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Abstract. In the last few years, significant improvements charaaedristate-of-
the-art Answer Set Programming (ASP) systems. It is now aetiepted that
their applicability is becoming more and more suited fol wearld applications
requiring complex reasoning tasks. Among the available Agfems, DLV re-
cently came up with a large variety of language extensiaustfends and vari-
ants that significantly widened its range of applicabilitisis paper presents an
integrated development environment, customized for DLW some of its ex-
tensions, which aims to simplify both the development-tasi-process and the
coupling of this ASP system with DBMSs.

1 Introduction

In the last few years, the development of ASP systems like [DJVSmodels [2], GnT
[3], and Cmodels [4] has renewed the interest in the area @fmonotonic reasoning
and declarative logic programming for solving real worldiglems.

Moreover, the recent application of ASP systems in the asé&nowledge Man-
agement, Security, and Information Integration [5, 6], baisfirmed, on the one hand,
the viability of the exploitation of disjunctive logic progmming in real application
settings. On the other hand, it has evidenced the lack o ttiké easy-to-use graphi-
cal environments, capable of supporting the programmersainaging large and com-
plex projects (where the interaction with database managésystems storing large
amounts of data is also a crucial point).

On the contrary, imperative and object oriented programrtanguages are nowa-
days endowed with a rich set of tools allowing the user totereamplex project infras-
tructures and to work on data residing in external databiasgguite simple way. This
may discourage the usage of the declarative programmiragdjgam, even if it could
provide the needed reasoning capabilities and, in priacguuld significantly simplify
the programming and maintenance tasks.

This paper provides a contribution in this setting. In fitqiresents a graphical pro-
gramming environment, callediSUALDLV, which integrates several tools for devel-
oping, testing and executing logic programs (having pdssgitteractions with external
databases) in a quite simple way.

The development environment is tailored on DLV [1], an ASBtegn which has
been recently enriched with several enhancements endbérngeatment of industrially-
relevant applications [5].

The main features of MUALDLYV are:
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— an easy-to-use integrated graphical environment whickedithe programmer dur-
ing all the phases of the implementation of projects basedlow;

— the ability to perform both a static check (i.e., of the syhi@nd a dynamic check
(i.e., debugging) of the developed programs;

— the ability to help the programmer to avoid syntactic ercinsngthe editing phase,
with, e.g., automatic completion features;

— a specific interface which allows the programmer to graglyic@nfigure the in-
teraction of DLV with external DBMSs (the system automdljcgenerates the
configuration options enabling this kind of interaction).

It is worth pointing out that, the presented system is a firgh $owards the imple-
mentation of an integrated development environment a$gmtly, it provides just the
core functionalities outlined above. However, it has beesighed in a modular way,
so that further improvements can be easily integrated arstirex functionalities can
be extended. In the following, we first provide some backgdboan the DLV execution
modalities and debugging approach; then we present théogedesystem.

2 DLV execution modalities

In this section we describe DLV, a state-of-the-art ASPeysf1]. In particular, we
focus on three different modalities to invoke DLV: Stand¥eaision [7],DLVC and
DLVPE [8]. The first one is the more common way to call DLV. Basicatlye in-
put program is supplied by means of text files and the outpptasided on standard
output. The second one adds to the standard version thebpitg$d configure basic
interactions with one or more databases through ODBC. sndise, a part of the input
can be imported from a DBMS, and part of the output can be ¢ggddnto a DBMS.
In the last one DLV tightly works with external DBMSs evalunagf the programs di-
rectly in mass-memory, where the data resides (with somialiions on the supported
language).

2.1 Standard version

The DLV system is an efficient engine for computing the ansse¢s (one, some, or all)
of its input. The core language of DLV [1] is disjunctive dataunder the answer sets
semantics (also known as stable model semantics [9]), wiastbeen enriched with a
number of extensions such as: true negation [10], (strodgwaak) constraints [11],
aggregate functions [12], and external function calls [13]

A detailed description of the DLV language is out of the scopthis paper. The
interested reader is referred to [1, 12, 13]. In order tocdkés syntax, we next present
a very symple example which will be also used throughout thgep to clarify the
presented concepts.

