
Restructuring Attack Trees to Identify Incorrect or
Missing Relationships between Nodes

Hua Cai, Hironori Washizaki, Yoshiaki Fukazawa
Graduate School of Fundamental Science and Engineering

Waseda University
Tokyo, Japan

saika@toki.waseda.jp, washizaki@waseda.jp,
fukazawa@waseda.jp

Takao Okubo
Institute of Information Security, Japan

Haruhiko Kaiya
Kanagawa University, Japan

Nobukazu Yoshioka
National Institute of Informatics, Japan

Abstract—Attack trees are often used to analyze a system or de-
tect application programs attacks. To aid in software design, a
method to create safe and stable systems should be created. An at-
tack tree has multiple levels and is composed of different nodes,
including root nodes, internal nodes, and leaf nodes. These nodes
can be separated into parent nodes and child nodes when discuss-
ing their relation. Child nodes are defined as conditions that must
be satisfied to make their direct parent nodes true. Although an
attack tree can express vertical relationships between nodes well,
it usually ignores parallel relationships of different branch nodes.
Moreover, the relation between parent-child nodes may be inaccu-
rate due to a poorly designed attack tree. To solve these problems,
we present a new way to derive an attack tree system in which the
initial attack tree is reconstructed into a new attack tree using In-
terpretive Structural Modeling (abbr. ISM). The proposed method
can easily correct the relation between parent-child nodes and
identify horizontal relationships. Finally, the proposed method de-
rives a clear attack tree for more precise system's threat analysis
and better defensive measures.

Index Terms—security, attack tree, model, ISM.

I. INTRODUCTION

Numerous high-tech products and technologies are invented
to improve life, including physical software and cyber-physical
systems in the information technology field. Reliance on these
types of systems has been increasing. Today these systems store
vast amounts of information. However, security of these systems
has become important and is being actively researched.

The concept of an attack tree provides a clear way to describe
possible attacks and safety threats for a system. We strive to ap-
ply the attack tree concept to make a system secure. An attack
tree has a structure similar to a tree as it includes different levels
of nodes – root nodes and leaf nodes. Root nodes represent attack
targets, while leaf nodes denote attack methods.

A root indicates a target goal, and the leaves represent basic
attacks with no further refinements in an attack tree. A success-
ful attack would satisfy the roots. That is, if the child nodes are
true, then the direct parent nodes are true.

According to the attack tree model, each node can have dif-
ferent metrics, and finding the minimum value of the sum of the
metrics passing through the path from the tree's bottom to the top

can indicate a system's attack motion [1]. In real cases, attack
trees have huge and complicated structures. One attack tree may
be composed of thousands of nodes. Due to the complexity of
systems, even a specialist can make mistakes while building an
attack tree or analyzing its structure, resulting in a chaotic in-
comprehensible attack tree.

Generally, an attack tree connects a child node to its parent
node. Thus, a child and parent have a vertical relationship. How-
ever, some relations exist between horizontal nodes. If the hori-
zontal relationships between nodes are considered, the relation
definition of the nodes on the attack tree becomes more compli-
cated. Additionally, the efficiency becomes lower or defenses
overlap. If we can redefine the horizontal relationships on an at-
tack tree and re-build the tree, a clearer attack tree with a strict
structure could be derived, especially for complicate cases.

Herein we present a new method to rebuild the initial attack
tree by the Interpretive Structural Modeling procedure (abbr.
ISM) [2]. The re-built attack tree can repair incorrect relations
between parent-child nodes and it can effectively connect the re-
lation between nodes. Generating an attack tree with a clear
structure can improve the efficiency of data analysis of a sys-
tem's threat. We show a real example to verify the value of this
method. Our experiment addresses the following research ques-
tions (RQ):
• RQ1: Does revising by ISM ensure that the relations be-

tween parent nodes and child nodes satisfy the necessary
and sufficient condition?

• RQ2: Does restructuring by ISM enhance the degree of ef-
ficiency of the attack tree?

• RQ3: Is the cost to rebuild a new attack tree by ISM worth
the effort?

