rely solely on the models but also con-
tain one or more layers involving some form of human in-
tervention (Carcillo et al. 2018; Dal Pozzolo et al. 2017).
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Risky transactions can be manually inspected and a deci-
sion is made whether those transactions should go through
or should be blocked.

Fraudsters may use a wide range of techniques to bypass
fraud detection systems. Among these techniques, adversar-
ial attacks are novel and innovative approaches that might
be used as a next level of smart financial frauds. The goal
of adversarial attacks is to generate adversarial examples,
i.e., inputs that are almost indistinguishable from natural
data and yet classified incorrectly by the machine learning
model (Madry et al. 2018).

Algorithms to build adversarial examples have recently
been shown to be very effective in fooling Machine Learn-
ing models, in particular Deep Neural Networks (DNNs) in
Image Recognition (Papernot et al. 2016b). This is a cause
of concern for many applications that rely on these tech-
nologies, such as self-driving cars or facial recognition. The
reason adversarial examples exist is a consequence of the
difference between the way humans and machines repre-
sent knowledge and relations of visual elements in object
recognition tasks. This difference leads to the possibility for
an attacker to perturb the pixels of an image in a way that
the change is imperceptible to a human, but still induces an
image classifier to produce a wrong interpretation. For in-
stance, an attacker can induce an image classifier to recog-
nize with very high confidence a gibbon in a picture that
represents a panda, after the color of a few pixels has been
slightly modified (Goodfellow, Shlens, and Szegedy 2014).

Recent studies (Ballet et al. 2019) have shown that ad-
versarial algorithms can also be applied to other types of
machine learning models using tabular data. The positive
results obtained by these studies highlighted the need and
the importance of investigating adversarial algorithms for a
wider range of domains and applications, so that effective
defensive strategies can be designed.

Motivated by the crucial role that security plays in the
financial sector, in this paper we deal with the problem of
creating adversarial examples for tabular data to effectively
bypass fraud detection checks. In the particular case of this
research, bypassing fraud checks means either inducing the
system to classify a fraudulent transaction as non-fraud, or
make the violation unnoticed by a potential human inspec-
tion. These kinds of misclassifications are particularly risky
for fraud detection systems, as they would lead attackers to



succeed in their criminal intent and to obtain illegal eco-
nomic advantages.

It is a well-known fact that the security of a system is
related to the protection of multiple layers of an applica-
tion (Zhu, Rieger, and Başar 2011). Therefore, the security
of a particular part of a system should be treated indepen-
dently, without relying on the integrity of other layers. In
light of this concept, in this paper we assume that the train-
ing set is available to the attacker, as our main focus is the
analysis of security risks affecting the Machine Learning
layer of a fraud detection system. Using this data, a proper
surrogate model can be created and used to evaluate the ef-
fectiveness of the obtained adversarial examples, before sub-
mitting them to the real system. Notice that we do not make
any assumptions on the architecture of the real model, which
can be considered as unknown by the attacker.

To build successful attacks we tackled several problems,
like adapting adversarial algorithms to imbalanced fraud de-
tection data and properly treating non-editable variables.
Moreover, as fraud detection systems often involve human
intervention, we also considered the problem of building
imperceptible adversarial examples, that are more difficult
to be detected by operators. Experimental results show that,
with the modifications introduced in this paper, it is possible
to build realistic and imperceptible adversarial examples for
all the fraudulent transactions of the considered use case. In
comparison with state-of-the-art techniques, we achieved a
drop of up to 64% in the number of perturbed variables that
are most commonly checked by human investigators and,
for the most successful cases, adversarial examples were ob-
tained by modifying just a minimum number of fields, re-
ducing the probability for an attack to be discovered. Finally,
by obtaining a 13.6% success rate in attacking a deployed
production system, we also demonstrated that the resulting
adversarial examples were transferable to a target real-world
model, representing a real threat to businesses dealing with
fraud detection operations.

