
An integrated graphic tool for developing and testing
DLV programs

S. Perri, F. Ricca, G. Terracina, D. Cianni, and P. Veltri

Dipartimento di Matematica, Università della Calabria, 87036 Rende (CS), Italy
{perri,ricca,terracina}@mat.unical.it,

cianni daniela@yahoo.it, veltri p@libero.it

Abstract. In the last few years, significant improvements characterized state-of-
the-art Answer Set Programming (ASP) systems. It is now wellaccepted that
their applicability is becoming more and more suited for real world applications
requiring complex reasoning tasks. Among the available ASPsystems, DLV re-
cently came up with a large variety of language extensions, front-ends and vari-
ants that significantly widened its range of applicability.This paper presents an
integrated development environment, customized for DLV and some of its ex-
tensions, which aims to simplify both the development-and-test process and the
coupling of this ASP system with DBMSs.

1 Introduction

In the last few years, the development of ASP systems like DLV[1], Smodels [2], GnT
[3], and Cmodels [4] has renewed the interest in the area of non-monotonic reasoning
and declarative logic programming for solving real world problems.

Moreover, the recent application of ASP systems in the areasof Knowledge Man-
agement, Security, and Information Integration [5, 6], hasconfirmed, on the one hand,
the viability of the exploitation of disjunctive logic programming in real application
settings. On the other hand, it has evidenced the lack of tools, like easy-to-use graphi-
cal environments, capable of supporting the programmers inmanaging large and com-
plex projects (where the interaction with database management systems storing large
amounts of data is also a crucial point).

On the contrary, imperative and object oriented programming languages are nowa-
days endowed with a rich set of tools allowing the user to create complex project infras-
tructures and to work on data residing in external databasesin a quite simple way. This
may discourage the usage of the declarative programming paradigm, even if it could
provide the needed reasoning capabilities and, in principle, could significantly simplify
the programming and maintenance tasks.

This paper provides a contribution in this setting. In fact,it presents a graphical pro-
gramming environment, called VISUALDLV, which integrates several tools for devel-
oping, testing and executing logic programs (having possible interactions with external
databases) in a quite simple way.

The development environment is tailored on DLV [1], an ASP system which has
been recently enriched with several enhancements enablingthe treatment of industrially-
relevant applications [5].

The main features of VISUALDLV are:

An integrated graphic tool for developing and testing DLV programs 87

– an easy-to-use integrated graphical environment which drives the programmer dur-
ing all the phases of the implementation of projects based onDLV;

– the ability to perform both a static check (i.e., of the syntax) and a dynamic check
(i.e., debugging) of the developed programs;

– the ability to help the programmer to avoid syntactic errorsduringthe editing phase,
with, e.g., automatic completion features;

– a specific interface which allows the programmer to graphically configure the in-
teraction of DLV with external DBMSs (the system automatically generates the
configuration options enabling this kind of interaction).

It is worth pointing out that, the presented system is a first step towards the imple-
mentation of an integrated development environment and, presently, it provides just the
core functionalities outlined above. However, it has been designed in a modular way,
so that further improvements can be easily integrated and existing functionalities can
be extended. In the following, we first provide some background on the DLV execution
modalities and debugging approach; then we present the developed system.

2 DLV execution modalities

In this section we describe DLV, a state-of-the-art ASP system [1]. In particular, we
focus on three different modalities to invoke DLV: StandardVersion [7],DLVIO and
DLVDB [8]. The first one is the more common way to call DLV. Basically, the in-
put program is supplied by means of text files and the output isprovided on standard
output. The second one adds to the standard version the possibility to configure basic
interactions with one or more databases through ODBC. In this case, a part of the input
can be imported from a DBMS, and part of the output can be exported into a DBMS.
In the last one DLV tightly works with external DBMSs evaluating the programs di-
rectly in mass-memory, where the data resides (with some limitations on the supported
language).

2.1 Standard version

The DLV system is an efficient engine for computing the answersets (one, some, or all)
of its input. The core language of DLV [1] is disjunctive datalog under the answer sets
semantics (also known as stable model semantics [9]), whichhas been enriched with a
number of extensions such as: true negation [10], (strong and weak) constraints [11],
aggregate functions [12], and external function calls [13].

