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Abstract

Out-of-Distribution (OoD) detection is important for build-
ing safe artificial intelligence systems. However, current OoD
detection methods still cannot meet the performance require-
ments for practical deployment. In this paper, we propose
a simple yet effective algorithm based on a novel observa-
tion: in a trained neural network, OoD samples with bounded
norms well concentrate in the feature space. We call the cen-
ter of OoD features the Feature Space Singularity (FSS), and
denote the distance of a sample feature to FSS as FSSD.
Then, OoD samples can be identified by taking a thresh-
old on the FSSD. Our analysis of the phenomenon reveals
why our algorithm works. We demonstrate that our algo-
rithm achieves state-of-the-art performance on various OoD
detection benchmarks. Besides, FSSD also enjoys robust-
ness to slight corruption in test data and can be further en-
hanced by ensembling. These make FSSD a promising algo-
rithm to be employed in real world. We release our code at
https://github.com/megvii-research/FSSD_OoD_Detection.

Introduction
Empirical risk minimization fits a statistical model on a
training set which is independently sampled from the data
distribution. As a result, the yielded model is expected to
generalize to in-distribution data drawn from the same dis-
tribution. However, in real applications, it is inevitable for
a model to make predictions on Out-of-Distribution (OoD)
data instead of in-distribution data on which the model is
trained. This can lead to fatal errors such as over-confident
or ridiculous predictions (Hein, Andriushchenko, and Bitter-
wolf 2018; Rabanser, Günnemann, and Lipton 2019). There-
fore, it is crucial to understand the uncertainty of models
and automatically detect OoD data. In applications like au-
tonomous driving and medical services, if the model knows
what it does not know, human intervention can be sought
and security can be significantly improved.

Consider one particular example of OoD detection: some
high-quality human face images are given as in-distribution
data (training set for OoD detector), and we are interested
in filtering out non-faces and low quality faces from a large
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pool of data in the wild (test set) in order to ensure reliable
prediction. One natural solution is to remove test samples
far from the training data in some designated distances (Lee
et al. 2018; van Amersfoort et al. 2020). However, calculat-
ing the distance to the whole training set needs a formidable
amount of computation without some special design in fea-
ture and architecture, e.g., training a RBF network (van
Amersfoort et al. 2020). In this paper, we present a sim-
ple yet effective distance-based solution, which neither com-
putes the distance to the training data nor performs extra
model training than a standard classifier.

Our approach is based on a novel observation about OoD
samples:

In a trained neural network, OoD samples with
bounded norms well concentrate in the feature space
of the neural network.

In Figure 1, we show an example where OoD features from
ImageNet (Russakovsky et al. 2015) concentrate in a neu-
ral network trained on the facial dataset MS-1M (Guo et al.
2016). Figure 2 and 3 provide more examples of this phe-
nomenon. In fact, we find this phenomenon to be universal
in most training configurations for most datasets.

To be more precise, for a given feature extractor Fθ
trained on in-distribution data, the observation states that
there exists a point F ∗ in the output space of Fθ such that
‖Fθ (x)− F ∗‖ is small for x ∈ XOoD, where XOoD is the set
of OoD samples. We call F ∗ the Feature Space Singularity
(FSS). Moreover, we discover the FSS Distance (FSSD)

FSSD (x) := ‖Fθ (x)− F ∗‖ (1)

can reflect the degree of OoD, and thus can be readily used
as a metric for OoD detection.

Our analysis demonstrates that this phenomenon can be
explained by the training dynamics. The key observation
is that FSSD can be seen as an approximate movement of
Fθt (x) during training, where F ∗ is the initial concentration
point of the features. The difference in the moving speed
dFθt (x)

dt stems from the different similarity to the training
data measured by the inner product of the gradients. More-
over, this similarity measure varies according to the archi-
tecture of the feature extractor.

We demonstrate the effectiveness of our proposed method
with multiple neural networks (LeNet (LeCun and Cortes
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Figure 1: Left: Histogram of FSS Distance (FSSD) of MS1M (in-distribution) and ImageNet (OoD). Exemplar images are
shown at different FSSDs. We can see that FSSD reflects the OoD degree: as the FSSD increases, images change from non-faces
and pseudo-faces, to low-quality faces and high-quality faces. Right: Principle components of features from the penultimate
layer. The spatial relationship among FSS, OoD data, and in-distribution data is shown.

