
Multi-Modal Generative Adversarial Networks Make Realistic and Diverse but
Untrustworthy Predictions When Applied to Ill-posed Problems

John S. Hyatt, Michael S. Lee
Computational & Information Sciences Directorate, DEVCOM Army Research Laboratory

john.s.hyatt11.civ@mail.mil, michael.s.lee131.civ@mail.mil

Abstract

Ill-posed problems can have a distribution of possible solu-
tions rather than a unique one, where each solution incorpo-
rates significant features not present in the initial input. We in-
vestigate whether cycle-consistent generative neural network
models based on generative adversarial networks (GANs) and
variational autoencoders (VAEs) can properly sample from
this distribution, testing on super-resolution of highly down-
sampled images. We are able to produce diverse and plausible
predictions, but, looking deeper, we find that the statistics of
the generated distributions are substantially wrong. This is a
critical flaw in applications that require any kind of uncer-
tainty quantification. We trace this to the fact that these mod-
els cannot easily learn a bijective, invertible map between the
latent space and the target distribution. Additionally, we de-
scribe a simple method for constraining the distribution of a
deterministic encoder’s outputs via the Kullback-Leibler di-
vergence without the reparameterization trick used in VAEs.

Introduction
A problem is well-posed if it satisfies three criteria
(Hadamard 1902): (1) the problem has a solution, (2) the
solution is unique, and (3) the solution is a continuous func-
tion of the initial conditions. Many real-world problems of
interest are inherently ill-posed, meaning they violate one or
more of these criteria, and modeling them correctly remains
one of the outstanding challenges in machine learning (ML).
Out-of-distribution inputs (data the model was not trained to
understand) violate the first criterion, while adversarial ex-
amples exist because ML models tend to be very unstable
with regard to small, carefully chosen perturbations (Wiy-
atno et al. 2019), effectively violating the third.

Violations of the second criterion can occur for relatively
simple tasks such as classification of ambiguous inputs (Pe-
terson et al. 2019), but they are ubiquitous in generative
modeling tasks, where the desired output is complex and
high-dimensional. The strongest possible model, given this
type of ill-posed problem, is one that estimates the (condi-
tional) posterior distribution of possible solutions.

Copyright © 2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

Depending on the use case, it may not be necessary to
model the full posterior; for example, if the objective is
purely aesthetic (Pathak et al. 2016; Yang et al. 2019).
For safety-critical applications, however, proper risk man-
agement requires quantifying the model’s predictive uncer-
tainty, as well as the error introduced when the model is used
to approximate the true target distribution. The same con-
siderations apply if the model feeds into some downstream
analysis or decision-making process. Despite this, the litera-
ture on probabilistic generative neural network (NN) models
rarely contains explicit verification of the learned distribu-
tion’s statistics. Often, what is actually verified is that the
generative model produces realistic outputs or has low re-
construction error in the data domain. Optimizing realism in-
cidentally pseudo-optimizes the error in reconstructing data
in a high-dimensional space from a low-dimensional latent
representation, even if the model has not learned to encode
and reconstruct features well. Prediction diversity and multi-
modality are usually only discussed qualitatively.

We examine several cycle-consistent architectures incor-
porating elements of popular generative NN models, namely
generative adversarial networks (GANs) and variational au-
toencoders (VAEs), as well as deterministic encoders. Our
focus on cycle-consistent architectures is motivated by the
fact that GANs and VAEs do not contain a mechanism for
reversing the generative transformation. By examining the
learned maps between latent space (which has a simple prior
sampled during generative inference) and feature space, we
verify that even for simple problems, these architectures can-
not model the true data distribution. This failure appears to
be due to the models being neither invertible nor bijective, a
state of affairs that persists even when the models are con-
verted to deterministic maps. Our main contributions are:

• A null result, namely that even if generative models pro-
duce diverse and realistic predictions, they do not learn
to bijectively map a latent distribution onto the true dis-
tribution represented by the training data. We use highly
expressive models and follow best practices in network
design and training; at minimum, our results argue that
proper statistical behavior cannot be taken for granted. We
imagine this will probably not surprise many ML practi-
tioners, but also think it is worth making a point to test.



We have been unable to find any examples in the literature
on GANs and VAEs that explicitly test for these proper-
ties, although some related concepts are well known, like
the fact that gaps exist in a VAE’s coverage in latent space.

• A simple extension of VAEs to deterministic latent vec-
tor sampling. Instead of using the reparameterization trick
to sample from a multivariate normal distribution with
learned mean and variance, we preserve the flow of infor-
mation through the encoder-decoder stack and optimize
KL divergence over batches of training examples.

• A proof that sampling from the space of solutions to a
conditional inverse problem only requires pairs of con-
ditioning information/ground truth examples, even when
the conditioning information has high dimensionality
(such as for super-resolution).

Our work does not come close to exploring all possible
GAN- or VAE-based generative models, and it is possi-
ble that another architecture would learn a bijective map.
We choose BicycleGAN as our starting point, as it is
a state-of-the-art example of such models. Our chosen
dataset, Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017),
is also very simple compared to standards like CIFAR-10
(Krizhevsky 2009) or ImageNet (Russakovsky et al. 2014).
This is precisely our argument: if we cannot learn the statis-
tics of even an “easy” dataset, given a reasonable choice of
high-capacity model, we should assume any of this family
of multi-modal generative models is statistically unreliable
unless proven otherwise.