A detailed description of the DLV language is out of the scopeof this paper. The
interested reader is referred to [1, 12, 13]. In order to sketch its syntax, we next present
a very symple example which will be also used throughout the paper to clarify the
presented concepts.

Example 1.Assume that a travel agency needs to derive all the destinations reachable
by an airline company, either by using its aircrafts or by exploiting code-share agree-
ments. Moreover, the direct flights of each company are stored in facts of the form
flight(ID, FromX, ToY, Company), whereas the code-share agreements between

88 S. Perri et al.

companies are stored in facts of the formcodeshare(Company1, Company2, ID);
if a code-share agreement holds betweenCompany1 and theCompany2 for the flight
ID, it means that the flightID is actually provided by an aircraft ofCompany1, but
it can be considered also carried out byCompany2. The DLV program that can derive
all the connections is:

destinations(FromX, ToY, Company) :– flight(ID, FromX, ToY, Company).
destinations(FromX, ToY, Company) :– flight(ID, FromX, ToY, Company2),

codeshare(Company2, Company, ID).
destinations(FromX, ToY, Company) :– destinations(FromX, T2, Company),

destinations(T2, ToY, Company).

2

In the standard execution modality, the input of DLV is stored in one or more text
files. Those files are first parsed to create the internal data structures, which are then
stored in main memory where the entire computation is performed.

The answer sets computation can be split in three steps. In the first step (performed
by the Grounder) the variables present in the input program are eliminated, generating
the so-calledground instantiationof the program, which is a (usually much smaller)
subset of all syntactically constructible instances of therules of the program having
precisely the same stable models. Then, the nondeterministic part of the computation
is performed on this simplified ground program by the Model Generator (MG) module.
The MG searches for candidate answer sets by employing a Davis-Putnam procedure
similar to the ones employed in SAT-solvers. Basically, MG builds the answer set by
tentatively assuming the truth of the literals, and “propagating” the deterministic con-
sequences of those assumptions by applying suitable inference rules. If an assumption
(also called choice point) leads to an inconsistency the system goes back to modify
exactly those choice points that caused the inconsistency.The process continues un-
til a candidate answer set is found or all the possible choices have been tried. Finally,
each candidate answer set (which has been found by the MG) is analyzed by the Model
Checker (MC), which verifies its stability (w.r.t. the Gelfond-Lifschitz transformation
[9]). If the stability check succeeds then the system outputs the answer set; otherwise
the MG continues its search by modifying the assumptions which caused the stability
check failure.

2.2 DLV IO

In this execution modality, the system allows input facts tobe (possibly complex) views
on database tables, which are stored in different DBMSs; moreover, it allows (parts of)
the results of the execution to be exported in database relations. The logic program
is evaluated completely in main-memory with the same evaluation strategy employed
in the standard version; this allowsDLVIO to support completely the DLV language
and all its extensions (like strong and weak constraints, aggregate functions, external
function calls, etc.), with only minor restrictions (see below).

Intuitively,DLVIO can be exploited when the user has to perform complex reasoning
tasks but the data is available in database relations, or theoutput must be permanently
stored in a database for further elaborations.

In order to perform these tasks, two built-in commands are introduced in the DLV
syntax, namely the #import and the #export commands:

An integrated graphic tool for developing and testing DLV programs 89

#import(databasename,“username”,“password”,“query”,predname, typeConv).
#export(databasename,“username”,“password”,predname,tablename).

An #import command retrieves data from a table “row by row” through thequery
specified by the user in SQL and creates one atom for each selected tuple. The name
of each imported atom is set topredname, and is considered as a fact of the program.
typeConvspecifies the data conversion rules to be applied for converting database types
into DLV data types.

The #export command generates a new tuple intotablenamefor each new truth
value derived forprednameby the program evaluation. Both commands require that an
ODBC connection withdatabasenamehas been previously set up.

Note that if a program contains at least one #export command,the system will be
able to compute only the first answer set.