2010), ResNet (He et al. 2016), ResNeXt (Xie et al. 2017),
LSTM (Hochreiter and Schmidhuber 1997)) trained on var-
ious datasets for classification (FashionMNIST (Xiao, Ra-
sul, and Vollgraf 2017), CIFAR10 (Krizhevsky 2009), Ima-
geNet (Russakovsky et al. 2015), CelebA (Liu et al. 2015),
MS-1M (Guo et al. 2016), bacteria genome dataset (Ren
et al. 2019)) with varying training set sizes. We show
that FSSD achieves state-of-the-art performance on almost
all the considered benchmarks. Moreover, the performance
margin between FSSD and other methods increases as the
size of the training set increases. In particular, on large-scale
benchmarks (CelebA and MS-1M), FSSD advances the AU-
ROC by about 5%. We also evaluate the robustness of our
algorithm when test images are corrupted. We find that our
algorithm can still reliably detect OoD samples under this
circumstance. Finally, we investigate the effects of ensem-
bling FSSDs from different layers of a single neural network
and multiple trained netowrks.

We summarize our contributions as follows.

• We observe that in feature spaces of trained networks
OoD samples concentrate near a point (FSS), and the dis-
tance from a sample feature to FSS (FSSD) measures the
degree of OoD (Section 1).

• We analyze the concentration phenomenon by analyzing
the dynamics of in-distribution and OoD features during
training (Section 2).

• We introduce the FSSD algorithm (Section 3) which
achieves state-of-the-art performance on various OoD de-
tection benchmarks with considerable robustness (Section
4).

Analyzing and Understanding the
Concentration Phenomenon

In this section, we analyze the concentration phenomenon.
The key observation is that during training, the features of
the training data are supervised to move away from the ini-
tial point, and the moving speeds of features of other data
depend on their similarity to the training data. Specifically,
this similarity is measured by the inner product of the gradi-
ents. Therefore, data that are dissimilar to the training data
will move little and concentrate in the feature space. This is
how FSSD identifies OoD data.

To see this, we derive the training dynamics of the feature
vectors. We denote Fθ : Ra → Rb as the feature extrac-
tor which maps inputs to features and Gφ : Rb → Rc to
be the map from features to outputs. The two mappings are
parameterized by θ and φ respectively. The corresponding
loss function can be denoted asLφ (Fθ (x1) , · · · , Fθ (xM )).
A popular choice is Lφ (Fθ (x1) , · · · , Fθ (xM )) =∑M
m=1 ` (Gφ (Fθ (xm)) , ym) /M , where ` is the cross en-

tropy loss or the mean squared error. Then, the gradient de-
scent dynamics of θ is

dθt
dt

=− ∂Lφ
∂θt

(Fθt (x1) , · · · , Fθt (xM ))

=−
M∑
m=1

∂Fθt (xm)
T

∂θt
∂mLφ,

(2)

where ∂mLφ =
∂Lφ

∂Fθt (xm) ∈ Rb is the backward propagation
gradient and subscript t is the training time. The dynamics
of the feature extractor Fθ as a function is therefore

dFθt (x)

dt
=
∂Fθt (x)

∂θt

dθt
dt

=−
M∑
m=1

∂Fθt (x)

∂θt

∂Fθt (xm)
T

∂θt
∂mLφ.

(3)
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(a) The dynamics of features Fθt (x).
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(b) The norm of the derivative, i.e., "moving speed", of last-layer feature vector at different time steps.

Figure 2: We show first two principle components of the feature vector and the L2 norm of the derivatives (Equation (3)). Fea-
tures and derivatives are calculated from the last fully-connected layer of a LeNet trained on MNIST (in-distribution). We feed
in FashionMNIST data as OoD samples. At initialization, features of both in-distribution and OoD samples concentrate near
FSS F ∗. After training, features of in-distribution samples are pulled away from FSS F ∗, while features of OoD samples remain
close to FSS F ∗. Similar dynamics of the softmax layer on in-distribution data was observed by (Li, Zhao, and Scheidegger
2020).