Example 1.Assume that a travel agency needs to derive all the destirsateachable

by an airline company, either by using its aircrafts or byleiting code-share agree-
ments. Moreover, the direct flights of each company are dtordacts of the form
flight(ID, FromX, ToY, Conpany),whereasthe code-share agreements between
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companies are stored in facts of the foroodeshar e( Conpany1, Conpany2, |D);
if a code-share agreement holds betwéempanyl and theCompany?2 for the flight
1D, it means that the flighi D is actually provided by an aircraft @fompanyl, but
it can be considered also carried out®@ympany?2. The DLV program that can derive
all the connectionsiis:
destinations(FromX, ToY, Company) :— flight(ID, FromX, ToY,Company).
destinations(FromX, ToY, Company) :— flight(ID, FromX,ToY, Company2),
codeshare(Company2, Company, ID).
destinations(FromX, ToY, Company) :— destinations(FromX, T2, Company),

destinations(T2, ToY, Company).
O

In the standard execution modality, the input of DLV is stbite one or more text
files. Those files are first parsed to create the internal datatgres, which are then
stored in main memory where the entire computation is peréal.

The answer sets computation can be split in three stepse lfirgi step (performed
by the Grounder) the variables present in the input progreneiminated, generating
the so-calledground instantiatiorof the program, which is a (usually much smaller)
subset of all syntactically constructible instances of ihles of the program having
precisely the same stable models. Then, the nondeteriipastt of the computation
is performed on this simplified ground program by the Modeh&ator (MG) module.
The MG searches for candidate answer sets by employing a{Patham procedure
similar to the ones employed in SAT-solvers. Basically, M@lds the answer set by
tentatively assuming the truth of the literals, and “progtéitg” the deterministic con-
sequences of those assumptions by applying suitable mdfenailes. If an assumption
(also called choice point) leads to an inconsistency théesygoes back to modify
exactly those choice points that caused the inconsistai®y.process continues un-
til a candidate answer set is found or all the possible clsdiewe been tried. Finally,
each candidate answer set (which has been found by the M@aligzed by the Model
Checker (MC), which verifies its stability (w.r.t. the Getii-Lifschitz transformation
[9]). If the stability check succeeds then the system ottt answer set; otherwise
the MG continues its search by modifying the assumptionglwvbaused the stability
check failure.

2.2 pwvio

In this execution modality, the system allows input factbedqpossibly complex) views
on database tables, which are stored in different DBMSsemar, it allows (parts of)
the results of the execution to be exported in databasemesatThe logic program
is evaluated completely in main-memory with the same evanatrategy employed
in the standard version; this allovid V¢ to support completely the DLV language
and all its extensions (like strong and weak constraintgregate functions, external
function calls, etc.), with only minor restrictions (seddve).

Intuitively, DLV/© can be exploited when the user has to perform complex re@goni
tasks but the data is available in database relations, ayutput must be permanently
stored in a database for further elaborations.

In order to perform these tasks, two built-in commands amduced in the DLV
syntax, namely the #import and the #export commands:
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#import(databasename,“username”,“password”,“quergdname, typeConv).

#export(databasename,“username”,“password”,predjtabhename).

An #import command retrieves data from a table “row by rowbtigh thequery
specified by the user in SQL and creates one atom for eacheslemle. The name
of each imported atom is set ppednameand is considered as a fact of the program.
typeConwspecifies the data conversion rules to be applied for cangafatabase types
into DLV data types.

The #export command generates a new tuple faldenamefor each new truth
value derived foprednameoy the program evaluation. Both commands require that an
ODBC connection witidatabasenamieas been previously set up.

Note that if a program contains at least one #export comnthedsystem will be
able to compute only the first answer set.

A description ofbLV/? and its functionalities can be found in [8]; moreover, the
system, along with a manual and some examples, are avaftabtiownload at the
addressitt p: // www. mat . uni cal . it/terracina/dl vdb.

Example 2.Consider the scenario introduced in Example 1, and assuatefté in-
formation about direct flights (factd i ght ) are stored in a relatioinl i ght _rel (1D,
FronX, ToY, Conpany) ofthe databas#bAi r port s; whereasthe code-share agree-
ments between companies (factaleshar e) are stored in a relatiotodeshar e_r el
(Conpanyl, Conpany2, |D) of another databasthCommer ci al . Finally, assume
that, for security reasons, travel agencies are not alldavditectly access the databases
dbAi r por t s anddbConmer ci al , and, consequently, it is necessary to store the output
resultin a relatiomonposedConpanyRout es belonging to another databati€Tr avel -
Agency (accessible by the travel agencies).

To this end we must add the following directives to the DLV gnam of Example 1:

#import(dbAirports,“airportUser”,“airportPasswd” , ERECT * FROM flightrel”, flight,

type : ULINT, Q_.CONST, QCONST, QCONST).
#import(dbCommercial,“commUser”,“commPasswd” , “SELECFROM codeshargel”,

codeshare, type : @ONST, QCONST, UINT).
#export(dbTravelAgency,“agencyName”,“agencyPasswdstinations, composedCompanyRoutes).