Related Work
Generative NNs come in a a variety of flavors. GANs and
VAEs are the most studied; together with invertible neural
networks (INNs), they encompass most methods that gener-
ate data from a latent space representation. Other methods
exist that are based on sequential (Parmar et al. 2018) or
Bayesian neural networks (Saatci and Wilson 2017).

A note on notation: in this paper, we use calligraphic let-
ters, X , for sets; upper-case letters,X , for random variables;
(bold) lower-case letters, x, for their (vector) values; and p
for their probability densities.

Fundamentally, GANs, VAEs, and INNs operate simi-
larly during the forward (generative) process: a generator
G : Rm → Rn maps a vector z ∈ Z ⊆ Rm to a point in
another space, x ∈ X ⊆ Rn. Z is the space of points sam-
pled from some simple latent prior distribution, z ∼ pZ(z),
and X is the complex space represented by the training data
pdata
X (x); for example, a collection of images belonging to

some category. The true underlying distribution of the data,
pX(x), is unknown.

For GANs and VAEs, m � n; the latent representation
is compressed, with components of z corresponding to the
presence or absence of major features in X . Under certain
circumstances, simple arithmetic operations on a vector z
can add or subtract semantic features in the corresponding
x (Radford, Metz, and Chintala 2016). For standard INNs,
m = n, so there is no compression. Typically, the latent
prior distribution is taken to be as simple as possible, for

example pZ(z) = N (0,1); this does not preclude a home-
omorphic map between Z and X , but may complicate it
(Pérez Rey, Menkovski, and Portegies 2019).

The details, including the procedure for training G, vary
between the different types of generative model. We briefly
discuss the specific properties of GANs and VAEs that com-
plicate inverse problem solving below, with comparison to
INNs, which are explicitly invertible but less well-studied.

Generative Adversarial Networks (GANs)
A basic GAN training algorithm contains two models, a
generator G that and a discriminator D (Goodfellow et al.
2014). D is a binary classifier trained to differentiate be-
tween real training data xreal and generated data xgen =
G(z), while G is trained to generate outputs that appear real
to D. The two models are trained alternately, with the goal
that D should eventually learn to reject any xgen 6∈ X and
push G(z) ∈ X ∀ z ∈ Z .

However, there is no guarantee that the distribution mod-
eled by G, pGX(x), is the same as or even close to the true
distribution, pX(x). Mode collapse, where G(z) outputs the
same realistic xgen ∀ z, is only the most extreme example
of this. A diverse, multi-modal pGX(x) is clearly better than
the delta function distribution modeled by a mode-collapsed
GAN, but diversity is not the same as representativeness, and
without a theoretical guarantee or explicit testing, G cannot
be a trustworthy model of the true distribution of solutions to
an inverse problem. In fact, GANs do not explicitly attempt
to model probability densities at all; moreover, on its own, a
GAN generator cannot be inverted to map some x into Z .

Variational Autoencoders (VAEs)
A basic VAE also incorporates two models, an encoder E
and a decoder G (Kingma and Welling 2013). E(x) en-
codes x into Z , and G maps the latent vector back into
X . During training, E and G are updated simultaneously to
minimize (i) some measure of the distance between x and
G(E(x)), and (ii) the error introduced by approximating
pEZ (z), the latent distribution modeled by E, as pZ(z), the
latent prior. The latter is expressed in terms of the KL di-
vergence (Kullback and Leibler 1951) from pZ(z) to pEZ (z).
During inference, E is discarded, latent vectors are sampled
from the prior via z ∼ pZ(z), and samples are generated via
xgen = G(z).

Enforcing pEZ (z) ≈ pZ(z) is critical, as inputs to G
are drawn from the former during training, but the latter
during inference. This is typically done by assuming that
pEZ (z) = N (µ,σ2), where µ and σ2 are the mean and vari-
ance of E(x), respectively, and pZ(z) = N (0,1). (Other
latent priors are possible, but the standard normal is most
common.) KL divergence is a simple function of µ and σ in
this case (Kingma and Welling 2013).

However, µ and σ are statistical measures, meaning that
they are defined in terms of a large number of observations,
and a particular x represents only a single observation. Thus,
rather than learning a deterministic encoding E(x) = zenc,
E(x) predicts two vectors, µ and σ, that define a point cloud
in latent space. Monte Carlo sampling of that point cloud is



performed via the reparameterization trick, zenc = µ+ε�σ,
where ε ∼ N (0,1). µ and σ are themselves deterministic,
making it easier to take the gradient of E’s weights with re-
spect to its outputs via backpropagation, but this variational
approximation adds irreducible noise to the generative pro-
cess and means E cannot invert G. Therefore, while a VAE
can help G map every point in Z to a realistic x, the map is
not bijective, which makes it difficult to verify its statistical
properties or perform analysis in the latent space.