From Equation (3), we can see that the relative moving
speed of the feature Fθt (x) depends on the inner product of
the gradient on parameters between x and the training data
xm. Note here ∂mLφ is the same for all x. Since FSSD de-
fined in Equation 1 can be seen as the integration of dFθt (x)

dt
when the initial value Fθ0 (x) is F ∗ for all x, FSSD(x) will
also be small when the derivative, i.e., the moving speed, is
small.

In Figure 2, we show both the features and their mov-
ing speeds of in-distribution and OoD data at different steps
during training. We can see that although in-distribution and
OoD data are indistinguishable at step 0, they are quickly
separated since the moving speeds of in-distribution data
are larger than those of OoD data (Figure 2(b)) and thus
the accumulated movements of in-distribution data are also
larger than those of OoD data (Figure 2(a)). In Figure 3,
we show examples of the initial concentration of features
in LeNet and ResNet-34 for MNIST vs. FashionMNIST and
CIFAR10 vs. SVHN dataset pairs respectively. Empirically,
we find the concentration of both in-distribution and OoD
features at the initial stage to be the common case for most
popular architectures using random initialization. We show
more examples on our Github page.

As we’ve mentioned, Equation (3) demonstrates that the
difference in the moving speed of Fθt (x) stems from differ-

ence in Θt (x, xm) :=
∂Fθt (x)

∂θt

∂Fθt (xm)T

∂θt
. We want to fur-

ther point out that Θt (x, xm) is effectively acting as a ker-
nel that measures the similarity between x and xm. In fact,
when the network width is infinite, Θt (x, xm) will converge
to a time-independent term Θ(x, xm), which is called neural

tangent kernel (NTK) (Jacot, Gabriel, and Hongler 2018; Li
and Liang 2018; Cao and Gu 2020). In this way, FSSD can
be seen as a kernel regression result:

FSSD (x)
F ∗≈Fθ0 (x)

Equation (1)

∥∥Fθt (x)− Fθ0 (x)
∥∥

=

∥∥∥∥∥
M∑
m=1

∫ T

0

Θt (x, xm) ∂mLφ dt

∥∥∥∥∥
≈

∥∥∥∥∥
M∑
m=1

Θ (x, xm) νm

∥∥∥∥∥ ,
(4)

where νm =
∫ T
0
∂mLφ dt.

This indicates that the similarity described by the inner

product Θt (x, xm) :=
∂Fθt (x)

∂θt

∂Fθt (xm)T

∂θt
might enjoy sim-

ilar properties to commonly used kernels such as RBF ker-
nel, which diminishes as the distance between x and xm in-
creases. Moreover, since the neural tangent kernel depends
on the neural architecture, this kernel interpretation also sug-
gests that feature extractors of different architectures, in-
cluding different layers, can have different properties and
measure different aspects of the similarity between x and
xm. We can see this more clearly later in the investigation of
FSSD in different layers.

Our Algorithm
Based on this phenomenon, we can now construct our OoD
detection algorithm. Since the uniform noise input can be
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Figure 3: Both in-distribution and OoD samples are clus-
tered in the feature space of Fθ0 (x) at initialization. More-
over, F ∗ ≈ Fθ0 (x) for x ∈ XOoD ∪ Xin-dist.

considered to possess the highest degree of OoD, we use the
center of their features as the FSS F ∗. The FSSD can then
be calculated using Equation (1). Note this calculation of
FSSF ∗ is independent from the choice of in-distribution and
OoD datasets. When such natural choice of uniform noise
is unavailable, we can choose FSS F ∗ to be the center of
features of OoD validation data instead.

Since a single forward-pass computation through the net-
work can give us features from each layer, it is also conve-
nient to calculate FSSDs from different layers and ensem-
ble them as FSSD-Ensem (x) =

∑K
k=1 αkFSSD(k) (x). The

ensemble weights αk can be determined using logistic re-
gression on some validation data as in (Lee et al. 2018) (see
Evaluation section in Experiments). In later experiments, if
not specified, we use the ensembled FSSD from all layers.
We note that it is also possible to ensemble FSSDs from dif-
ferent architectures or multiple training snapshots (Xie, Xu,
and Zhang 2013; Huang et al. 2017). This may further en-
hance the performance of OoD detection. We investigate the
effect of ensembling in the next section.