The first two commands maps the predicétéyht to the relatiorf 1 i ght _rel of
dbAi r port s, and the predicatendeshare to the relatiorcodeshar e_r el of doCom
mer ci al ; the last one maps the predicatestinations to the relationconposed-
ConpanyRout es of dbTr avel Agency. ]

2.3 pLvDB

The user needing this execution modality has its data storéoossibly distributed)
database tables and wants to carry out some reasoning on hioeraver the amount
of such data, or the amount of facts the reasoning generatdsem, is such that the
evaluation can not be carried out in main-memory. Then, tigway out is to evaluate
the program directly in mass-memory.

Three main peculiarities characterize the system in thizeton modality{i) its
ability to evaluate logic programs directly and completety databases with a very
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Auxiliary-Directives ::= Init-section [Table-definition]+ [ Query-Section]?
[ Fi nal -section] *
Init-Section ::=USEDB Dat abaseNane: User Nanme: Password [ System Li ke] ?.
Tabl e-definition ::=
[ USE Tabl eName [( AttrName [, AttrName]* )]? [AS ( SQ.-Statenent )]?
[ FROM Dat abaseNane: User Nane: Passwor d] ?
[ MAPTO PredNane [( Sql Type [, Sql Type]l* )1? 1°?.

|
CREATE Tabl eNanme [( AttrName [, AttrNane]x )]?
[ MAPTO PredNane [( Sql Type [, Sql Type]* )]1? 1?
[ KEEP_AFTER_EXECUTI ON] 2. ]|

Query-Section ::= QUERY Tabl eNane.

Final -section ::=
[ DBOUTPUT Dat abaseNane: User Nane: Passwor d.

I
QUTPUT [ APPEND | OVERWRI TE] ? PredNane [AS AliasNane] ?
[I' N Dat abaseNane: User Nane: Passwor d. ]
SystemLike ::= LIKE [ POSTGRES | ORACLE | DB2 | SQLSERVER | MYSQ]

Fig. 1. Grammar of the auxiliary directives.

limited usage of main-memory resourcéy, its capability to map program predicates
to (possibly complex and distributed) database views,(aindhe possibility to easily
specify which data is to be considered as input or as outpuhfo program. As for
DLV, also inDLVP® access to DBMSs is carried out through ODBC.

Currently, DLV B does not fully support the DLV language. In particular, only
disjunction free stratified programs (possibly with buils- and aggregate functions)
are supported. However, it allows handling significantlgajer amounts of data w.r.t.
DLV and DLV /€ with also important improvements in query answering times.

In order to properly carry out the evaluation, this exeautitodality requires some
explicit specifications for the mappings between input antpat data and program
predicates, as well as proper indications for the tempaedagions possibly needed for
the mass-memory evaluation. The grammar in which thesetdies must be expressed
is shown in Figure 1.

Intuitively, the user must specify a working database inchhthe system has to
perform the evaluation (thieni t - Sect i on in the grammar). Moreover, he can spec-
ify a set of table definitions, each of which must be mapped ante of the program
predicates. Facts can reside on separate databases oathbyg obtained as views on
different tables. Attribute type declaration is needed/dgirthe program must carry out
arithmetic operations on theraSE andCREATE directives can be exploited to specify
input and output data. Finally, the user can choose to capgiire output of the eval-
uation or parts thereof in a database different from the igrione by someuTPUT
directives.

Example 3.Consider again the scenario introduced in Examples 1 andd2s@ppose
that, due to a huge size of input data, it is not possible tiopmrthe evaluation in main-
memory. In order to evaluate the program in mass-memory (0BMS), the auxiliary
directives shown in Figure 2 should be used. Here, the firsti§ thel ni t - Secti on
and states that the evaluation must be carried out in a degatzmedilvdb The two
USE directives are equivalent to (but more precise than) the#itncommands of Ex-
ample 2. Finally, thedUTPUT directive is equivalent to the #export command of Exam-
ple 2. |
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USEDB dl vdb: nynane: nypasswd.
USE flight_rel (1D, FronX, ToY, Conpany) FROM dbAirports:airportUser:airportPasswd
MAPTO flight (integer, varchar(255), varchar(255), varchar(255)).
USE codeshare_rel (Conpanyl, Conpany2, |D) FROM dbCommerci al : commiJser : commPasswd
MAPTO codeshare (varchar(255), varchar(255), integer).
CREATE destinations_rel (From To, Conpany)
MAPTO desti nations (varchar(255), varchar(255), varchar(255)) KEEP_AFTER_EXECUTI ON.
QUTPUT destinati ons AS conposedConpanyRoutes | N

dbTr avel Agency: agencyNane: agencyPasswd.