A description ofDLVIO and its functionalities can be found in [8]; moreover, the
system, along with a manual and some examples, are availablefor download at the
addresshttp://www.mat.unical.it/terracina/dlvdb.

Example 2.Consider the scenario introduced in Example 1, and assume that the in-
formation about direct flights (factsflight) are stored in a relationflight rel(ID,

FromX, ToY, Company) of the databasedbAirports; whereas the code-share agree-
ments between companies (factscodeshare) are stored in a relationcodeshare rel

(Company1, Company2, ID) of another databasedbCommercial. Finally, assume
that, for security reasons, travel agencies are not allowedto directly access the databases
dbAirports anddbCommercial, and, consequently, it is necessary to store the output
result in a relationcomposedCompanyRoutesbelonging to another databasedbTravel-
Agency (accessible by the travel agencies).

To this end we must add the following directives to the DLV program of Example 1:

#import(dbAirports,“airportUser”,“airportPasswd” , “SELECT * FROM flight rel”, flight,
type : U INT, Q CONST, QCONST, QCONST).

#import(dbCommercial,“commUser”,“commPasswd” , “SELECT * FROM codesharerel”,
codeshare, type : QCONST, QCONST, UINT).

#export(dbTravelAgency,“agencyName”,“agencyPasswd”,destinations, composedCompanyRoutes).

The first two commands maps the predicateflight to the relationflight rel of
dbAirports, and the predicatecodeshare to the relationcodeshare rel of dbCom-
mercial; the last one maps the predicatedestinations to the relationcomposed-
CompanyRoutes of dbTravelAgency. 2

2.3 DLV DB

The user needing this execution modality has its data storedin (possibly distributed)
database tables and wants to carry out some reasoning on them; however the amount
of such data, or the amount of facts the reasoning generates on them, is such that the
evaluation can not be carried out in main-memory. Then, the only way out is to evaluate
the program directly in mass-memory.

Three main peculiarities characterize the system in this execution modality:(i) its
ability to evaluate logic programs directly and completelyon databases with a very

90 S. Perri et al.

Auxiliary-Directives ::= Init-section [Table-definition]+ [Query-Section]?
[Final-section]*

Init-Section ::=USEDB DatabaseName:UserName:Password [System-Like]?.
Table-definition ::=

[USE TableName [(AttrName [, AttrName]*)]? [AS (SQL-Statement)]?
[FROM DatabaseName:UserName:Password]?
[MAPTO PredName [(SqlType [, SqlType]*)]?]?.
|
CREATE TableName [(AttrName [, AttrName]*)]?
[MAPTO PredName [(SqlType [, SqlType]*)]?]?
[KEEP_AFTER_EXECUTION]?.]

Query-Section ::= QUERY TableName.
Final-section ::=

[DBOUTPUT DatabaseName:UserName:Password.
|
OUTPUT [APPEND | OVERWRITE]? PredName [AS AliasName]?
[IN DatabaseName:UserName:Password.]

System-Like ::= LIKE [POSTGRES | ORACLE | DB2 | SQLSERVER | MYSQL]

Fig. 1. Grammar of the auxiliary directives.

limited usage of main-memory resources,(ii) its capability to map program predicates
to (possibly complex and distributed) database views, and(iii) the possibility to easily
specify which data is to be considered as input or as output for the program. As for
DLVIO, also inDLVDB access to DBMSs is carried out through ODBC.

Currently,DLVDB does not fully support the DLV language. In particular, only
disjunction free stratified programs (possibly with built-ins and aggregate functions)
are supported. However, it allows handling significantly greater amounts of data w.r.t.
DLV andDLVIO with also important improvements in query answering times.

In order to properly carry out the evaluation, this execution modality requires some
explicit specifications for the mappings between input and output data and program
predicates, as well as proper indications for the temporaryrelations possibly needed for
the mass-memory evaluation. The grammar in which these directives must be expressed
is shown in Figure 1.