Beside, we also adopt input pre-processing as in (Liang,
Li, and Srikant 2018; Lee et al. 2018) . The idea is to
add small perturbations to the test samples in order to in-
crease the in-distribution score. It is shown in (Liang, Li,
and Srikant 2018; Kamoi and Kobayashi 2020) that in-
distribution data are more sensitive to such perturbation and
it can therefore enlarge the score gap between in-distribution
and OoD samples. In particular, we perturb as x̃ = x +
ε sign (∇xFSSD (x)) and take FSSD (x̃) as the final score.

We present the pseudo-code of computing
FSSD-Ensem (x) in Algorithm 1.

Algorithm 1: Computation of FSSD-Ensem

Input: Test samples x = {xtest
n }Nn=1, noise samples{

xnoise
s

}
S
s=1, ensemble weights αk,

perturbation magnitude ε,
feature extractors

{
F(k)

}
K
k=1

for each feature extractor
{
F(k)

}
K
k=1 do

1. Estimate FSS F ∗(k) =
∑S
s=1 F(k)

(
xnoise
s

)
/S,

where xnoise
s ∼ U [0, 1], s = 1, · · · , S

2. Add perturbation to test sample:
x̃ = x + ε sign(∇x

∥∥F(k) (x)− F ∗(k)
∥∥)

3. Calculate FSSD(k) (x) =
∥∥F(k) (x̃)− F ∗(k)

∥∥
end
Return FSSD-Ensem (x) =

∑K
k=1 αk FSSD(k) (x)

Experiments
In this section, we investigate the performance of our FSSD
algorithm on various OoD detection benchmarks.

Setup
Benchmarks To conduct a thorough test of our method,
we consider a wide variety of OoD detection benchmarks.
In particular, we consider different scales of datasets and dif-
ferent types of data. We consider different scales of datasets
because large scale datasets tend to have more classes which
can introduce more ambiguous data. The ambiguous data
are of high classification uncertainty, but are not out-of-
distribution. We list the benchmarks in Table 1.

We first consider two common benchmarks from previ-
ous OoD detection literature (van Amersfoort et al. 2020;
Ren et al. 2019): (A) FMNIST (Xiao, Rasul, and Vollgraf
2017) vs. MNIST (LeCun and Cortes 2010) and (B) CI-
FAR10 (Krizhevsky 2009) vs. SVHN (Netzer et al. 2011).
They are known to be challenging for many methods (Ren
et al. 2019; Nalisnick et al. 2019a). (C) We also construct
ImageNet (dogs), a subset of ImageNet (Russakovsky et al.
2015) , as in-distribution data. The OoD data are non-dog
images from ImageNet.

For large-scale problems, we consider three benchmarks.
(D) We train models on ImageNet and detect corrupted im-
ages from the ImageNet-C dataset (Hendrycks and Diet-
terich 2019). We test each method on 80 sets of corruptions
(16 types and 5 levels). (E) We train models on face im-
ages without the “blurry” attribute from CelebA (Liu et al.
2015) and detect face images with the “blurry” attribute. (F)
We train models on web images of celebrities from MS-
Celeb-1M (MS-1M) (Guo et al. 2016) and detect video cap-
tures from IJB-C (Maze et al. 2018) which in general have
lower quality due to pose, illumination, and resolution is-
sues. We also consider (G) the bacteria genome benchmark
introduced by (Ren et al. 2019), which consists of sequence
data.

To train models on in-distribution datasets, we follow pre-
vious works (Lee et al. 2018) to train LeNet on FMNIST
and ResNet with 34 layers on CIFAR10, ImageNet, and Ima-
geNet (dogs). For two face recognition datasets (CelebA and



Table 1: OoD detection benchmarks used in our experiments.