Section II explains the background of an attack tree and the
motivating example. Section III presents the related work on at-
tack trees. Section IV how our method works and implements
our method using a running example, and Section V presents
discusses our method. Finally, Section VI concludes the paper.

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

II. BACKGROUND

A. Motivating Example
Before explaining our method, we would like to introduce

the motivating example taken from [14]. There is a data
computer in a building. As shown in Fig. 1a, this building in-
cludes two rooms (room1 and room2) with two locked doors
(door1 and door2). There are two keys (key1 and key2) to open
the doors. A camera monitors door2 to make sure no one enters
room2. However, the window can be opened freely and is not
within the camera’s view. The goal for an attacker is to obtain
computer data without detection on the camera.

Based on these conditions, we can draw three successful
scenarios (Fig. 1b). The first is enter room2 through the
window (orange dotted line). The second is to use both key1
and key2; the attacker enters room1 using key1 to open
door1. Once in room1, the attacker disables the camera and
then uses key2 to enter room2 (green dashed line). The third
scenario is the attacker hacks directly into the network (yellow
solid line). An attack tree can be used to clearly model these
three scenarios.

(a)Floor plan (b)Attack scenarios

Fig.1. Motivating example [14]
[14] defines the correctness of an attack tree by nodes re-

lations and confirms it by giving the opposite example, which
does not satisfy the necessary and sufficient relationship
between nodes. Herein we focus on how to revise an attack
tree that does not satisfy the conditions and reduce the amount
of detailed descriptions in the theorem proofs. We slightly
adjust the model for ease of expression.

B. Attack Tree

There are numerous ways to initiate an attack, but most peo-
ple do not realize this. Even if people are aware of such vulner-
abilities, they know little about system security. Due to the in-
creasing complexity of attack motions, it is becoming more dif-
ficult to prevent attacks. Defending against an attack based on
an engineer’s own personal ability is problematic. “Security”
must answer two questions: “Who will attack?” and “How long

is security necessary?” Thus, a method to model threats against
computer systems must be developed. If the attackers are known,
then systems could be protected by presuming their ability and
their attack target. By knowing the probability of attacking mo-
tions, a defense can be mounted by designing these counter-
measures. These situations are why the "attack tree" method is
needed.

To analyze the security of an issue, the attack tree model
must be selected. In our motivating example, we used three types
of nodes:
• OR: OR node means an alternative attack. One of the child

nodes can be satisfied to attack a parent node.
• AND: AND node means a conjunctive attack. All of the

child nodes must be satisfied to attack the parent mode.
• SAND: SAND node means a sequential attack. All of the

child nodes must be satisfied in a specific order to attack
the parent node.

Fig. 2 expresses the three scenarios in Fig. 1b as an attack
tree. To access the computer data, methods can be separated into
physical attacks and network attacks. In the physical attack case,
it can be further separated as go through the door or the window.
To use the door, the camera should be disabled before entering
room2 (node type AND); to enter room2, door1 and door2
should be opened in sequence (node type SAND). The invade
computer subtree can be separated to invade from wireless LAN
or infection malware. These two nodes can be true if at least one
of the leaf nodes is true (node type OR).

Fig.2. Attack tree expressed by scenario
To discuss the relation of nodes, we define the Necessary and

Sufficient Relationship between Parent-Child Nodes and the
Horizontal Relationship

1) Necessary and Sufficient Relationship between Parent-
Child Nodes: The logic relationship between parent-child nodes
is very important in an attack tree. Below are two relation defi-
nitions between parent-child nodes from the attack tree to clarify
the child nodes are conditions that must be satisfied to make the
direct parent node true.

a) Child nodes' commands must be a sufficient condition for
the commands of parent nodes. For an "OR" node, the statement
of the parent node is true when at least one of the child nodes is
reached. For an "AND" node, the statement of the parent node is
true when all child nodes are reached.

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

b) A set of child nodes must be the necessary condition for the
commands of parent nodes. Based on the premise that the attack
tree has integrity when the node type is "OR", the union of child
nodes is true if the parent node is true, but when the node type is
"AND", the intersection of child nodes is true if the parent node
is true.