Intuitively, the user must specify a working database in which the system has to
perform the evaluation (theInit-Section in the grammar). Moreover, he can spec-
ify a set of table definitions, each of which must be mapped into one of the program
predicates. Facts can reside on separate databases or they can be obtained as views on
different tables. Attribute type declaration is needed only if the program must carry out
arithmetic operations on them.USE andCREATE directives can be exploited to specify
input and output data. Finally, the user can choose to copy the entire output of the eval-
uation or parts thereof in a database different from the working one by someOUTPUT
directives.

Example 3.Consider again the scenario introduced in Examples 1 and 2, and suppose
that, due to a huge size of input data, it is not possible to perform the evaluation in main-
memory. In order to evaluate the program in mass-memory (on aDBMS), the auxiliary
directives shown in Figure 2 should be used. Here, the first line is theInit-Section
and states that the evaluation must be carried out in a database nameddlvdb. The two
USE directives are equivalent to (but more precise than) the #import commands of Ex-
ample 2. Finally, theOUTPUT directive is equivalent to the #export command of Exam-
ple 2. 2

An integrated graphic tool for developing and testing DLV programs 91
USEDB dlvdb:myname:mypasswd.
USE flight_rel (ID, FromX, ToY, Company) FROM dbAirports:airportUser:airportPasswd
MAPTO flight (integer, varchar(255), varchar(255), varchar(255)).
USE codeshare_rel (Company1, Company2, ID) FROM dbCommercial:commUser:commPasswd
MAPTO codeshare (varchar(255), varchar(255), integer).
CREATE destinations_rel (From, To, Company)
MAPTO destinations (varchar(255), varchar(255), varchar(255)) KEEP_AFTER_EXECUTION.
OUTPUT destinations AS composedCompanyRoutes IN

dbTravelAgency:agencyName:agencyPasswd.

Fig. 2. Auxiliary directives for Example 1.

3 Debugging DLV Programs

Debugging is the process of locating and fixing known errors (which are commonly
called “bugs”) on both computer programs and hardware devices. Unfortunately, de-
bugging is difficult to be carried out due to the extremely high number of causes for
a bug. As a consequence, techniques and tools (debuggers) helping the programmer to
deal with this problem must be associated with each programming language.

However, while debugging an imperative program can be carried out by monitor-
ing its execution (usually with a step-by-step strategy), debugging a program with a
declarative semantics must follow a completely different approach. As an example, the
notion of “unexpected” behaviour is substantially different comparing DLV and C++
programs. The absence of an intuitive operational semantics makes it harder to under-
standwhy the results of a declarative program are not the expected ones.

Intuitively, a bug in a DLV programP is a difference between what is actually mod-
elled byP and what the programmer was planning to model withP . Examples of bugs
of a DLV program are an unexpected number of answer sets or thepresence/absence of
a literal in a specific answer set.

The reasoning above clearly points out that, in a declarative programming setting,
even what must be meant for debugging is not obvious (as also pointed out by [14, 15]).
In what follows, we consider that a debugger for DLV must allow the programmer to
understand the “reasons” which “caused” the derivation of the various literals in an
answer set or, in absence of it, to have a justification for thefailure.

The DLV debugger we developed in this work uses information collected during
the program evaluation, especially in the Model Generationphase (see Section 2.1).

In more detail, the MG module of DLV, introduced in Section 2.1, exploits a so-
called backjumping (or non-chronological backtracking) technique (described in [16]),
based on the ability to detect and to undo, during the backtracking phase, the choices di-
rectly causing an inconsistency. This technique constructs a data structure, calledRea-
son Table, which stores for each literal the choices implying its presence/absence in
the current (partial) answer set. The Reason Table is built (and updated) during the
search, according to the reason calculus technique presented in [16]. The information
stored in the Reason Table is directly used in the debugging modality to justify the pres-
ence/absence of a literal in an answer set (or the unsatisfiability of the program). Due
to space limitations we cannot describe here the whole process of reasons computation;
rather, we try to give an intuition with an example.

Example 4.Let P be the following program

a ∨ b. c :- a. d :- b.