In-distribution OoD
Data type

Dataset #Classes #Samples Dataset #Samples
(Train/Test) (Train/Test) (Test)

A FMNIST 10/10 60k/10k MNIST 10k Image
B CIFAR10 10/10 50k/10k SVHN 26k Image
C ImageNet (dogs) 50/50 50k/10k ImageNet (non-dogs) 10k Image
D ImageNet 1000/1000 1281.2k/50k ImageNet-C 50k Image
E CelebA (not blurry) 10122/10122 153.8k/38.5k CelebA (blurry) 10.3k Image
F MS-1M 64736/16184 2923.6k/50k IJB-C 50k Image
G Genome (before 2011) 10/10 1000k/1000k Genome (after 2016) 6000k Sequence

MS-1M), we train ResNeXt with 50 layers. For the genome
sequence dataset, we use an character embedding layer and
two Bidirectional LSTM layers (Schuster and Paliwal 1997).

Compared methods We compare our method with the
following six common methods for OoD detection. Base:
the baseline method using the maximum softmax probabil-
ity p (ŷ|x) (Hendrycks and Gimpel 2017). ODIN: temper-
ature scaling on logits and input pre-processing (Liang, Li,
and Srikant 2018). Maha: Mahalanobis distance of the sam-
ple feature to the closest class-conditional Gaussian distri-
bution which is estimated from the training data (Lee et al.
2018). In our experiments, we follow (Lee et al. 2018) to
use both feature (layer) ensemble and input pre-processing.
DE: Deep Ensemble which averages the softmax probabil-
ity predictions from multiple independently trained classi-
fiers (Lakshminarayanan, Pritzel, and Blundell 2017). In our
experiments, we take the average of 5 classifiers by default.
MCD: Monte-Carlo Dropout that uses dropout during both
training and inference (Gal and Ghahramani 2016). We fol-
low (Ovadia et al. 2019) to dropout convolutional layers.
For OoD detection, we calculate both the mean and the
variance of 32 independent predictions and choose the bet-
ter one to report. OE: Outlier exposure that explicitly en-
forces uniform probability prediction on an auxiliary dataset
of outliers (Hendrycks, Mazeika, and Dietterich 2019). For
the choice of auxiliary datsets, we use KMNIST (Clanuwat
et al. 2018) for benchmark A, CelebA (Liu et al. 2015) for
benchmark C, and ImageNet-1K (Russakovsky et al. 2015)
for benchmark B, E, F. We do not evaluate OE on the se-
quence benchmark, since we can not find a reasonable auxil-
iary dataset. We remark here that Base, ODIN, and FSSD can
be deployed directly with a trained neural network, MCD
needs a trained neural network with dropout layers, while
DE needs multiple trained classifiers. Besides, Maha needs
to use the training data during OoD detection on test data
and OE trains a neural network either from scratch or by
fine-tuning to utilize the auxiliary dataset.

Evaluation We follow (Ren et al. 2019; Hendrycks,
Mazeika, and Dietterich 2019) to use the following met-
rics to assess the performance of OoD detection. AUROC:
Area Under the Receiver Operating Characteristic curve.
AUPRC: Area Under the Precision-Recall Curve. FPR80:
False Positive Rate when the true positive rate is 80%.

For hyper-parameter tuning, we follow (Lee et al. 2018;

Ren et al. 2019; Liang, Li, and Srikant 2018) to use a sep-
arate validation set, which consists of 1,000 images from
each in-distribution and OoD data pair. Ensemble weights
αk for FSSD from different layers are extracted from a lo-
gistic regression model, which is trained using nested cross
validation within the validation set as in (Lee et al. 2018;
Ma et al. 2018). The same procedure is performed on Maha
for fair comparison. The perturbation magnitude ε of input
pre-processing for ODIN, Maha, and FSSD is searched from
0 to 0.2 with step size 0.01. The temperature T of ODIN is
chosen from 1, 10, 100, and 1000, and the dropout rate of
MCD is chosen from 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, and
0.5.

Main results

The main results are presented in Table 2 and Figure 4. In
Table 2, we can see that larger datasets entail greater dif-
ficulty in OoD detection. Notably, the advantage of FSSD
over other methods increases as the dataset size increases.
Other methods like Maha and OE perform well on some
small benchmarks, but have large variance across different
datasets. In comparison, FSSD maintains great performance
on these benchmarks. On the genome sequence dataset, we
also observe that FSSD outperforms other methods. These
results show that FSSD is a promising effective method for
a wide range of applications.