2) Horizontal relationship: The structure of an attack tree is
like a tree. The connections between nodes are usually defined
as parent-child relationships (vertical relationships). However,
some relations exist between nodes, which are at the same level.
Such relations, which are usually ignored in the relationship def-
inition, are horizontal relationships between nodes. To redefine
the relations in a tree structure, surplus nodes make it more com-
plicated, reducing the efficiency when setting the defense strat-
egy. Horizontal relations are separated into two types as shown
below:

a) Additional contributions: One node can be satisfied if an-
other node on a different branch is true.

b) Similar nodes: The same attack occurs from two leaf nodes.

C. Analyze Attack Tree
There are multiple ways to analyze attack trees. B. Schneier

[3] provided a method to realize loopholes of the system by es-
timating the different node variables. In attack trees, every node
has its own values, which might be continuous or Boolean.
Nodes are decided by different variables such as the lowest qual-
ified attack path for equipment, cheapest attack path, highest
success rate attack path, and lowest ability attack path. We can
also set different weights for variables to get the lowest inte-
grated cost attack tree by the characteristics of the system. In an
attack tree, the root nodes represent the attack target, and the
child nodes are an attack or a parent node's sub-goal. A leaf node
represents an attack that cannot be disassembled.

When these conditions are combined, Gn, which stands for
target node, can be defined. An stands for leaf node (an attack).
λ(n) represents the variable cost at point n. λ denotes a variable
for Risk, Skill, or other factors. For example, Risk(Aa) can be
considered as the risk cost of attack node a.

For a target node Gn, there are Gx, Gy sub-nodes, and the
type of node is OR. The relation function is described as:

𝜆 𝐺𝑛 = 𝑀𝑖𝑛 𝜆 𝐺𝑥 , 𝜆 𝐺𝑦
In Fig. 3a, which shows a very simple attack tree with a target

of "reach room2", there are two attacks: "go through the door"
or "go through the window". We can use the symbols in Fig. 3b
to derive the relation function as:

𝑅𝑖𝑠𝑘(𝐺𝑎) = 𝑀𝑖𝑛{𝑅𝑖𝑠𝑘(𝐴𝑏), 𝑅𝑖𝑠𝑘(𝐴𝑐)}
The minimum risk path is chosen between nodes Ab and Ac.
When Risk(Ab) is bigger than Risk(Ac), the minimum risk path
is Path(Ga, Ac). However, if the parent-child relations are the
opposite (Fig. 3c), then the relation function is:

𝑅𝑖𝑠𝑘(𝐺𝑏) 	= 	𝑀𝑖𝑛{𝑅𝑖𝑠𝑘(𝐴𝑎), 𝑅𝑖𝑠𝑘(𝐴𝑐)}	
Thus, the minimum risk path can be chosen between nodes Aa
and Ac. When Risk(Aa) is greater than Risk(Ac), then the
minimum risk path is Path(Gb, Aa). We found that this path is
not the path of "go through the window", which is actually the
minimum risk path of the system.

(a) correct attack tree (b) Indicate the nodes (c)parent-child relations opposite
Fig.3. Example of analyze an incorrect attack tree

In Fig. 4a, there are three nodes from the top to bottom:
"reach room2"，"go through the door" and "unlock door2", and
all of them satisfied the definition of Necessary and Sufficient
Relationship between Parent-Child Nodes. We changed Fig. 4a
to Fig. 4b by symbolization. When we analyze Fig. 4b, we just
need to analyze Risk(Ac) for getting Risk(Ga). We put figure 4b's
node c on the position of node b's siblings purposely, and adding
node d: "get key2", which has the same relations as node c.
While analyzing the attack tree on Fig. 4c, we need to analyze
these three nodes of risk for each three paths. Although it would
get the same result probably from Risk(Ac) and Risk(Ad), it could
cost much more time to analyze the variable value of surplus
nodes.

(a) correct attack tree (b) Indicate the nodes (c)with horizontal relationship
Fig.4. Example of analyze attack tree

with missing horizontal relationship
By the method from this thesis, we define Necessary and Suf-

ficient Relationship between Parent-Child Nodes and some ig-
norable relations between horizontal nodes. When analyzers find
out these relations, he would re-judge the relationship between
nodes and restructure the attack tree.