92 S. Perri et al.

At a certain point of the MG computation,a is chosen as true and its truth value is
propagated trough the program rules, deriving truth valuesfor other atoms. Obviously,
in this case,c andnot b are derived as true. Thus, intuitively, we set in the Reason Table
a as reason forc. But, what about the reason ofa? We say thata is a choice and that its
reason is itself. 2

When DLV starts in debug mode, the main computation stops as soon as an answer
set has been found, or when it is detected that no answer set can be found, and the
system waits for some user command. The available commands are:why, why unstable,
nextmodel, print model, print instantiation, andquit. The first one can be used to know
the choices implying a literalL (it can be read as “why is L in current model?”); the
second command can be used to investigate why a program is unsatisfiable. In this case,
the system reports the reason causing the last inconsistency found during the search.
The remaining commands can be used to ask the system for looking for another answer
set, printing the current answer set, printing the ground instantiation, and stopping the
system. Currently,DLVDB does not support debugging, because it exploits a completely
different (mass-memory based) evaluation strategy. The next example shows the usage
of commandswhy, andwhy unstable.

Example 5.Consider again the programP of Example 4. In order to know why literalc

appears in one of the answer sets ofP we can use the commandwhy (c). This command
will return a indicating thatc is in the current model because of the choice ofa.

Now, let add toP the following two strong constraints

:- c, not d. :- d, not c.

Clearly, the program has no answer set. In fact, if we choosea as true the first constraint
is violated (i.e.a caused the inconsistency, and this can be easily obtained bylooking in
the reason table); similarly, if we chooseb the second constraint is violated (i.e.b caused
the inconsistency). Assuming that the last choice actuallymade during the computation
is b then the commandwhy unstablereturnsb. 2

4 System Description

4.1 Functionalities

The functionalities implemented in VISUALDLV borrow several ideas from the wide
variety of well known integrated tools available for developing programs with impera-
tive languages (such as C++ and Java). The interesting innovation is the adaptation of
such ideas to the declarative world, providing a wide set of features to assist the user in
developing, configuring and testing DLVprojects.

The main functionalities provided graphically by VISUALDLV are:

– Project definition. It allows to gather in a single logical unit several DLV program
files, auxiliary directives and configuration options.

– Automatic completion. The editing of DLV programs and auxiliary directives is
simplified by this functionality which suggests the user howto complete the por-
tions of programs he is writing.

An integrated graphic tool for developing and testing DLV programs 93

Fig. 3.The general structure of the system interface.

– Dynamic syntax checking. This functionality checks the syntactical correctness of
the program during its development, warning the user in caseof errors.

– Configuration of the interactions with the databases. It allows the user to easily,
and graphically, specify which input data resides in external databases, and which
parts of the program output must be permanently stored in a database.

– Configuration of the execution. It allows to select the execution options for DLV.
– Presentation of results. The output of the program (either its answer sets, or the

database table contents) can be visualized within the same environment.
– Debugging. This functionality allows the user to interact with DLV in order to

understand why a program does not produce the expected output.

In the following, we describe in more detail system’s functionalities, using some
screen-shots of the system to show how it works.

Interface overview
The general structure of the system interface is illustrated in Figure 3. The central

area is the main editing area, where DLV programs and auxiliary directives can be
typed. The left part of the interface is dedicated to the database management; in par-
ticular, as it will be more clear in the following, the list ofthe databases included in
the project, as well as some database management features are located in this portion
of the interface. The right part is dedicated to providing the summary of the concepts
(atoms and predicates) defined in the currently open DLV programs and can be used
as a support for editing. The bottom part contains two panelsallowing the system to
provide messages to the user, namely awarningpanel, collecting all warning messages,
and aconsolepanel showing the output of the programs. Finally, in the upper part of
the interface, classical menus and toolbars allow the user to access all the features of
the system.

Project definition
Declarative programming allows specifying in a natural waycomplex problems; it

is true. However, when the application scenario is composedby several sub-problems or

94 S. Perri et al.

Fig. 4. The creation of a new project.

it requires the application of different reasoning modulesthe user can be easily involved
with several program components, which should be developedand tested separately, but
which logically belong to the same project.