2 Related Works
Since the concept of adversarial examples was pro-
posed (Szegedy et al. 2013), it has been a main topic in
the field of adversarial machine learning. This topic is es-
pecially discussed in image recognition tasks using DNNs,
but has recently been discussed in other tasks such as au-
dio recognition (Carlini and Wagner 2018), text summariza-
tion (Cheng et al. 2020), neural network policy for reinforce-
ment learning (Huang et al. 2017) and so on. Furthermore,
the provision of tools to assist in the generation of adversar-
ial examples is being promoted. This is intended to make the
training of models more robust against adversarial machine
learning. Adversarial examples can be easily generated us-
ing tools like Adversarial Robustness Toolbox (Nicolae et al.
2018), CleverHans (Papernot et al. 2016a), Foolbox (Rauber,
Brendel, and Bethge 2017) and advertorch (Ding, Wang, and
Jin 2019). However, despite such trends, there are only a few
studies of adversarial examples on tabular data.

To the best of our knowledge, the paper (a) (Ballet et al.
2019) was the first systematic introduction to adversarial ex-
amples in tabular domain using recent terminology. How-

ever, similar concepts, such as performing small changes
in features to get desired outputs or executing model inver-
sion, were studied before (Grosse et al. 2017; Papernot, Mc-
Daniel, and Goodfellow 2016; Bella et al. 2010). Although
it is very difficult to discuss the imperceptibility of pertur-
bations in the tabular domain as opposed to the image do-
main, the authors of (Ballet et al. 2019) proposed to use the
feature importance (the contribution of each feature to the
model) as an indicator and applied more perturbations on the
less important features. Another recent paper (b) (Hashemi
and Fathi 2020) treated the adversarial examples on tabular
data as counterfactual examples to help the explainability of
the model. Another paper (c) (Levy et al. 2020) proposed
a method of conversion to a surrogate model that maintains
the properties of the target model in order to apply existing
generation methods.

The main differentiators of our research with respect
to the contributions mentioned above consist of: (a) they
adopted a gradient-based attack method, which is applica-
ble to models like DNNs but not to architectures with dis-
crete gradients (such as decision trees), while we propose a
model agnostic approach applicable to any architecture; (b)
they provide a counterfactual explanation for model inter-
pretation, while we assume a more realistic scenario of at-
tack attempts; (c) the generation method they used is a vari-
ant of the black-box attack via surrogate model, while we
assume that less information about the model is available to
the attacker.

3 Main Contributions
As discussed in Section 1, in this paper we present a novel
approach to adapt adversarial attack algorithms, that are
commonly used in the image recognition domain, to tabu-
lar data. In particular, we target fraud detection use cases.
Achieving this goal requires facing and solving several chal-
lenges that arise from the different nature of data and model
types used, compared to image classification applications.

One of the main differences between image and fraud de-
tection data is the balance of samples that represent each
class. While image classification is a multiclass problem
where each of the classes is represented by a relatively sim-
ilar amount of instances, fraud detection data sets are usu-
ally binary (i.e., they contain only two classes) and are typ-
ically characterized by a large imbalance between genuine
and fraudulent transactions, the first being in big majority.
Fraud detection models return a risk score that represents
the estimated probability that the classified transaction is
fraudulent. The large imbalance in the data leads to highly
biased models that tend to attribute a risk score that takes
into account the higher probability of observing instances
belonging to the most numerous class. Differently from im-
age classification, where the image is generally attributed
to highest predicted probability class (with some exception,
like in the case of diagnosis or fault detection applications),
a decision threshold is normally tuned for fraud detection,
according to some business requirements. The input trans-
action is deemed to be fraudulent if the predicted risk score
is bigger than the threshold. In this research, we introduced



the concept of the decision threshold within the attack algo-
rithms, as it represents essential information to verify if the
perturbations correctly resulted in the creation of adversarial
samples.

Moreover, ensemble models and, in particular, Extreme
Gradient Boosting techniques are commonly used in appli-
cations handling imbalanced tabular data, having proven to
be particularly effective for these kind of settings. Applying
adversarial attack algorithms in a model agnostic fashion,
rather than closely targeted to Deep Neural Networks, was
also one of the main challenges of this research.

Another aspect that differentiates image and tabular data
is the value range that each feature can assume. Represent-
ing pixel values, image data can normally vary within lim-
ited ranges and data types (i.e., integer numbers between 0
and 255). On the other hand, tabular data can represent dis-
parate pieces of information, like email addresses, surnames
or amounts. As such, features representing a transaction can
be extremely different from each other. Even if ultimately
encoded as numerical values, a proper handling and repre-
sentation of data types and range was essential to enable al-
gorithms to generate realistic adversarial transactions.