Consider the physical attack portion of Fig. 2. To satisfy the
node "go through the door", two conditions are necessary: "de-
activate camera" and "reach room2". However, the condition
"reach the room2 " can be achieved when either "go through the
door" or "go through the window" is true. Based on the result, it
can be said that the condition in this case is a necessary condition
but not a sufficient condition. In other words, there are some ob-
vious logical gaps in the attack tree. Thus, the attack tree should
be revised.

Consider the invade the computer part portion in Fig. 2. Here
"WEP crack" is a child-node belonging to the node "invade from
wireless LAN". However, it can be viewed as child-node belong-
ing to its siblings-node -- "password crack" because the "pass-
word crack" would be true if node "WEP crack" is completed.
Ignoring the relation of additional contributions, makes the at-
tack tree more complicated by increasing of amount of attack
paths, reducing the efficiency of setting the defense strategy. In
the "Infection malware" subtree, it can be observed that node
"disguised as normal software" and node "drive by download"
are the same attack on the system. These kinds of designs are

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

messy and waste defense resources by over-comprehending the
values of the attack motions. To address these problems, nodes
need to be redefined or combined.

In a real situation, the attack tree would be a huge system
with tons of nodes. To prevent the aforementioned problems, the
tree’s path needs to have a clear structure to elucidate the rela-
tions between nodes. In the next section, we offer a new way to
re-build an attack tree with incorrect relations between parent-
child nodes and analyze the horizontal relationships of its nodes.

III. RELATED WORK
Earlier works introduced the concept of an attack tree. A.

Salter et al. [4] described how to characterize adversaries and
map vulnerabilities of an information system. B.Schneier [3]
presented attack tree modeling and analysis by considering cost;
their tree can determine where a system is vulnerable. A. Jurgen-
son and Willemson [5] extended the multi-parameter attack tree
model by considering the skill level, cost, and feasibility of an
attacker to work with interval estimates instead of point esti-
mates. They also discussed how to choose the optimal or an eco-
nomically justified security level. To reduce the visual complex-
ity of an attack graph, Noel et al. [6] described a number of new
attack graph visualization techniques, and their method can be
applied alone or combined into coordinated attack graph views.
Despite being an intuitive aid in threat analysis, attack trees have
yet to be provided with unambiguous semantics. Maui and Oost-
djk [7] used mapping of attack suites to be provided denotational
semantics, which are abstracted from the internal structure of an
attack tree to help participants precisely understand how attack
trees can be manipulated during construction and analysis.

Attack trees can be also used in copyright protection of e-
commerce protocols. Higuero M. V. et al. [8][9] provided a
model called SecDP to solve the threat of ambiguity and avoid
MITM attacks. They are also used in the mobile system fields.
Duhoe Kim et al. [10] used an attack tree to build the analysis
for a LOG analysis system to avoid being attacked on Android
OS smart phones. The attack tree was separated for the pre-phase,
which carried out the steps before an attack, and the post-phase,
which detected malware. It has also been used in smart cars. Alt-
hough few hacking events occurring in a smart car system, it
should be noted that various security threats are invading elec-
tronic systems, especially for automobiles that can be connected
into external networks. Hee-Kyung Kong et al. [11] proposed a
method by modeling a hacking attack logically and creating a
security risk assessment framework to defend, evaluate, and cat-
egorize the security threats and vulnerabilities by attack tree
analysis.

IV. APPROACH
We present a method that not only solves problems to repair

the incorrect relations between parent-child nodes but also re-
defines horizontal relationships between nodes on different
branches. Our method provides a clear, complete structure of the
attack tree through Interpretive Structural Modeling (ISM) pro-
cedure.