Invertible Neural Networks (INNs)
INNs (Ardizzone et al. 2018) are composed of a stack of
operations that are invertible by construction, meaning that
the entire network can be inverted cheaply. Thus, INNs learn
a bijective map betweenZ andX andE is simplyG−1. This
means that solving the inverse problem is, in principle, as
easy as inverting an INN that has been trained on the forward
problem; bidirectional training is possible as well. Notably,
these maps also have a tractable Jacobian, which means that
the unknown data distribution can be written explicitly in
terms of the latent prior. These properties address some of
the shortcomings of other types of generative models.

The main disadvantage of INNs seems to be that they
are a recent development, and consequently have not been
refined to the same extent as GANs and VAEs. Also, as a
consequence of guaranteeing bijectivity, Z has the same di-
mensionality as X , meaning further processing of the latent
space is necessary to efficiently represent the data and per-
form certain types of analysis such as feature extraction, fea-
ture arithmetic, and anomaly detection.

Conditional Generative Models
All of these types have been extended to the conditional
case, when the generator outputs are conditioned on some
partial information, such as class label. cGANs (Mirza and
Osindero 2014) and cVAEs (Sohn, Lee, and Yan 2015) have
been heavily studied since they were introduced several
years ago; cINNs (Liu et al. 2019; Ardizzone et al. 2019)
are relatively new. Regardless, the basic idea is the same:
G has a second, conditioning input y ∈ Y ⊆ Rl, where Y
is the space of conditioning data, and implicitly represents
the conditional distribution pGX|Y =y(x), which may or may
not be verifiably close to the true conditional distribution,
pX|Y =y(x). In the case at hand, our training data includes a
set of conditional information, pdata

Y (y), where each y corre-
sponds to an x in pdata

X (x). Together, these (x,y) pairs rep-
resent samples from the joint distribution pdata

XY (x,y).

Multimodal Models
Conditional GANs have been incredibly successful in map-
ping from one complex data space to another, but not in
learning to predict distributions of solutions to ill-posed
problems. The pix2pix framework (Isola et al. 2017) pro-
duced a model G : X ′ → X that mapped, deterministically
and in one direction, from a point x′ ∈ X ′ to a point x ∈ X .
CycleGAN (Zhu et al. 2017a) extended this to include an-
other model F : X → X ′, by including a cycle consistency
loss to encourage F andG to invert one another. Neither was

able to incorporate stochasticity via random sampling of z;
even when z was included as a second input in pix2pix, the
model simply learned to ignore it, although some stochastic
elements could be introduced by including random dropout
in the model. Further, CycleGAN owed its success in part to
the fact that the cycle consistency loss function simultane-
ously optimized F and G, leading them to cheat by encod-
ing hidden information in their predictions (Chu, Zhmogi-
nov, and Sandler 2017).

BicycleGAN (Zhu et al. 2017b) attempted to rectify these
shortcomings by combining components from GANs and
VAEs. As it was the inspiration for this work, BicycleGAN
is discussed in more detail below.

Although they are not our focus, we also note that proba-
bilistic models like Bayesian neural networks are inherently
more suitable for modeling multi-modality, though less so
for learning bijective maps or latent space representations.

Principled Two-cycle-consistent Generative
Models for Inverse Problems

We chose the BicycleGAN framework (Zhu et al. 2017b)
as a starting point. Because several of our design choices
are intended to address specific concerns we have with this
framework, we briefly repeat it here. We then describe our
modified framework and justify it as a principled attempt to
build a two-cycle-consistent generative model, introducing
a new method for constraining the distribution output of a
VAE-like encoder without losing cycle-critical information
during a reparameterization step.

BicycleGAN
BicycleGAN simultaneously trains a conditional generator
G : Y,Z → X ; a VAE-based encoder E : X → Z that
outputs two vectors, the mean and log variance of a point
cloud in Z; and a discriminator D to enforce realism in the
outputs ofG. BicycleGAN is built around two cycles: a con-
ditional latent regressor (cLR) to enforce consistency on the
path Z → X → Z , and a conditional variational autoen-
coder (cVAE) to do the same for the pathX → Z → X . The
models are trained to jointly optimize multiple loss func-
tions, described below.

Standard cGAN loss This is the original conditional
GAN loss function defined in (Mirza and Osindero 2014):

LGAN(G,D) = Ex∼pdata
X

[log(D(x))]

+Ey∼pdata
Y

z∼pZ

[log(1−D(G(y, z)))], (1)

where Ep[· · · ] is the expected value under a distribution p.
The two terms evaluate the realism of real and generated
data, respectively.
cVAE-GAN loss Identical to the GAN loss, except that
z is sampled from E(x) via the reparameterization trick,
rather than from pZ(z):

LVAE
GAN(G,E,D) = Ex∼pdata

X
[log(D(x))]

+Ex,y∼pdata
XY

z∼ (µ+ε�σ)|E(x)

[log(1−D(G(y, z)))]. (2)



As µ → 0 and σ → 1, the cVAE-GAN loss term ap-
proaches the standard cGAN loss term.

Latent space reconstruction loss The L1 distance be-
tween a randomly sampled latent vector and its recon-
struction after passing through both G and E:

LZ
1 (G,E) = Ey∼pdata

Y
z∼pZ

[‖z− µ|E(G(y,z))‖1]. (3)

This is the cLR cyclic consistency term, intended to teach
E to invert G.