Inspired by (Ovadia et al. 2019), we also evaluate the
methods on the ability of detecting distributional dataset
shift like Gaussian noise and JPEG artifacts. Figure 4 shows
the means and quartiles of AUROC of the compared meth-
ods over 16 types of corruptions on 5 corruption levels.
We can observe that for each method, the performance of
OoD detection increases as the level of corruption increases,
while FSSD enjoys the highest AUROC and much less vari-
ation over different types of corruptions. The CelebA bench-
mark also evaluates the methods on detecting the dataset
shift of the attribute “blurry”. However, all methods in-
cluding FSSD do not perform very well. There are two
possible reasons: (1) the attribute “blurry” of CelebA may
be annotated not clearly enough; (2) the blurs in the wild
may be more difficult to detect than the simulated blurs in
ImageNet-C. Overall, we can see that FSSD can more reli-
ably detect different kinds of distributional shifts.



Table 2: Main results. All values are in %.

Datasets (Architecture) Metrics Base ODIN Maha DE MCD OE FSSD

Small-scale
benchmarks

FMNIST vs. MNIST
(LeNet)

AUROC 77.3 96.9 99.6 83.9 81.7 99.6 99.6
AUPRC 79.2 93.0 99.7 83.3 85.3 99.6 99.7
FPR80 43.5 2.5 0.0 27.5 36.8 0.0 0.0

CIFAR10 vs. SVHN
(ResNet34)

AUROC 89.9 96.7 99.1 93.7 96.7 90.4 99.5
AUPRC 85.4 92.5 98.1 90.6 93.9 89.8 99.5
FPR80 10.1 4.7 0.3 3.7 2.4 12.5 0.4

ImageNet dogs vs. non-dogs
(ResNet34)

AUROC 88.5 90.8 83.3 89.0 67.2 92.5 93.1
AUPRC 86.1 88.6 83.0 89.0 66.9 92.6 92.5
FPR80 19.5 15.2 30.1 18.8 59.2 7.9 10.2

Large-scale
benchmarks

CelebA non-blurry vs. blurry
(ResNeXt50)

AUROC 71.7 73.3 73.9 74.5 69.8 71.5 78.3
AUPRC 89.9 91.4 90.9 91.4 88.7 90.7 92.8
FPR80 52.0 50.3 46.0 47.1 53.2 54.2 39.2

MS-1M vs. IJB-C
(ResNeXt50)

AUROC 60.0 61.3 82.5 63.0 65.5 52.6 86.7
AUPRC 53.3 55.9 80.6 56.1 59.4 46.6 86.1
FPR80 61.8 59.4 29.6 56.7 58.8 64.2 22.1

Sequence
benchmark

Bacteria Genome
(LSTM)

AUROC 69.6 70.6 70.4 70.0 69.3 NA 74.8
AUPRC 69.9 71.9 69.3 56.0 70.2 NA 75.8
FPR80 57.4 55.9 53.7 30.0 58.3 NA 47.4
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Figure 4: Comparison of AUROC on ImageNet vs.
ImageNet-C. FSSD enjoys the highest mean and the least
variance across all corruption levels.

Robustness
In practice, it is possible that the test data are slightly cor-
rupted or shifted due to the change of data source, e.g.,
from lab to real world. We evaluate the ability to distin-
guish in-distribution data from OoD data when test data
(both in-distribution and OoD) are slightly corrupted. Note
that we still use non-corrupted data during network training
and hyper-parameter tuning. We apply Gaussian noise and
impulse noise, two typical corruptions, with varying levels.
Test results on CIFAR10 vs. SVHN and ImageNet dogs vs.
non-dogs are shown in Figure 5. We can see that FSSD is
robust to corruptions presented in test images, while other
methods may degrade.