A. Interpretive Structural Modeling (ISM)
ISM is a method to confirm complex relations between items

by modeling. For complex issues or systems, the number of
items is huge and the relations between items are complicated.
To express the relations more precisely, we use ISM to present
the relations between items directly and indirectly. By consider-
ing the analyzing issue and system, items are initially defined as
apexes Vi and Vj (i=1, 2, 3 …；j=1, 2, 3 …) for ISM. The edge
with an arrow (Vi, Vj) expresses the relations between two items.
A matrix, which is used to express the connection status for
every pair item, is called a Relation Matrix (A) and it provides a
structural self-interaction matrix (SSIM). Afterward, a reacha-
bility matrix (RX) from SSIM is obtained by calculations. Fi-
nally, we can derive a new model from RX by level partitions.
ISM is a very efficient method. Because it is based on different
situations, the number of relations between items can be reduced
by 50–80% [12]. Additionally, it is a useful tool considering and
thinking more logically on complex issues and situations.

ISM includes the following steps:
1) Graph the Relation Matrix (A) of the analyzed system
2) Generate the Reachability Matrix (RX) through a transfor-

mation of the Relation Matrix
3) Level Partitions
4) Digraph

Step 1: Graph the Relation Matrix (A): In ISM, a participant
or expert familiar with the analysis issue must identify the con-
textual relations among items. Based on these relations, Relation
Matrix A = {aij | i, j=1,2,···, n}is created to express all direct
binary relationships. The value of n is the number of nodes from
the system. All elements are listed in the rows and columns of a
table. If two elements have a direct relation, enter 1 on the table
grid. Otherwise, enter 0. If the column direction is defined as the
predecessor node, then enter 1 on a12 when V1 points to V2 sim-
ilar to Fig. 5a.

(a)Relation Matrix (A) (b) Power of SSIM is k
Fig.5. Example of A and RX

Step 2: Generate the Reachability Matrix (RX): The Reach-
ability Matrix (RX) is used to express whether the relation be-
tween two specific items is direct or indirect. RX can be calcu-
lated as:

A + I 	≠ 𝐴 + 𝐼 ; ≠ ⋯ ≠ 𝐴 + 𝐼 = = 𝐴 + 𝐼 =>? 𝐸𝑞. 1
𝑅𝑋 = 𝐴 + 𝐼 = 𝐸𝑞. 2

"I" is a Unit Matrix. (A+I) to the power of k is RX when (A+I)
to the power of k equals (A+I) to the power of (k+1). A power
of SSIM = 1 means that a direct relationship exists between dis-
cussed items (the connecting route is 1). A power of SSIM = 2
means that the discussed items are connected with a maximum
of 2 routes (passes 1 point). In other words, like in Fig. 5b, when

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

the degree of SSIM is k, the items are connected with at most k
routes, and pass through at most (k-1) items.

Step 3: Level Partitions: We can find the reachability sets
and antecedent sets from every point (element) for the final
reachability matrix. A reachability set is defined as a set
composed of itself and points that it can reach. An antecedent set
is defined as a set composed of itself and points that can reach it.
We can obtain the intersection between these two sets from all
elements, and get the different elements' levels. If the
reachability set and intersection set of the element are the same,
then it would be a top level constructed by ISM. Top level
elements can be deleted from the set to find the new top level
from new set. This tracing step of the top levels is repeated until
all of them are found. The level departure can help build the
graph of ISM model.

Step 4: Digraph: The final step is to draw a new model from
the new obtained elements. First, we draw elements by level. For
example, the top level elements are the root nodes on the attack
tree. Thus, they are put on the level first. Then the elements of
the second level are located on tree's second level. This is re-
peated for the third, fourth level, ..., until all elements are added
to the attack tree. Next the nodes are connected to the Predeces-
sor node to get the final model while removing the indirect links.

B. ISM on Attack Tree
It is necessary to find a relation between elements in the ISM

methodology. To reach the goal, the nature of the contextual re-
lationships among the factors must be identified carefully. To
analyze the factors, a contextual relationship of "leads to" or "in-
fluences" must be chosen. This means that one factor influences
another factor. After confirming the relations between parent-
child nodes, we can use the ISM method to express an attack tree.