Ground truth reconstruction loss The L1 distance be-
tween a ground truth example and its reconstruction after
passing through both E and G:

LX
1 (G,E) = Ex,y∼pdata

XY

z∼ (µ+ε�σ)|E(x)

[‖x−G(y, z)‖1]. (4)

This is the cVAE cyclic consistency term, intended to
teach G to invert E.

KL Divergence from pZ(z) to pEZ (z) Attempts to en-
sure that E maps into the simple prior distribution sam-
pled from during inference:

LKL(E) = Ex∼pdata
X

[DKL(N (µ,σ2)
∣∣
E(x)
‖N (0,1))].

(5)
This is necessary to ensure that G always receives latent
vectors belonging to the same distribution. By design,E’s
outputs are always interpreted as point clouds, since they
only go back into the training process via reparameteri-
zation (which is always Gaussian), justifying the above
form of the KL divergence.

The models are trained according to combinations of these
loss terms, namely

G∗ = arg min
G

[LGAN + LVAE
GAN + λX1 LX

1 + λZ1 LZ
1 ], (6)

E∗ = arg min
E

[LVAE
GAN + λX1 LX

1 + λKLLKL], (7)

D∗ = arg max
D

[LGAN + LVAE
GAN], (8)

where “∗” represents an updated model after one training
step and the λs are weights.

BicycleGAN is very successful at generating diverse and
realistic outputsG(y, z), but the statistics of the learned dis-
tributions have not been verified. This means ensuring that
the conditional probability distribution implicitly modeled
by G, pGX|Y =y(x), well approximates the distribution de-
scribed by the training data, pdata

X|Y =y(x); in the Appendix,
we show that this is possible even if we can only sample
pairs from the joint distribution, pdata

XY (x,y). It also means
ensuring that the latent distribution modeled by E, pEZ (z),
resembles the prior, pZ(z). Our tests of BicycleGAN do pro-
duce diverse and realistic reconstructions, but we do not find
that the learned distribution match the ground truth statistics.

The original BicycleGAN has several features that poten-
tially complicate learning a bijective map via enforcing two-
cycle consistency:

1. G has two inputs, y and z, but E only has one input,
x. This asymmetry means that E cannot invert G, since
E(G(y, z)) has no way to disentangle the separate con-
tributions of y and z in G(y, z).

2. E is trained using VAE-based methods and has two out-
puts, µ and σ, rather than a point in Z . This is a second
reason why E cannot actually invert G(y, z) to recover
z, and therefore cannot be trained to enforce cycle con-
sistency in the latent space. LZ

1 actually attempts to mini-
mize the distance between z and µ|E(G(y,z)).

3. The authors found that simultaneously training G and E
on both cyclic consistency loss terms incentivizes cheat-
ing, similar to what was observed in CycleGAN (Chu,
Zhmoginov, and Sandler 2017), so E is not trained to op-
timize LZ

1 . However, when we attempt to replicate their
approach we find indications of the same behavior when
simultaneously training G and E to optimize LX

1 .
We address these concerns primarily by changing E, and by
changing the loss functions used in training—specifically,
which loss functions are used to train which models. Our
modified framework simultaneously trains a conditional
generator G : Y,Z → X and a deterministic, conditional
encoder E : Y,X → Z . Each change is discussed in detail
in the following sections.

Adversarial Losses
As with the original BicycleGAN, we use two cGAN-based
loss terms to encourage realism in the outputs of G, one in
which z is sampled from the latent prior and one in which
z is encoded from an (x,y) pair. Rather than a discrimina-
tor, we use a Wasserstein critic C (Arjovsky, Chintala, and
Bottou 2017), with a gradient penalty loss (Gulrajani et al.
2017). A discriminator is a binary classifier that can only
return values of 0 (generated) or 1 (real), but a Wasserstein
critic scores realism on a continuous scale of more negative
(more likely to be generated) to more positive (more likely
to be real). This provides more useful gradients to G during
training, but is not a fundamental change to the framework.

The two loss terms used to train G are
LcLR

critic(G,C) = −Ey∼pdata
Y

z∼pZ

[1 · C(xgen)], (9)

LcAE
critic(G,E,C) = −Ex,y∼pdata

XY
[1 · C(xcyc)], (10)

where xgen = G(y, z) and xcyc = G(y, E(y,x)). The ex-
plicit “1” indicates thatG is being optimized to generate out-
puts considered “real” by C.

The complement to Eqs. 9 and 10 is

Lreal
critic(C) = −Ex∼pdata

X
[(1 · C(x))]. (11)

Gradient penalty terms ensure that C is 1-Lipschitz:
LcLR

GP (G,C) = Ex,y∼pdata
Y

z∼pZ

[(‖∇x̄C(x̄gen)‖2 − 1)2], (12)

LcAE
GP (G,E,C) = Ex,y∼pdata

Y
z∼pZ

[(‖∇x̄C(x̄cyc)‖2 − 1)2], (13)

where gradients are taken with respect to randomly weighted
averages x̄gen = ux + (1 − u)xgen and x̄cyc = ux + (1 −
u)xcyc, where u is uniform random noise on the interval
[0, 1]. ‖· · ·‖2 is the L2 norm.