Field editability also represents a crucial aspect to take
into account when dealing with transactional data. Differ-
ently from the image domain, where an attacker can poten-
tially modify any of the pixels independently, for tabular
data there might be fields that are not directly controllable
by the user but that are rather automatically determined by
the system. Examples of these fields could be the historical
amount borrowed in a loan application or the discount rate
applied for an online purchase. To simulate the fact that di-
rect changes to these values are not allowed by the system,
specific constraints were added to the algorithm to prevent
the modification of non-editable information.

Finally, we addressed imperceptibility as one of the main
challenges of our research. Differently from image data,
where imperceptibility is an intuitive concept related to hu-
man perception, for fraud detection we assume that imper-
ceptibility is related to the number and entity of changes
made to important features, such as fields that are most
commonly checked by human operators within the specific
application context. From a purely practical point of view,
we define as imperceptible an adversarial attack that ul-
timately passes the fraud check, remaining unnoticed. We
approached imperceptibility by introducing a custom norm
as a measure of distance between the original transaction
and the adversarial sample. The distance is obtained through
weights assigned to each feature that are proportional to a
novel definition of importance that takes into account the
propensity of a feature to be inspected. We will show that
the custom norm properly drives the algorithm procedures to
prioritize changes made on features that are rarely checked
by human operators, obtaining less perceptible attacks.

Details of the contributions described above will be given
in Section 5, together with other aspects introduced in this
research, including some algorithms specific solutions, like
a novel loss function definition for the Zeroth Order Opti-
mization (ZOO) algorithm (Chen et al. 2017) and an im-
proved initialization strategy for Boundary attack (Brendel,

Rauber, and Bethge 2018) and HopSkipJumpAttack (Chen,
Jordan, and Wainwright 2020).

4 Problem Statement
In this paper we address the problem of building adversarial
examples for fraud detection systems on financial data.

A financial transaction is a vector of m variables,
v1, ..., vm with each vi ∈ R1.

Fraud detection systems in financial data analyze a set of
n transactions t1, ..., tn in a certain period of time. A model
M is used to label each transaction ti with a corresponding
class ci ∈ {0, 1} in which 0 corresponds to Non-Fraud and
1 corresponds to Fraud: M(ti) = ci.

The first goal of an attacker is to find a perturbation vector
pi = [p1i , ..., p

m
i ] such that:

M(ti + pi) = 0 (1)

for values of i = 1, ..., n such that M(ti) = 1 and ti is a
real fraud.

If such a perturbation vector pi can be found then t̃i =
ti + pi is a successful adversarial sample.

For the purpose of our experiments, our goal is to create
an adversarial sample t̃i such thatM(t̃i) = 0 for each fraud-
ulent transaction ti that is correctly identified by model M
(M(ti) = 1).

5 Algorithms modifications
In this section we describe the main problems that were
faced to create successful adversarial examples. We used the
Adversarial Robustness Toolbox (ART) (Nicolae et al. 2018)
as the reference tool. ART is a Python library for Machine
Learning Security that provides tools to enable developers
and researchers to defend and evaluate Machine Learning
models and applications against adversarial attacks.

Even though some ART algorithms can be applied to tab-
ular data, the majority of the tool’s algorithms is designed to
deal with image data. So it was no surprise that it was neces-
sary to make changes in order to build successful adversarial
examples for tabular data, and more specifically fraud detec-
tion.

5.1 A Generic Adversarial Algorithm
Adversarial algorithms can be used by attackers to retrieve
the optimal changes that, when applied to the fraudulent
transactions they want to submit, induce the fraud check
to fail, by erroneously accepting the submitted transactions
as legitimate. To simulate this scenario in our experimental
setup, we applied adversarial algorithms on fraudulent sam-
ples that are correctly detected as fraud by the model un-
der attack. An adversarial algorithm is considered success-
ful if it outputs adversarial examples that are classified as
non-frauds by the same model. A generic adversarial algo-
rithm starts with an initial sample and makes perturbations
to that sample until the model misclassifies it. A second goal

1Some variables can be textual, booleans, naturals or integers,
but for the sake of simplicity we assume that there is a feature pro-
cessing step that transforms all values into real numbers.