The proposed method includes the following steps (Fig. 6):
1) Indicate the nodes.
2) Re-Judge the relation between nodes and graph the Re-

lation Matrix (A)
3) Generate the Reachability Matrix (RX) through a trans-

formation of the Relation Matrix(A)
4) Level Partitions
5) Digraph

Fig.6. Overview of our approach

Step 1: Indicate the nodes: In this step, all related nodes are
expressed and displayed by symbols. Here Fig. 2 is used as an
example. To reduce the computational complexity, the attack
tree is separated into two subtrees: Physical Access in Fig. 7a
and Invade the Computer in Fig. 8a.
• Subtree Physical Access

Step 2: Re-Judge the relation between nodes and graph the
Relation Matrix (A).

Re-Judge the relation between nodes: Analyzer should check
the relation between nodes: previously we mentioned that two
parent-child relationships, "go through the door" and "reach
room2", conflict with the definition Necessary and Sufficient Re-
lationship between Parent-Child Nodes in the physical access
attack part. However, if these are separated and considered sep-
arately, if "reach room2" is true, then "physical access" must be
true. Similarly, if "go through the door" or "go through the win-
dow" is true, then "reach room2" is true. To let all of the nodes
in this subtree satisfy the Necessary and Sufficient Relationship
between Parent-Child Nodes, we should modify the nodes' rela-
tions on an attack tree as follows (see Fig. 7b): Delete the con-
nected line between N2 and N5 and add a line from N1 to N5
because the node "physical access" is true if the node "reach
room2" is true. Moreover, add the lines N5 to N3 and N5 to N2
because "go through the window" or "go through the door" is a
condition, which must be satisfied to make the node "reach
room2" true.

(a)Indicate the nodes (b)Revise the relationship (c)Arrange the structure
 between parent-child nodes

Fig.7. Subtree: Physical Access
 After revising the relationship between parent-child nodes, ar-
range the structure of the attack tree to be less confusing. "Reach
room2" and "enter room2" are parent-child relations with the
same word meaning. Thus, node8 (enter room2) can be removed.
We also change the node type AND to a direct vertical structure.
For SAND, the later order points are the sufficient conditions for
the former order points. Like the attack tree in Fig. 7c, node7
(unlock door2) is necessary for node2 (go through the door) to
be true. Thereby, node4 (deactivate the camera) must be true to
let node7 (unlock door2) be true, and demanding node6 (unlock
door1) must be true to let node4 (deactivate the camera) be true.

Graph the Relation Matrix (A): The table in Fig. 8a lists the
direct relationships after re-judge the relation between nodes of
sub-tree physical access.

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

Step 3: Generate the Reachability Matrix (RX): According
to Eq. 1 and Eq. 2, the Reachability Matrix can be calculated
similar to that in Fig. 8b.

(a)Relation Matrix(A) (b)Reachability Matrix(RX)
Fig.8. A and RX of Physical Access

Step 4: Level Partitions: After obtaining the Reachability
Matrix for each node, the reachability and antecedent sets

are derived. Fig. 9 shows the result using the rule of Level
Partitions. The table helps build the ISM model.

Fig.9. Level Partitions of Physical Access
Step 5: Digraph: In Fig. 13a, a new model is drawn from the

Level Partitions of Physical Access.
• Subtree Invade the Computer

Step 2: Re-Judge the relation between nodes and graph the
Relation Matrix (A).
 Re-Judge the relation between nodes: Analyzer should define
the relations between horizontal nodes: In the attack tree, the
horizontal relations, which are ignored in the original attack tree,
are separated into Additional contribute and Similar (Fig. 10b).
As noted in section II, the attack "WEP crack" can be a condition
that makes the node “password crack” attack complete in the
subtree "invade the computer". It can also be explained that the
“WEP crack” can affect the “password crack” attack. Hence, this
relationship is defined as additional contributions. Thus, a new
path from "password crack" pointing to "WEP crack" can be
added between nodes. Besides, the attack of "deceive to down-
load malware" is a similar motion to the attack of "drive by
download". This relation is defined as a similar relationship. Be-
cause it is unlikely that they would not affect one another, a path
is added between them to express the relation.