Cycle Consistency Losses
As with BicycleGAN, we use two cycle consistency loss
terms, one for the cLR path and one for the cAE path:

LZ
1 (G,E) = ‖z− zcyc‖1, (14)

LX
1 (G,E) = ‖x− xcyc‖1, (15)

where zcyc = E(y, G(y, z)) and xcyc = G(y, E(y,x)).

Calculating KL Divergence for a Deterministic
Autoencoder
The two-output, probabilistic design of the encoder in a VAE
enables calculation of the KL divergence from pZ(z) to
pEZ (z), an inherently statistical measure, from a single data
point. However, this comes at the cost of cycle consistency
in latent space, sinceE can no longer produce a single latent
vector from G(y, z) to compare with the original z. This is
even worse for a cVAE: in order to reconstruct data from
multiple classes, a non-conditioned VAE is forced to par-
tition latent space into regions corresponding to the classes,
which is in direct tension with the KL divergence loss’s drive
to map every x to N (0,1). The extra information provided
by the conditioning input negates the need to partitionZ , but
that in turn means that µ|E(x) → 0 ∀ x, and therefore that
the reconstruction loss term defined in Eq. 3 will not be able
to learn anything meaningful. Our initial attempts to train a
BicycleGAN had precisely this problem, regardless of the
relative weights assigned to the different loss terms.

A deterministic autoencoder preserves the flow of infor-
mation through the cLR path, but prevents us from cal-
culating the KL divergence on a per-example basis in the
cAE path. Fortunately, because KL divergence is a statisti-
cal term, it can be calculated over a batch of training data.
We therefore switch to a batch-wise KL divergence loss,

LcAE
KL (E) = Ex∼pdata

X
[DKL(N (µenc,σ

2
enc)‖N (0,1))], (16)

where E is now a deterministic autoencoder and µenc and
σenc are the mean and standard deviation of zenc = E(y,x),
respectively, calculated over a batch of training data.

To make the framework symmetrical, we also include a
similar loss term on the cLR path,

LcLR
KL (E) = Ey∼pdata

Y
z∼pZ

[DKL(N (µcyc,σ
2
cyc)‖N (0,1))], (17)

where µcyc and σcyc are calculated over a batch of zcyc =
E(y, G(y, z)).

These loss terms are unusual in that they are calculated
once over the batch, instead of once for each example,
followed by averaging over the batch. Their effectiveness
is strongly dependent on batch size: for a batch of z ∼
N (0,1), the batch size must exceed 100 for the calculated
KL divergence to drop below 0.01. For small batch sizes,
these terms do not provide much useful information.

The desired effect of these loss terms is that E(y,x) will
learn to map the information in x that is not contained in
y onto Z , the space defined by the distribution pZ(z) =
N (0,1). On their own, LcLR

KL and LcAE
KL are not sufficient to

guarantee this. For example, perhaps E could learn to as-
sign a separate region in Z to each class that, averaged over

y

x

LcriticLcAE

L1LX

z

y
G C

E G
C

LcriticLcLR{
{

cL
R

cA
E

generator

LKLLcLR
L1LZ

E

E

G

LKLLcAE
y

x

z

y

encoder

Figure 1: Training scheme for G and E. Orange indicates
input. Red models are fixed, while green models are up-
dated according to gradients obtained from the loss func-
tions, which are purple. C is the critic.

a large batch, yields µ = 0, σ = 1. However, cLR cycle
consistency requires that E(y, G(y, z)) → z ∀ z ∼ pZ(z).
Therefore, optimizing cLR cycle consistency together with
KL divergence requires that E(y,x) maps (x,y) pairs into
Z independent of y; or, in other words, that E learns com-
mon semantic features present in X but not Y , and maps
those features into Z .

Full Model
The models are trained according to

G∗ = arg min
G

[LcLR
critic + LcAE

critic + λX1 LX
1 ], (18)

E∗ = arg min
E

[LcLR
KL + LcAE

KL + λZ1 LZ
1 ], (19)

C∗ = arg max
C

[Lreal
critic − (LcLR

critic + LcAE
critic)/2

+ λGP(LcLR
GP + LcAE

GP )]. (20)

G attempts to generate realistic outputs, regardless of
whether its z input comes from the prior distribution or E,
while also attempting to invert E. E attempts to generate la-
tent outputs consistent with the latent prior distribution, re-
gardless of whether its x inputs come from the training data
or G, while also attempting to invert G. C attempts to learn
to differentiate between ground truth and generated x from
both the cLR and cAE paths. The training scheme for G and
E is shown in Fig. 1. The training scheme for C is standard
for a Wasserstein critic except that there are two paths for
generated samples; the factor of 1/2 in Eq. 20 ensures that
real and generated x are weighted equally so C does not just
label everything as fake.

This formulation is symmetric. G is only trained to opti-
mize cAE cycle consistency and the adversarial loss, a mea-
sure of realism or the (modeled) likelihood that G(y, . . . ) ∈
X . Similarly, E is only trained to optimize cLR cycle con-
sistency and the KL divergence loss, a measure of the like-
lihood that E(y, . . . ) ∈ Z . The lack of common loss func-
tions between G and E keeps them from learning to cheat.

We note that there is some redundancy between Eqs. 10
and 15, and between Eqs. 14 and 17. If E and G do truly
learn to invert one another, as incentivized by Eqs. 14 and 15,
then Eqs. 10 and 17 will no longer provide useful gradients,
but at worst this might lead to some wasted computations
late in training.