Moreover, the various kinds of DLV execution modality described in Section 2 may
require different kinds of interaction of the user with the GUI (e.g., the standard DLV
version does not require information about external databases, which, on the contrary,
is necessary forDLVDB andDLVIO) and different kinds of invocation parameter.

In order to face these issues, our system introduces the notion of project, i.e. a col-
lection of DLV programs, auxiliary directives, database connections and configuration
options defining, as a whole, a complete project.

Figure 4 shows the interface allowing the definition of a new project. A project is
characterized by aname; all its data is put in a folder having this name. Finally, the
user has to specify the project type, which determines the DLV execution modality to
exploit, and the kinds of interaction expected between the user and the system. In Figure
4 the user is choosing to create aDLVDB project with namedemoAirports.

Automatic completion
Following the success of other systems for imperative programming (like Visual

C++, Eclipse, etc.) our system provides a functionality that suggests the user how to
complete the portions of programs he is writing, just duringthe typing.

It is worth pointing out that imperative languages have bothexplicit data typing and
fixed language constructs; this allows a quite straightforward definition of lists of legal
keywords or of user-defined variables to be used in the automatic completion facilities.

On the contrary, declarative languages in general, and DLV in particular, do not
comprise such features and, consequently, it is less evident what the automatic com-
pletion functionality must suggest to the user. In our system, the automatic completion
works on what has been “declared” by the programmer up to thattime; in other words, it
works on the list of atoms previously specified in the program. Figure 5a illustrates this
functionality; each time a rule is typed, it is parsed and theatoms it contains are added
to the list of atoms defined by the user. Then, when the user is writing a new rule, the
system shows a pop-up window where an atom is highlighted if its prefix corresponds
to what the user is typing. Note that this functionality significantly simplifies the devel-
opment of complex programs constituted by several rules andatoms. As an example,
consider the program of Example 1 and assume that the user (without the support of

An integrated graphic tool for developing and testing DLV programs 95

(a) Program completion (b) Auxiliary directives completion

Fig. 5. The automatic completion feature.

the automatic completion) typesdestination instead ofdestinations; there is no
way for an automatic checker to understand whether the user intention was to define a
new conceptdestination or if he just mistyped the predicate namedestinations.
Helping to prevent these kinds of errorsduring the programming phase, may allow the
user to save a lot of time in the testing phase!

The same functionality is provided by the system also for thedefinition of the aux-
iliary directives, necessary forDLVDB projects. In this case, the automatic completion
is more context sensitive, because the auxiliary directives are characterized by a precise
grammar (see Figures 1 and 5b).

Dynamic syntax checking
When the user types a rule, it is parsed by the parsing module and its syntactical

correctness is verified. If an error is identified, a message is displayed in the warning
panel. Note that these warning messages do not block the userinteraction; this is im-
portant in order to let the system accommodate also to further extensions of the DLV
language currently not expected by the parser.

Presently, only the correctness of the syntax is checked; however, we plan to extend
this feature to carry out more refined checking tasks. As an example, one of the most
frequent errors in developing datalog rules is the mistyping of a variable name involved
in a join; in this case, the rule is syntactically correct, but it contains a semantic error. If
the system would warn the user about the presence of variables in some atom not joined
with any other atom of the rule, the user could easily check whether this situation is
wanted or it is the result of a mistyped variable name.

Interaction with external databases
As pointed out in the previous section,DLVIO and DLVDB extend the capabili-

ties of DLV allowing various kinds of interactions with external databases via ODBC.
Our system provides various functionalities aiming to simplify the correct configuration
of DLVIO andDLVDB. In more detail, it provides both functionalities for accessing,
querying and manipulating data residing in external databases, and functionalities for
graphically compiling the auxiliary directives.

Figure 6 illustrates some of the capabilities for accessingand querying data residing
in external databases. Each database is accessed via ODBC and, consequently, in order
to access it, the database name, the user and password for it must be supplied. For
each opened database, the list of tables and their structureare shown. Moreover, the

96 S. Perri et al.

Fig. 6. Interaction with external databases.

user can visualize the content of the various tables (in the Figure, the content of table
flight rel is shown). Finally, other editing operations can be carriedout, such as
the execution of SQL statements (including CREATE or ALTER statements) and table
deletion. In other words, the system provides a restricted (but common) set of database
management features.