(a) Indicate the nodes (b)Define the relationship between
horizontal nodes

Fig.10. Subtree: Invade the Computer

Graph the Relation Matrix (A): Similar to the action with
subtree Physical Access, Fig. 11a shows the Relation Matrix(A)
for subtree Invade the Computer.

Step 3: Generate the Reachability Matrix (RX): Fig. 11b
shows the calculation of the Reachability Matrix (RX) from the
Relation Matrix.

(a)Relation Matrix(A) (b)Reachability Matrix(RX)
Fig.11. A and RX of Invade the Computer

Step 4: Level Partitions: From the Reachability Matrix (RX),
the Level Partitions table is drawn. As shown in Fig. 12, two
nodes, node16 (disguised as normal software) and node17 (drive
by download), are merged into a new node16 and renamed
"drive as a normal software" because they have the same result
in the Reachability Set, Antecedent Set, Intersection Set, and
Level.

Fig.12. Level Partitions of Invade the Computer
Step 5: Digraph: A new attack tree is drawn from Level Par-

titions of Invade the Computer (Fig. 13b).

(a) Model of Physical Access (b) Model of Invade the Computer
Fig.13. Digraph of the two subtrees

V. DISCUSSION
1) RQ1: We separated this RQ into two aspects. The first is

whether the child nodes are sufficient conditions for parent
nodes on the attack tree after the ISM revision. When "go
through the door" or "go through the window" is true, then the
condition "reach room2" must be true. In other words, "go

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

through the door" or "go through the window" refers to "reach
room2". It is trivial that the answer for the statement is true. The
second is whether the child nodes are necessary conditions for
parent nodes in the attack tree after the ISM revision. There are
only two ways ("go through the door" or "go through the win-
dow") that the statement "reach room2" is true. "Reach room2"
must refer to "go through the door" or "go through the window".
Combining the two parts provides a conclusion. Based on the
complete sets of nodes, the relations between parent nodes and
child nodes satisfy necessary and sufficient conditions after re-
vising by ISM method.

However, the complete sets of nodes are affected by other
factors such as knowledge limitations of the tree builder or the
property of each tree system. Sometimes there is an error due to
logical mistakes during the tree restructuring process. To ensure
the relations between parent-child nodes are satisfied with nec-
essary and sufficient conditions on the new attack tree, the rela-
tions should be rechecked after revising.

2) RQ2: When we analyze an attack tree, we usually use the
probability or cost estimating method to determine the values of
possible attacks. For example, Yan Liu [13] mentioned a way to
conduct probability analysis on an attack tree. They produced an
attack tree whose target is "compromise web platform security"
with eight child nodes. In this analysis, they referenced the at-
tacked possibility for each path. These values might come from
the true data, estimated values over time, cost consuming, feasi-
bility, and the difficulty by specialist. When the number of nodes
increases, the work amount to estimate the possibility becomes
larger. Take the true data before as an example, the statistics data
become increasing large as the nodes increase. On the other hand,
when the number of nodes and paths are reduced by analyzing
parallel nodes relations, the probability analysis time is mini-
mized. According to the different situations, if an attack tree has
large number of nodes, then the relations between nodes are
more complex. In this content, the enhancing efficiency is much
more obvious due to the large amount of nodes and paths, which
can be reduced.

3) RQ3: Due to the range of efficiency caused by the difference
in the number of nodes and the difference of analysis methods,
quantitative analysis is difficult. The more nodes present, the
more that nodes can be reduced. Although the ISM matrix be-
comes more complex and harder to calculate manually due to the
increase in nodes, the matrix can be calculated automatically by
programming systems. In other words, it is not an extremely la-
borious task.

VI. CONCLUSION
Attacks are often used as a model analyzing method in sys-

tem security analysis due to the complexity of a system. An at-
tack tree may become very large, which leads to two problems:
1) incorrect logic between parent-child nodes and 2) ignored par-
allel relationships in different branch nodes. The paper presents
a definition between parent-child nodes and suggests a method
to repair an attack tree with an incorrect relation of parent-child
nodes or ignored horizontal relationships.