Methods
Our code is publicly available at https://github.com/
USArmyResearchLab/ARL Representativeness of Cyclic
GANs.

Dataset
We attempt to solve a simple super-resolution inverse prob-
lem. Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017) is a
collection of 28 × 28 grayscale images separated into 10
classes of clothing and accessories. Each class has 6,000
training examples and 1,000 test examples. Subjectively,
most examples in each class fall into a small number of clus-
ters—for example, most images in the “trousers” category
look very similar, while there are several different apparent
“sub-categories” among T-shirts. Each class has some exam-
ples, less than 10% or so, that vary strongly from other ex-
amples in the same class, while 90% are very similar. Some
classes (e.g., T-shirt and shirt) have significant overlap.

We downsample the images once, using 2 × 2 average
pooling, to get a set of 14 × 14 images, x′, and then again
to get a corresponding set of 7 × 7 images, y′. We then up-
scale y′ by doubling the number of pixels to get very low-
resolution 14 × 14 conditioning images y, and use those to
obtain the residuals x = x′ − y. We rescale (x,y) pairs to
be on the interval [−1, 1], with training and test data rescaled
separately.

The original images in fashion-MNIST are already low-
resolution, and this much downsampling destroys significant
feature information. Many x can plausibly be obtained from
a given y, according to some distribution pX|Y =y(x). Al-
though the dataset only includes one (x,y) pair per exam-
ple, rather than a distribution pdata

X|Y =y(x), we can still jus-
tify supervised training using pdata

XY (x,y). This is discussed
in the Appendix.

Conditioning C vs. X → Y Consistency Loss
Depending on the problem, it may be inappropriate to con-
dition C. For example, in image inpainting, y includes the
mask that defines the region to be filled in, which can be
exploited to identify perceptual discontinuities between the
original and generated portions of the image (Pathak et al.
2016). For our problem, this is not the case.

A conditioning input allowsC to ask whetherG(y, . . . ) is
consistent with y. We know the map X → Y in our case; for
a given x to be perfectly consistent with y, a 2× 2-average-
pool-downsampled x must be 0 everywhere. By applying
this to G(y, . . . ), we can separate this consistency from C
as a pair of supplemental loss terms,

LcLR
XY(G) = λcLR

XY‖downsample(xgen)‖1, (21)

LcAE
XY(G,E) = λcAE

XY‖downsample(xcyc)‖1. (22)

We do not observe a significant difference in results between
implementing a conditional C(y,x) vs. an unconditioned
C(x) plus these supplemental losses, in terms of visual qual-
ity. The supplemental losses enforce the desired consistency
explicitly, so we use them in our experiments.

ground truth

conditioner

Figure 2: Six random samples of G(y, z), on the right, with
the corresponding ground truth x and conditioner y, on the
left, for comparison. G was trained using Eqs. 18–20.

Implementation Details
We use deep ResNeXt networks with efficient grouped
convolutions and identity shortcuts (Xie et al. 2016) and
O(4 × 106) parameters in each of G, E, and C. Activa-
tions are all LeakyReLU followed by layer normalization,
except for the generator output, which uses tanh. We inject
latent vectors z only at the top layer of the model. We test
dim(z) ∈ {10, 100, 1000}, finding that 100 performs best
overall and therefore use that for most experiments.

We perform training in TensorFlow, using the Adam op-
timizer with default parameters. We choose a batch size
of 200, since our batch-wise KL divergence is only useful
for fairly large batch size. We train using instance noise
(Sønderby et al. 2016) over x, xgen, and xcyc, replacing
x[··· ] ← αx[··· ] + (1 − α)u, where α anneals from 0 to
1 in increments of 0.01 over the first 100 epochs of training,
and u is uniform random noise on the interval [−1, 1].

For every update of G and E, we train C continuously
until its validation loss fails to improve for 5 consecutive
batches to ensure it is approximately converged. Training
continues until all models’ validation losses have failed to
improve for 20 consecutive epochs.

Results and Discussion
We test variational vs. deterministic encoders; different
choices of hyperparameters and loss weights; and allowing
vs. disallowing overlap between loss functions used to train
E and G. The outcomes of these tests share two commonal-
ities: G produces diverse and realistic predictions, exempli-
fied in Fig. 2, but without cycle consistency or distribution
matching in Z. Thus, their maps are not bijective and do not
map the latent space onto the true data distribution.

Variational Frameworks
First, we test the BicycleGAN framework (the variational
method) with a Wasserstein critic, trained with Eqs. 6 (mod-
ified to include Eqs. 9 and 10), 7, and 20. As noted previ-
ously, this generates realistic images on par with our other
tests, but even strongly weighting LZ

1 does not produce any
cLR cycle consistency, with µ,σ going to 0,1 very rapidly.



This is true regardless of whether we train E but not G on
LZ

1 and/or do not train E on LX
1 .