of adversarial algorithms is to make the adversarial sample
as similar as possible to the original sample. Algorithm 1
shows the pseudo-code of a simple generic algorithm that
serves the purpose of illustrating the main concepts. This al-
gorithm receives a fraudulent transaction t, a model M such
that M(t) = 1 and a similarity threshold ρ. The perturba-
tions can be selected through many different ways. Two of
the most common approaches involve the use of distance
metrics to get the adversarial sample t̃ closer to the origi-
nal sample t (e.g.: Boundary or HopSkipJump) or calcula-
tions based on the gradient of the model (e.g.: ZOO algo-
rithm). Algorithm 1 uses a similarity function and a similar-
ity threshold ρ. The similarity function can be based on the
distance between t and t̃, calculated using a norm such as L2

or L∞. Threshold ρ can be provided explicitly, as is the case
in our generic algorithm. However, some algorithms calcu-
late it in an indirect way. As an example, Boundary attack
algorithm converges when it is close enough to the decision
boundary. Algorithms usually also have a maximum number
of allowed steps in the while loop. This was not included in
the pseudo-code for simplicity reasons.

Algorithm 1 Generic Adversarial Algorithm

1: function GENERATE ADV(t,M, ρ)
2: t̃← initialize sample()
3: while M(t̃) = 1 ∨ similarity(t̃, t) < ρ do
4: t̃ = make perturbation(t̃, t)
5: end while

return t̃
6: end function

5.2 Using Custom Threshold
In ART, adversarial algorithms are fed with the model that is
being attacked. Adversarial examples are iteratively refined
and, at every iteration, the model is used to evaluate the cur-
rent samples’ success. Because fraud detection is binary, the
adversarial algorithms stop as soon as the current adversarial
example is deemed to be successful, i.e., when it is classified
as non-fraud with a score higher than 0.5. While this may
work well for an image recognition model, it is problematic
for a fraud detection model.

In fraud detection use cases, a decision threshold τ ∈
[0, 1] is commonly tuned and an input transaction is clas-
sified as fraud if [M(t)]1 > τ ,where [M(t)]1 is the proba-
bility that the transaction t belongs to class 1, i.e., fraud. The
threshold τ is typically very small and much lower than 0.5,
to compensate for the tendency of the model to attribute very
low risk scores to new transactions, given the big majority of
non-fraud samples observed at training time.

Our initial results when applying the default ART algo-
rithms were poor because a threshold of 0.5 was used, mis-
leading the algorithms by assuming that a successful adver-
sarial sample had been found. To correct the problem we
modified the Boundary (Brendel, Rauber, and Bethge 2018),
HopSkipJumpAttack (Chen, Jordan, and Wainwright 2020)
and ZOO (Chen et al. 2017) attacks. These algorithms are
now fed with a custom threshold and whenever the model

is evaluated internally, the custom threshold is taken into
account for the models’ decision. With this correction, the
adversarial algorithms have access to true information about
whether a sample is classified as fraud or not by the model.

5.3 Specifying a Custom Loss Function for ZOO
To drive the creation of adversarial examples, the ZOO al-
gorithm uses a specific loss function that, as detailed below,
implicitly considers a balanced threshold of 0.5 in its stan-
dard formulation. For this reason, the introduction of a novel
loss function was essential to adapt the algorithm to biased
cases.

To adapt the ZOO algorithm formulation to the specific
case of binary classification and fraud detection, following
the notation introduced in Section 4, let us define the model
under attack as a functionM(t) that takes a transaction t and
returns a two dimensional vector M(t) ∈ [0, 1]2. The two
dimensions of this vector represent the probability score of
class 0 (not fraud) and of class 1 (fraud), respectively. As a
consequence, [M(t)]0 + [M(t)]1 = 1

Given a fraudulent transaction tf correctly classified by
the model, the ZOO attack finds the corresponding adversar-
ial sample t̃ by solving the following optimization problem:

minimizet̃
[
||t̃− tf ||22 + r · f(t̃)