Concerning the support in compiling auxiliary directives,even ifDLVDB provides
several simplifications in their specification (see the manual on the system’s web site),
writing them by hand could by quite hard for a non specialist.For this reason, our
system provides both the automatic completion facility andan automatic generation
feature for such directives. Figures 5b and 7 graphically show both of them.

In particular, Figure 5b illustrates an example of automatic completion for theUSEDB
directive; here, the grammar specifies that after theUSEDB keyword the database con-
nection parameters must be specified. Then, the system suggests such information,
based on the databases currently open in the project.

Figure 7 illustrates the form to automatically create aUSE directive. It can be acti-
vated with a right-click on the table that must be “used” as input in the program; the
system automatically retrieves from the database all the information necessary to gener-
ate the directive. Moreover, it provides the user with a preview of it, in order to let him
check the correctness.CREATE directives can be generated analogously; in this case, the
user must select one of the predicates listed in the right part of the main interface.

Configuration of project execution
The execution of a DLV program can be often a tricky task for a non specialist; in

fact, the wide range of extensions developed for DLV in the last ten years produced a
wide set of options that can be specified within the command line. Our system deals
with this situation providing the comprehensive set of DLV options in a user-friendly

An integrated graphic tool for developing and testing DLV programs 97

Fig. 7.Automatic generation of auxiliary directives.

Fig. 8.Options for the execution of DLV programs.

fashion, as shown in Figure 8. The user can choose graphically the needed options and
the system automatically generates the corresponding portion of command line. The
system is also open to further extensions of DLV allowing theuser to input personalized
execution options. This configuration phase can be carried out once and for all the runs
of the current project.

After this, when the user wants to run his project, the systemproposes him the list of
program files currently active, and the user can choose thoseones that must be included
in the current run. Moreover, an expert user can personalizethe command line proposed
by the system, if he think it is necessary.

Presentation of results
During the execution of DLV (resp.,DLVIO, DLVDB) the output is redirected to the

consolepanel, located in the lower part of the interface (see Figure3) in such a way
that the user can check the program output from the same environment. Moreover, the
output redirected to database tables inDLVIO or DLVDB can be analyzed as illustrated
in Figure 6.

98 S. Perri et al.

Fig. 9. The Debugger graphical interface.

Debugging of a Program
The debugging of a program is, in general, a crucial task in the development of an

application. In VISUALDLV it can be carried out through a graphic interface (see Figure
9); this is promptly displayed when the user asks to run DLV indebugging mode. In
this case, VISUALDLV transparently adds to the invocation parameters the “-debug”
option. Figure 9 shows the first model found by DLV for the program:

a(X) ∨ b(X) :- #int(X). c(X):-a(X), X<3. #maxint(10).

and the answer of the debugger to the user request “print instantiation”.
All the debugging commands available for the user can be activated with the menus

on the left side of the interface, as shown in Figure 9; these are automatically translated
and forwarded to DLV in the proper format (as XML tags).

Note that, the debugger interface is a non-modal window, so that the programmer
can contemporarily look at the input program during a debugging session (without the
need to stop the debugger). However, the debugger must be re-launched after any mod-
ification to the input program is applied.

4.2 Architecture

The architecture of the system is shown in Figure 10. The Graphical User Interface
(GUI) allows the user to access all the system’s functionalities. These are implemented
by five main modules.

The Parser, is responsible of translating DLV programs and auxiliary directives,
taken both from the user interface and by pre-existing files,in suitable internal data
structures. These are currently used for the automatic completion and the dynamic syn-
tax checking features, but can be the basis also for more refined functionalities (e.g., a
graphical representation of the dependencies between program predicates, etc.).

The Editor module implements classical file editing operations and provides the
automatic completion feature.