Deterministic Frameworks
As mentioned previously, we observe some steganographic
collaboration between models that train G and E with over-
lapping loss functions. For example, some information is
hidden in the black background of each xgen as an im-
perceptible, low-amplitude signal. Truncating the values of
those pixels to −1 with no other changes produces a sizable
change in ‖z − zcyc‖1, increasing it from 0.07 to 0.4. This
emphasizes that cycle consistency in the models does not
mean they have learned a meaningful map. We therefore re-
strict our experiments to models trained without overlapping
loss functions, using Eqs. 18–20.

In this scenario we observe no cLR cycle consistency,
as E is unable to extract latent information from xgen. We
see this regardless of the relative weights in Eq. 19, even if
we weight LcLR

KL and LcAE
KL independently. A typical result is

shown in Fig. 3a: the model is penalized by LZ
1 for wrongly

predicting zcyc, and is also unable to find a path to learn to
predict zcyc correctly. Accordingly, given some z (red line) it
simply predicts zcyc ≈ 0 ∀ y (black lines), which results in a
smaller penalty than if it had predicted a nonzero, incorrect
zcyc. This is a failure to optimize both LZ

1 , because the red
and black lines do not overlap, and LcLR

KL , because the stan-
dard deviation of the elements in zcyc is much less than 1.
Only when we set λZ1 ≈ 0 are the KL-divergence loss terms
able to enforce good statistics.

This is not becauseE is simply unable to learn to invertG.
Rather, it appears to be unable to do so quickly and robustly.
Once the model converges, we train E only for 1000 more
epochs, holding G and C constant. This does slightly im-
prove cycle consistency in z, as shown in Fig. 3b. LZ

1 takes
“only” several hundred epochs to plateau, so training time is
not the only limiting factor. The small overall improvement
in LZ

1 (about 4%) belies a noticeable qualitative change, due
to a minority of z-coordinates being very wrong. This still
falls far short of allowing E to truly invert G, and further, it
is not stable, disappearing with another update to G.
LX

1 has limited success in optimizing cAE cycle consis-
tency. This happens to some extent even if we do not op-
timize on LZ

1 , reflecting the fact that optimizing realism
pseudo-optimizes the L1 distance between x and xcyc. LX

1
then depends on only a handful of pixels for most images,
which dominate the expected value in Eq. 15. In support of
this, we find that xcyc does not reproduce rare features such
as text, symbols, and some patterns and orientations.

Conclusion
Our experiments are consistent with the idea that cycle-
consistent GANs are not good vehicles for obtaining repre-
sentative maps, largely because they do not learn cycle con-
sistency well in the first place. They still produce diverse and
realistic outputs, but are not representative, in effect map-
ping onto an unknown subset of X .

Two-cycle consistency is a surrogate for bijectivity. The
fact that it is so difficult to train G and E to invert one an-

latent vector index
2

1

0

1

2 a

latent vector index

b

Figure 3: A plot of ten different zcyc (black) obtained from
one z (red), using one y from each of the ten classes. (a)
E minimizes LZ

1 by setting zcyc ≈ 0, because it cannot
learn cycle consistency during normal training. (b) E does
develop some fragile cycle consistency after additional train-
ing for 103 epochs holding G fixed.

other even for a simple problem such as the one we test indi-
cates that an explicit guarantee of bijectivity is probably the
best path forward for achieving this, which in turn will allow
inverse problems to be solved rigorously and probabilisti-
cally via simple Monte Carlo sampling. In the absence of
such a guarantee, we believe representativeness in the gen-
erated distribution must be explicitly tested for in generative
models, especially when risk or bias assessment, uncertainty
quantification, and similar considerations are important.

INNs are inherently bijective and do not require explicit
enforcement of two-cycle consistency. It seems likely that,
even if there is a way to enforce bijectivity in a GAN-like
construct, INNs provide a simpler path to this result.

Acknowledgments
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the US Army Combat Capabilities Development Command
(DEVCOM) Army Research Laboratory or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation herein. The authors thank Dr. Ting
Wang for valuable discussions and Mr. Matt Ziemann for
careful reading of the manuscript. Computer time was pro-
vided by the DEVCOM ARL DSRC.

Appendix: Sampling Inverse Problem
Solutions

G and E implicitly define distributions pGX|Y =y(x) and
pEZ (z), respectively:∫

Rm

pZ(z) dz · f(G(y, z)) =

∫
Rn

pGX|Y =y(x) dx · f(x),

(A.1)∫
Rn

pX|Y =y(x) dx · f(E(y,x)) =

∫
Rm

pEZ (z) dz · f(z)

(A.2)



or, equivalently,

Ez∼pZ
[f(G(y, z))] = Ex∼pG

X|Y =y
[f(x)], (A.3)

Ex∼pX|Y =y
[f(E(y,x))] = Ez∼pE

Z
[f(z)]. (A.4)

If our model performs as desired, the distribution of points
in Rn obtained by sampling z ∼ pZ(z) and evaluating
G(y, z) should resemble the true conditional distribution
of possible x consistent with a given y, pX|Y =y(x). Sim-
ilarly, the distribution of points in Rm obtained by sampling
x ∼ pX|Y =y(x) and evaluating E(y,x) should resemble
the latent prior, pZ(z). However, while we can sample z
from the latent prior, we cannot sample x from the true con-
ditional distribution of X , since we usually have only one
pair each of ground truth (y,x) in our training data.