]
(2)

where ||v||2 =
√∑m

i=1 v
2
i denotes the Euclidean norm (or

the L2 norm) of the vector v = [v1, ..., vm]T and r > 0 is
a regularization parameter. Equation 2 is expressed as a sum
of two terms to be minimized: the first term ||t̃− tf ||22 repre-
sents a measure of distance between the adversarial example
t̃ and the original transaction tf ; the f(t̃) of the second term
represents a loss function that measures how unsuccessful
an adversarial attack is. The minimization of Equation 2
is performed using stochastic coordinate descent methods
(see (Chen et al. 2017) for details). The loss function pro-
posed in the standard formulation of the ZOO algorithm is
the following:

f(t) = max [(log[M(t)]1 − log[M(t)]0),−ν] (3)
where ν >= 0 is a tuning parameter for attack transfer-
ability, commonly set to 0 for attacking a targeted model or
to a larger value when performing a transfer attack. If, for
simplicity, we consider ν = 0, the loss function above will
return its minimum value of 0 for all the adversarial sam-
ples t̃ having [M(t̃)]0 >= [M(t̃)]1, i.e., probability of not
fraud bigger or equal than fraud. As explained previously,
in the context of biased models, assigning to a transaction
a not fraud probability higher than the probability of fraud,
does not necessarily imply that the transaction is classified as
licit, but it is necessary that [M(t)]1 ≤ τ , where τ ∈ [0, 1]
is the decision threshold. As a consequence, the loss func-
tion of Equation 3 is minimized also by a set of adversar-
ial examples that, being still classified as fraud, are unsuc-
cessful. This is the set of adversarial examples t̃ for which
[M(t̃)]0 ≥ [M(t̃)]1 and [M(t)]1 > τ .

As Equation 3 results inadequate for imbalanced use
cases, we propose to use the following loss function in the
optimization of Equation 2:

f(t) = max [([M(t)]1 − τ) ,−ν] (4)



The loss function above assures that minimum values are ob-
tained only for successful adversarial examples t̃, for which
[M(t̃)]1 <= τ (i.e., classified as not frauds).

5.4 Creating Realistic Attacks with Editability
Constraints

We analyzed the nature of the perturbations that were ob-
tained by the adversarial algorithms. In particular, tabular
data has features of different types: boolean, integer, hot-
encoded variables, integers that only take positive values,
etc. Without imposing any constraint, the adversarial algo-
rithms created perturbations that led to illegal values, with
respect to the type of features that are taken into consider-
ation (e.g.: a boolean feature having value different from 0
or 1, or a positive integer feature that becomes negative). It
was then necessary to make sure that perturbations assume
only what we designated by realistic values. Each variable
vi can assume values from a specific domain Di (e.g.: for
a real variable vi, Di = R). An adversarial sample t̃ has a
realistic value x for variable vi ∈ Di if x ∈ Di. In the case
that x /∈ Di a transformation needs to be made in order to
ensure that x ∈ Di.

The inspection of adversarial samples raised awareness
about the presence of non-editable fields in the data (i.e.,
fields that cannot be directly modified by the user), but are
rather calculated automatically by the system. An example
of this could be the total amount of money borrowed by
a customer in the past, in the context of a loan manage-
ment application. This value cannot be changed when a new
loan is requested. Adversarial algorithms should take this
into account and only make changes to variables that the
user can have access to. In order to address this we defined
an editability vector that contains the variables that can be
changed by adversarial algorithms.

In order to address realistic and editability problems, we
modified the adversarial algorithms ZOO, Boundary and
HopSkipJump. In the execution of each algorithm, when-
ever a potential adversarial sample is modified, editability
and realistic properties are enforced by correcting the illegal
values.

In order to make adversarial samples realistic we consid-
ered the data types and the corresponding corrections for a
specific value x that are listed on Table 1:

Type Correction
Boolean 0 if x ≤ 0.5, 1 otherwise
Integer round(x)

Positive Integer round(x) if x ≥ 0, 0 otherwise
Positive Float 0 if x < 0, x otherwise

Hot-encoded fields 1 for field with maximum value.
0 for other fields of same group

Table 1: Data types and corresponding corrections for adver-
sarial samples

In order to implement corrections listed on Table 1, adver-
sarial algorithms now receive a data specification dictionary

containing a list of features for each data type.
The editability constraints are enforced by defining a vec-

tor of editable features and passing it to the adversarial algo-
rithms. The editability vector e for variables vi, ..., vm is de-
fined as ei = 1 if vi is editable, 0 otherwise, for i = 1, ...,m.
Algorithms will only allow perturbations on features vi, with
i = 1, ...,m for which ei = 1. Features vj , with j = 1, ...,m
for which ej = 0 are not perturbed and forced to maintain
their original values. Which feature vi are editable is a prop-
erty of the system under consideration.