Our method defines the Necessary and Sufficient Relation-
ship between Parent-Child Nodes: 1) A child node must be the
sufficient condition for parent nodes. 2) A set of child nodes
must be the necessary condition for commands of parent nodes.
Meanwhile, we define two horizontal relationships: additional
and similar. While analyzing an attack tree, we hope that analyz-
ers can start by checking the relations between every child node
from the subtree for parent-child logical relations and the paral-
lel nodes from different subtrees. Analyzers should re-judge the
relations for nodes and restructure the attack tree. Finally, the
restructure attack tree should be double checked. Although the
revision and verification have some costs, they can verify the
accuracy of the attack tree on logical problems, reducing the
number of nodes and paths in an attack tree and enhancing the
analysis efficiency of the attack tree. Moreover, this method is
friendly for beginners as it simplifies the whole system by focus-
ing on the relations between nodes, reducing the burden for users.

Due to the instability in analyzing nodes relations manually,
in the future, we would like to find a rapid way to confirm the
parent-child nodes' relations. Additionally, we plan to dedicate a
program code to the ISM method and make the calculation au-
tomatic in order to decrease the restructuring time and further
improve the efficiency of the system.

VII. REFERENCES
[1] Shin-Jer Yang, "Extended Attack Tree Analysis Method to

Assess the Security Risks on the Website," Journal of Information
Management, pp.1-38, 2012.

[2] Sage, A., "Interpretive Structural Modelling: Methodology for
Large scale Systems", pp.91-164. New York: McGrawHill., 1977

[3] Schneier, "Attack trees, " Dr. Dobb’s Journal, 2001.
[4] C. Salter, O. S. Saydjari, B. Schneier, and J. Wallner, "Toward a

secure system engineering methodolgy, " in Proceedings of the
1998 workshop on New security paradigms. ACM, 1998, pp. 2–
10. B.

[5] A. J¨urgenson and J. Willemson, "Processing multi-parameter
attacktrees with estimated parameter values, " in International
Workshop on Security. Springer, 2007, pp. 308–319.

[6] A. J¨urgenson and J. Willemson, "Serial model for attack tree
computations," in International Conference on Information
Security and Cryptology. Springer, 2009, pp. 118–128.

[7] S. Mauw and M. Oostdijk, "Foundations of attack trees, " in
International Conference on Information Security and Cryptology.
Springer, 2005, pp. 186–198.

[8] Higuero M.V., Unzilla J.J., Jacob E., Saiz P., Luengo D,
"Application of 'Attack Trees' technique to copyright protection
protocols using watermarking and definition of a new transactions
protocol SecDP (Secure Distribution Protocol)," Second
International Workshop on Multimedia Interactive Protocols and
Systems (MIPS), 2004.

[9] Higuero M.V., Unzilla J.J., Jacob E., Saiz P., Luengo D,
"Application of 'attack trees' in security analysis of digital
contents e-commerce protocols with copyright protection,"
Proceedings 39th Annual 2005 International Carnahan
Conference on Security Technology, 2005.

[10] Duhoe Kim1 & Dongil Shin1 & Dongkyoo Shin1 & Yong-Hyun
Kim2," Attack Detection Application with Attack Tree for

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

Mobile System using Log Analysis," Mobile Networks and
Applications, pp. 1-9, 2018.

[11] Hee-Kyung Kong1 · Myoung Ki Hong2 · Tae-Sung Kim3,
"Security risk assessment framework for smart car using the
attack tree analysis," Journal of Ambient Intelligence and
Humanized Computing, Volume 9, Issue 3, pp 531–551, 2017

[12] Jingqi Sun, et al., "Application of Interpretive Structural
Modeling in Enterprise Technovation," DBTA, 2010.

[13] Gabriel Petrica, "Studying Cyber Security Threats to Web
Platforms Using Attack Tree Diagrams," ECAI 2017 –
International Conference – 9th Edition Electronics, Computers
and Artificial Intelligence 29 June -01 July, 2017.

[14] Maxime Audinot, Sophie Pinchinat, Barbara Kordy, "Is My
Attack Tree Correct?," European Symposium on Research in
Computer Security, 2017.

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