The DB Connection Handler, manages all the interactions of the system with the
external databases, such as ODBC connections, table contents viewing, database query-

An integrated graphic tool for developing and testing DLV programs 99

Fig. 10.The general architecture of the system.

ing and manipulation, etc. Moreover, it interacts with the GUI for the generation of the
auxiliary directives.

TheConfiguration Handleris responsible of storing and managing all configuration
information of the current project. In particular, it takesinto account both the project
typology and the options specified by the user through the interface, to compose the
correct command line needed to invoke DLV (resp.,DLVIO, DLVDB).

TheDLV Executorinvokes the proper versions of DLV (including the debugging
version) and redirects the corresponding output (possiblyreformatted) to the GUI.

Note that, the proposed tool might be extended in order to support other flavors of
ASP, e.g, the Smodels language. This can be done by adding both specialized parser
and executor modules1.

5 Conclusions

In this paper we have presented a graphic integrated environment, called VISUALDLV,
for the development of DLV applications. Our system represents a first step toward the
implementation of an integrated and complete suite of toolsfor a DLV developer. It in-
tegrates many interesting features which help the programmers during the development
phases: editing, configuration, interaction with externalDBMS, debugging, and deploy-
ment. We are currently working on several improvements of the existing functionalities
(e.g. enabling drag-and-drop facilities for the generation of DLVDB directives, etc.),
and we are planning the introduction of additional capabilities, such as a graphical rep-
resentation of program dependencies and a tree view of answer sets.

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562

2. Niemelä, I., Simons, P., Syrjänen, T.: Smodels: A System for Answer Set Programming. In:
NMR’2000 (2000)

1 In the interface, we can deal with that by adding a new kind of project, let say Smodels project.

100 S. Perri et al.

3. Janhunen, T., Niemelä, I.: Gnt - a solver for disjunctivelogic programs. In: Proceedings of
the Seventh International Conference on Logic Programmingand Nonmonotonic Reasoning
(LPNMR-7). LNCS 2923

4. Lierler, Y.: Cmodels for Tight Disjunctive Logic Programs. In: W(C)LP 19th Workshop on
(Constraint) Logic Programming, Ulm, Germany. Ulmer Informatik-Berichte, Universität
Ulm, Germany (2005) 163–166

5. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (2005) 915–917

6. Massacci, F.: Computer Aided Security Requirements Engineering with ASP Non-
monotonic Reasoning, ASP and Constraints, Seminar N 05171.Dagstuhl Seminar on Non-
monotonic Reasoning, Answer Set Programming and Constraints (2005)

7. Faber, W., Pfeifer, G.:DLV homepage (since 1996)http://www.dlvsystem.com/.
8. Terracina, G., Leone, N., Lio, V., Panetta, C.: Adding efficient data management to logic

programming systems. In: Proc. of 16th International Symposium on Methodologies for
Intelligent Systems (ISMIS 2006), Bari, Italy, Lecture Notes in Artificial Intelligence (4203),
(2006) 524–533

9. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Logic
Programming: Proceedings Fifth Intl Conference and Symposium, Cambridge, Mass., MIT
Press (1988) 1070–1080

10. Buccafurri, F., Leone, N., Rullo, P.: Stable Models and their Computation for Logic Pro-
gramming with Inheritance and True Negation. JLP27(1) (1996) 5–43

11. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
TKDE 12(5) (2000)

12. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational Properties of
Logic Programs with Aggregates. In: Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI-05). (2005) 406–411

13. Calimeri, F., Ianni, G.: External sources of computation for Answer Set Solvers. In: LP-
NMR’05. LNCS 3662

14. Brain, M., Vos, M.D.: Debugging Logic Programs under theAnswer Set Semantics. In:
Proceedings ASP05 - Answer Set Programming: Advances in Theory and Implementation,
Bath, UK (2005)

15. El-Khatib, O., Pontelli, E., Son, T.C.: Justification and debugging of answer set programs
in ASP. In: Proceedings of the Sixth International Workshopon Automated Debugging,
California, USA, ACM (2005)

16. Ricca, F., Faber, W., Leone, N.: A Backjumping Techniquefor Disjunctive Logic Program-
ming. AI Communications19(2) (2006) 155–172