5.5 Specifying a Custom Norm
After creating realistic adversarial samples and taking ed-
itability into consideration, it was important to go one step
further in terms of imperceptibility of the attack. Besides ed-
itability considerations, adversarial algorithms pick up any
available feature as a candidate for a perturbation. Within
a specific application context, an attacker can guess that, in
the case of a hypothetical manual inspection, some features
may capture the attention of human operators more than oth-
ers. For instance, in a loan request application, the applicant
salary information is usually more informative than other
fields, like the number of owned pets (Ballet et al. 2019).
Nevertheless, less important features are also considered by
the model to estimate the request’s risk score. As a conse-
quence, the attacker’s goal is to minimize the perturbations
made on features that have a bigger chance to be checked.

Adversarial algorithms such as Boundary or Hop-
SkipJump attacks use norms as measures of distance be-
tween adversarial and original examples. These algorithms
try to minimize this distance as much as possible in order to
make the adversarial example imperceptible. L2 norm con-
siders the global distance between the original and the ad-
versarial sample, disregarding that some features may have
very large perturbations. Minimizing L∞ on the other hand
means that the algorithm will try to avoid having a big per-
turbation on a single feature, giving preference to small per-
turbations on many features. None of these norms com-
pletely satisfy the needs of an imperceptible attack in the
context of tabular data. In order to do that more success-
fully it is necessary to consider features differently, depend-
ing on whether they are checked by a human operator. This
motivated the introduction of a novel custom norm that is
expressed in Equation 5:

n = ||p(αh+ β[(1− h)(1− v) + hv])||γ (5)

where p is the perturbation vector, h is a Boolean vector
indicating whether a variable is checked, v is a vector of fea-
ture importance, α, β ∈ [0, 1] are weights on the check and
importance of a feature respectively, and ||.||γ is a γ-norm
such as L2 norm that is being used. It is known that algo-
rithms using gradient descent can empirically derive values
of coefficients such as α and β in a binary search (Carlini
and Wagner 2017), but it is future work to verify whether
these techniques are applicable to our approach.

For the definition of the custom norm, two properties were
considered: 1) whether a feature is checked or ignored by
the operators and 2) the importance of the feature for the



model. The idea behind the custom norm is that changes to
features that are checked and important lead to high values
of the distance, so that the optimization algorithm prefers
other solutions. Moreover, we also want to penalize solu-
tions in which the feature is not checked and not important,
because it will not have a significant effect in the attack. On
the other hand, we would like the algorithm to prefer solu-
tions based on perturbing features that are not checked and
have high importance for the model. For these types of per-
turbations the custom norm returns low values. Finally, if
checked variables need to be perturbed it is preferable that
they are not important for the model, so we assign low dis-
tances for these situations. In conclusion, the goal of the cus-
tom norm is to drive the optimization procedure of the attack
algorithms to obtain adversarial examples that are impercep-
tible and unnoticed by human operators.

6 Experiments and Results
In this section we describe the experiments that were per-
formed and the obtained results. After having modified the
ART algorithms as discussed in Section 5, we applied them
to the German Credit Dataset (Dua and Graff 2017) use
case. The strategy described in the following sections was
also applied to 2 additional datasets with similar results. The
results obtained using the first dataset (the IEEE-CIS Fraud
Detection dataset) are not detailed due to space limitations.
The second dataset is an internal dataset that cannot be dis-
closed for confidentiality reasons.

6.1 Use Case and Data Preparation
German Credit Dataset (Dua and Graff 2017) is a publicly
available dataset used for building models that evaluate the
risk of a loan application, given account and customer infor-
mation. Out of 1000 applications in total, 700 were accepted
while 300 were rejected and deemed to be risky in terms of
low propensity of the applicant of being able to pay back the
loan. In the context of adversarial attacks, we considered the
rejected applications as fraudulent, as the goal of a potential
attacker would be to slightly modify their loan request such
that it eventually gets accepted. The data contains 20 fea-
tures with 7 integer and 13 categorical ones, such as age, sex,
purpose of the loan or if the customer is a foreign worker. We
applied a one-hot encoding to categorical features, obtaining
a total of 61 numerical features for modeling.