Fortunately, we can get around this if the learned encoder
distribution, pEZ (z), is independent of Y , which is a reason-
able assumption if the reconstruction process can identify
common features applicable to many different conditioners,
and is further supported by the KL divergence loss terms.

Taking the expectation under pY (y) in Eq. A.2 gives:∫
Rn

∫
Rl

pX|Y =y(x) pY (y) dx dy · f(E(y,x))

=

∫
Rm

pEZ (z) dz · f(z)

∫
Rl

pY (y) dy. (A.5)

The second integral on the RHS evaluates to one by defini-
tion, and Bayes’s theorem lets us rewrite the LHS to get∫

Rn

∫
Rl

pXY (x,y) dy dx · f(E(y,x))

=

∫
Rm

pEZ (z) dz · f(z), (A.6)

where pXY (x,y) is the true joint probability density func-
tion of X and Y . Unlike pX|Y =y(x), we can sample from
pXY (x,y); the training data, pdata

XY (x,y), does just that. We
can then enforce a distribution constraint on pEZ (z) as usual.

References
Ardizzone, L.; Kruse, J.; Wirkert, S. J.; Rahner, D.; Pelle-
grini, E. W.; Klessen, R. S.; Maier-Hein, L.; Rother, C.; and
Köthe, U. 2018. Analyzing inverse problems with invertible
neural networks. CoRR abs/1808.04730.
Ardizzone, L.; Lüth, C.; Kruse, J.; Rother, C.; and Köthe, U.
2019. Guided image generation with conditional invertible
neural networks. CoRR abs/1907.02392.
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
GAN. CoRR abs/1701.07875.
Chu, C.; Zhmoginov, A.; and Sandler, M. 2017. Cyclegan,
a master of steganography. CoRR abs/1712.02950.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Ghahramani, Z.;
Welling, M.; Cortes, C.; Lawrence, N. D.; and Weinberger,
K. Q., eds., Advances in Neural Information Processing Sys-
tems 27. Curran Associates, Inc. 2672–2680.

Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved training of Wasserstein
GANs. In Advances in Neural Information Processing Sys-
tems, 5767–5777.
Hadamard, J. 1902. Sur les problèmes aux dérivées par-
tielles et leur signification physique. Princeton university
bulletin 49–52.
Isola, P.; Zhu, J.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 5967–5976.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report.
Kullback, S., and Leibler, R. A. 1951. On information and
sufficiency. Ann. Math. Statist. 22(1):79–86.
Liu, R.; Liu, Y.; Gong, X.; Wang, X.; and Li, H. 2019. Con-
ditional adversarial generative flow for controllable image
synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).
Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. CoRR abs/1411.1784.
Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Shazeer,
N.; and Ku, A. 2018. Image transformer. CoRR
abs/1802.05751.
Pathak, D.; Krähenbühl, P.; Donahue, J.; Darrell, T.; and
Efros, A. A. 2016. Context encoders: Feature learning by
inpainting. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2536–2544.
Pérez Rey, L.; Menkovski, V.; and Portegies, J. 2019. Can
vaes capture topological properties? NeurIPS 2019 Work-
shop ; Conference date: 13-12-2019 Through 13-12-2019.
Peterson, J.; Battleday, R.; Griffiths, T.; and Russakovsky, O.
2019. Human uncertainty makes classification more robust.
In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), 9616–9625.
Radford, A.; Metz, L.; and Chintala, S. 2016. Unsupervised
representation learning with deep convolutional generative
adversarial networks.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh,
S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein,
M. S.; Berg, A. C.; and Li, F. 2014. Imagenet large scale
visual recognition challenge. CoRR abs/1409.0575.
Saatci, Y., and Wilson, A. G. 2017. Bayesian gan. In Guyon,
I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vish-
wanathan, S.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 30. Curran Associates, Inc.
3622–3631.
Sohn, K.; Lee, H.; and Yan, X. 2015. Learning struc-
tured output representation using deep conditional genera-
tive models. In Cortes, C.; Lawrence, N. D.; Lee, D. D.;
Sugiyama, M.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 28. Curran Associates, Inc.
3483–3491.



Sønderby, C. K.; Caballero, J.; Theis, L.; Shi, W.; and
Huszár, F. 2016. Amortised MAP inference for image super-
resolution. CoRR abs/1610.04490.
Wiyatno, R. R.; Xu, A.; Dia, O.; and de Berker, A. 2019. Ad-
versarial examples in modern machine learning: A review.
CoRR abs/1911.05268.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a novel image dataset for benchmarking machine learning
algorithms. CoRR abs/1708.07747.
Xie, S.; Girshick, R. B.; Dollár, P.; Tu, Z.; and He, K. 2016.
Aggregated residual transformations for deep neural net-
works. CoRR abs/1611.05431.
Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.; and
Liao, Q. 2019. Deep learning for single image super-
resolution: A brief review. IEEE Transactions on Multime-
dia 21(12):3106–3121.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017a. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In Proceedings of the IEEE international
conference on computer vision, 2223–2232.
Zhu, J.-Y.; Zhang, R.; Pathak, D.; Darrell, T.; Efros, A. A.;
Wang, O.; and Shechtman, E. 2017b. Toward multimodal
image-to-image translation. In Advances in Neural Informa-
tion Processing Systems, 465–476.