Effects of ensemble
During our experiments, we find that the ensemble plays
an important role in enhancing the performance of FSSD.
Previous studies show that an important issue for ensemble-
based algorithms is enforcing diversity (Lakshminarayanan,
Pritzel, and Blundell 2017). In our case, we find that FSSD
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Figure 5: Comparison of OoD detection robustness among
methods on slightly corrupted test data.

has high diversity across different layers, and benefit from
such diversity to reach higher performance. In Figure 6,
we find that FSSD in different layers are working differ-
ently. This can be explained by previous works on under-
standing neural networks by visualizing the different repre-
sentations learned by low and deep layers of a neural net-
work (Zeiler and Fergus 2014; Zhou et al. 2015). Gener-
ally, FSSDs from deep layers reflect more high-level features
and FSSDs from early layers reflect more low-level statis-
tics. ImageNet (dogs) and ImageNet (non-dogs) are from
the same dataset (ImageNet), and are therefore similar in
terms of low-level statistics; while the differences between
CIFAR10 and SVHN are in all different levels. From the per-
spective of kernel interpretation, this means that the neural
tangent kernels of different layers diversify well and allow
the ensemble of FSSD to capture different aspects of the dis-
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Figure 6: FSSDs from different layers behave differently. Each row contains FSSD histograms extracted from different layers
of a trained neural network. FSSDs of ImageNet (dogs) and ImageNet (non-dogs) are similar in early layers; while FSSDs of
CIFAR10 and SVHN differ in all the layers. This can be explained by the fact that ImageNet (dogs) and ImageNet (non-dogs)
are similar in low-level statistics since they are sampled from the same dataset, and that FSSDs in early layers capture more of
the difference in low-level statistics.

crepancy between the test data and training data. We show
more examples of FSSDs in different layers on our Github
page.

Related works
Out-of-distribution detection
According to different understandings of OoD samples, pre-
vious OoD detection methods can be summarized into four
categories.

(1) Some methods regard OoD samples as those with
uniform probability prediction across classes (Hein, An-
driushchenko, and Bitterwolf 2018; Hendrycks and Gimpel
2017; Liang, Li, and Srikant 2018; Meinke and Hein 2020)
and treat the test samples with high entropy or low maximum
prediction probability as OoD data. Since these methods are
based on prediction, they run the risk of mis-classifying am-
biguous data as OoD samples, e.g., when there are thousands
of classes in a large-scale dataset.

(2) OoD samples can also be characterized as samples
with high epistemic uncertainty which reflects the lack of in-
formation on these samples (Lakshminarayanan, Pritzel, and
Blundell 2017; Gal and Ghahramani 2016). Specifically, we
can propagate the uncertainty of models to the uncertainty
of predictions, which characterizes the level of OoD. MCD
and DE are two popular choices of this type. However, it is
reported that current epistemic uncertainty estimations may
noticeably degrade under dataset distributional shift (Ovadia
et al. 2019). Our experiments on detecting ImageNet-C from
ImageNet (Figure 4) confirm this.

(3) When the density of data can be approximated, e.g.,
using generative models (Kingma and Dhariwal 2018; Sal-
imans et al. 2017), OoD samples can be classified as those
with low density. Recent works provide many inspiring in-
sights on how to improve this idea (Ren et al. 2019; Nalis-

nick et al. 2019b; Serrà et al. 2020). However, these methods
typically have extra training difficulty incurred by large gen-
erative models.

(4) There are also works designing non-Euclidean met-
rics to compare test samples to training samples, and regard
those with higher distances to training samples as OoD sam-
ples (Lee et al. 2018; van Amersfoort et al. 2020; Kamoi and
Kobayashi 2020; Lakshminarayanan et al. 2020). Our ap-
proach resembles this type most. Instead of comparing test
samples to training samples, we compare the features of the
test samples to the center of OoD features.

Conclusion
In this work, we propose a new OoD detection algorithm
based on a novel observation that OoD samples concentrate
in the feature space of a trained neural network. We pro-
vide analysis and understanding of the concentration phe-
nomenon by analyzing the training dynamics both theoret-
ically and empirically and further interpreted the algorithm
with the neural tangent kernel. We demonstrate that our al-
gorithm is state-of-the-art in detection performance and is
robust to measurement noise. Our further investigation on
the effect of ensemble reveals diversity in layer ensembles
and shows promising performance of network ensembles. In
summary, we hope that our work can provide new insights
for understanding properties of neural networks and add an
alternative simple and effective OoD detection method to the
safe AI deployment toolkits.
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