Capabilities of Attackers As discussed, the goal of at-
tackers is to modify true-positive requests (i.e., applications
that are deemed risky and should not be accepted) so that
they can be accepted. Our assumption is that the attacker
can make reasonable judgments about the importance of the
features and estimate what are the fields that a human in-
vestigator most probably checks to measure the applicant’s
ability to pay back the loan. In this experiment, we as-
sumed that human investigators would mainly check 10 of
the total 20 features such as the “Purpose (of the loan)”
and “Credit amount”. Moreover, we assumed that the fea-
tures “Credit history”, “Personal status and sex”, “Other
debtors/guarantors” and “Age in years” are not directly

modifiable by the attacker and set them as non-editable. Al-
though we conducted experiments under these hypothesis,
different settings can be considered as well, depending on
different assumptions on the system and the application con-
text.

Model Construction We used XGBoost (Chen and
Guestrin 2016) as a learning algorithm. At first, the dataset
was split into train and test sets consisting of 70% and 30%
of the data, respectively. Furthermore, train set was split into
training and validation sets consisting 80% and 20% of the
data, respectively. The training data was used to generate
a binary classification model and the validation data was
used to adjust the threshold. Before the threshold adjust-
ment, the accuracy on validation set was 75.7%, the recall
was 38.1% and the precision was 66.6%. An optimal thresh-
old of 0.192 was obtained using the F2 score maximization
as a target metric. With this threshold we obtained an accu-
racy of 60.0%, a recall of 95.2% and a precision of 42.6%.
Using the resulting model on the test set, we were able to
discriminate 82 true-positive data, representing a recall of
91% and a precision of 42.5%. These results show that, even
without performing particularly sophisticated feature engi-
neering, we obtained a fair model with satisfactory perfor-
mance that can be effectively used to evaluate our study.

6.2 Results
In this subsection we summarize the results obtained. Our
goal is to show that the approaches we followed to build
adversarial samples were successful.

We considered 4 parameters that can be switched on and
off in our experiment designs: threshold (Section 5.2), real-
istic (Section 5.4), editability (Section 5.4) and custom norm
(Section 5.5). As shown in Table 2, we obtained 5 different
configurations.

ID Threshold Realistic Custom Editability
Norm

1 OFF OFF OFF OFF
2 ON OFF OFF OFF
3 ON ON OFF OFF
4 ON ON ON OFF
5 ON ON ON ON

Table 2: Configurations of the performed experiments

Experiment 1 is performed with ART as it is, without
any changes or adaptations. In Experiment 2 we use custom
thresholds as described in Section 5.2 and in Experiment 3
we make the attacks realistic (Section 5.4). In Experiment 4
we use the custom norm as described in Section 5.5 and in
Experiment 5 we add editability constraints (Section 5.4).

The results obtained are shown in Tables 3, 4 and 5.
Experiment 1 was very unsuccessful, with no adversar-

ial samples found. This means that the original algorithms
cannot be applied directly to an unbalanced problem. When
changes are made to the algorithm to use a proper threshold



Boundary 1 2 3 4 5
Success Rate (%) 0 100 100 100 100

% of Unrealistic Values - 47.6 0 0 0
# Checked Fields - - 592 214 228

# Non-Editable Fields - - - 63 0

Table 3: Results obtained with each experiment configura-
tion for Boundary attack

HopSkipJump 1 2 3 4 5
Success Rate (%) 0 100 100 100 100

% of Unrealistic Values - 87.0 0 0 0
# Checked Fields - - 554 465 418

# Non-Editable Fields - - - 159 0

Table 4: Results obtained with each experiment configura-
tion for HopSkipJump attack

ZOO 1 2 3 4 5
Success Rate (%) 0 100 100 100 100

% of Unrealistic Values - 1.6 0 0 0
# Checked Fields - - 159 133 153

# Non-Editable Fields - - - 37 0

Table 5: Results obtained with each experiment configura-
tion for ZOO attack

in Experiment 2, the success rate increases to 100% for the
three algorithms. This experiment however still generates
unrealistic values for some features. As an example, Table 4
shows that 87% of the values generated by HopSkipJump
are unrealistic. This makes it easy for a human operator to
detect the attack. In Experiment 3 this problem is solved and
only realistic values are generated. Experiment 3 does not
use the custom norm, which is done in Experiment 4. By
observing the results we can check that, by using the custom
norm, the number of perturbed checked fields decreased in
the application of each of the 3 adversarial algorithms, thus
increasing imperceptibility. For instance, Table 3 shows that,
in Experiment 3, a total of 592 fields that are checked by hu-
man operators were perturbed by the boundary attack. When
the proposed custom norm is used in Experiment 4, only 214
of these fields are modified, representing a drop of 64%, with
respect to the state-of-the-art norm. Experiment 5 consid-
ers editability constraints and we observe that the number of
non-editable fields that are changed is reduced to 0 in each
algorithm. For Boundary and ZOO attacks on Experiment
5 there is a slight increase on the number of checked fields
that are changed. This can be explained by the fact that the
algorithms are not allowed to change non-editable fields and
the pressure to change checked fields is higher.

Finally, it is important to mention that some successful
adversarial examples were obtained by changing just a few
fields. Table 6 shows an example where changing only the

value of one attribute (Status checking account) caused the
model to return a lower risk score and flip its decision from
rejection to the acceptance of the loan application. It is evi-
dent that these types of adversarial examples are highly im-
perceptible and that it is very probable that they might re-
main unnoticed.

ZOO algorithm Original Adversarial
Status checking account A12 A14

Model’s Risk Score 0.275 0.127

Table 6: One adversarial example obtained with ZOO algo-
rithm.

7 Conclusions and Future Work
In this paper we illustrated the process we followed to adapt
state-of-the-art adversarial algorithms, that are commonly
used in the image classification domain, to imbalanced tabu-
lar data. In particular we targeted fraud detection use cases.

After verifying the inadequacy of existing techniques to
handle tabular data, we introduced modifications to address
the shortcomings. In particular (i) we allowed adversarial
algorithms to deal with biased model scores through the us-
age of a custom threshold within the algorithms and the in-
troduction of a novel loss function for ZOO algorithm; (ii)
we introduced constraints in the allowed perturbation to ob-
tain realistic adversarial examples and avoid out-of-bound
values; (iii) we improved imperceptibility through a proper
management of not editable fields and through the introduc-
tion of a custom norm that drives the creation of adversarial
examples that have a higher chance to be unnoticed by hu-
man investigators.

In terms of results, the changes we made contributed to
increase the attack success rate from 0% to 100%. More-
over we showed examples of successful imperceptible at-
tacks that were obtained by changing the value of just a few
features.

Ultimately, we conducted a final experiment on the trans-
ferability of the adversarial examples to a real-world pro-
duction system. To this extent, we could not perform attack
transferability for the use case we considered in this paper,
given the lack of a real deployed AI system. For this rea-
son, we executed the full adversarial attack process on a
real-world use case that is currently in production. For confi-
dentiality reasons and due to the substantial economical dan-
gers that sharing information on internal system vulnerabil-
ities might cause, only final results can be reported, without
disclosing any detail about the analyzed use case. We sub-
mitted 44 modified fraudulent transactions, created using a
surrogate side model, to the real production system. For 35
transactions, representing 80% of the submitted adversar-
ial examples, the production model returned a lower risk
score than for the original transaction. More importantly,
6 cases, representing 13.6% of the submitted transactions,
were flagged as safe by the system and automatically ac-
cepted, bypassing the human check. These results demon-
strate that the techniques introduced in this paper represent



a real threat for many AI-based fraud detection models, used
in day-to-day business.

Future work will be conducted in the direction of per-
forming more extensive experiments on attack transferabil-
ity, by setting a lower target threshold for the adversarial
algorithms, in order to increase the success probability of
attacks for the considered real-world use case.

On the other hand, these preliminary results highlighted
the need of assuring a better robustness of production fraud
detection models. To this extent, we started exploring the
topic of defense techniques, with the goal of improving their
ability to detect and block also the most sophisticated adver-
sarial attacks. After conducting a survey of existing defen-
sive methodologies, our plan is to identify their shortcom-
ings and, eventually, come up with new approaches, follow-
ing a similar process we used for the attack techniques.
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