Fig. 2. Auxiliary directives for Example 1.

3 Debugging DLV Programs

Debugging is the process of locating and fixing known errarsi¢h are commonly
called “bugs”) on both computer programs and hardware dsvidnfortunately, de-
bugging is difficult to be carried out due to the extremelythigimber of causes for
a bug. As a consequence, techniques and tools (debugghaisigithe programmer to
deal with this problem must be associated with each progiamlanguage.

However, while debugging an imperative program can be edwut by monitor-
ing its execution (usually with a step-by-step strategghubging a program with a
declarative semantics must follow a completely differgograach. As an example, the
notion of “unexpected” behaviour is substantially differeomparing DLV and C++
programs. The absence of an intuitive operational sensantakes it harder to under-
standwhythe results of a declarative program are not the expectesl one

Intuitively, a bug in a DLV progran® is a difference between what is actually mod-
elled by P and what the programmer was planning to model witiExamples of bugs
of a DLV program are an unexpected number of answer sets présence/absence of
a literal in a specific answer set.

The reasoning above clearly points out that, in a declagiegramming setting,
even what must be meant for debugging is not obvious (as aistgal out by [14, 15]).
In what follows, we consider that a debugger for DLV mustwlibhe programmer to
understand the “reasons” which “caused” the derivationhef arious literals in an
answer set or, in absence of it, to have a justification fofafere.

The DLV debugger we developed in this work uses informatiolfected during
the program evaluation, especially in the Model Genergiluase (see Section 2.1).

In more detail, the MG module of DLV, introduced in Section,2exploits a so-
called backjumping (or non-chronological backtrackireghtnique (described in [16]),
based on the ability to detect and to undo, during the backitng phase, the choices di-
rectly causing an inconsistency. This technique constracata structure, calldtea-
son Table which stores for each literal the choices implying its prese/absence in
the current (partial) answer set. The Reason Table is il Updated) during the
search, according to the reason calculus technique pessenf16]. The information
stored in the Reason Table is directly used in the debuggougiity to justify the pres-
ence/absence of a literal in an answer set (or the unsatig§ial the program). Due
to space limitations we cannot describe here the whole psoafereasons computation;
rather, we try to give an intuition with an example.

Example 4.Let P be the following program
avb c¢c:-a d:- b
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At a certain point of the MG computation, is chosen as true and its truth value is
propagated trough the program rules, deriving truth valoesther atoms. Obviously,
in this case¢ andnot b are derived as true. Thus, intuitively, we set in the Reasderl
a as reason fot. But, what about the reason @? We say that is a choice and that its
reason is itself. |
When DLV starts in debug mode, the main computation stope@s as an answer
set has been found, or when it is detected that no answer sdiecéound, and the
system waits for some user command. The available commagdgg, why unstable
nextmode] print_mode] print_instantiation andquit. The first one can be used to know
the choices implying a literal, (it can be read as “why is L in current model?”); the
second command can be used to investigate why a programatisfiable. In this case,
the system reports the reason causing the last inconsystensd during the search.
The remaining commands can be used to ask the system fontpfikianother answer
set, printing the current answer set, printing the grousthintiation, and stopping the
system. CurrenthpLV PZ does not support debugging, because it exploits a completel
different (mass-memory based) evaluation strategy. Theex@ample shows the usage
of commandsvhy, andwhy_unstable

Example 5.Consider again the programof Example 4. In order to know why literal
appears in one of the answer setdofve can use the commamdhy (c) This command
will return « indicating thate is in the current model because of the choice.of

Now, let add toP the following two strong constraints

c, not d. - d, not c.

Clearly, the program has no answer set. In fact, if we cha@strue the first constraint
is violated (i.ea caused the inconsistency, and this can be easily obtainkesdking in
the reason table); similarly, if we choolsthe second constraint s violated (ibesaused
the inconsistency). Assuming that the last choice actua#iye during the computation
is b then the commanahy_ unstablereturnsy. o

4 System Description

4.1 Functionalities

The functionalities implemented inISUALDLV borrow several ideas from the wide
variety of well known integrated tools available for deygteg programs with impera-
tive languages (such as C++ and Java). The interesting &tioonvs the adaptation of
such ideas to the declarative world, providing a wide seeafures to assist the user in
developing, configuring and testing DLyrojects

The main functionalities provided graphically bySUALDLYV are:

— Project definition It allows to gather in a single logical unit several DLV pram
files, auxiliary directives and configuration options.

— Automatic completionThe editing of DLV programs and auxiliary directives is
simplified by this functionality which suggests the user hovecomplete the por-
tions of programs he is writing.
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Fig. 3. The general structure of the system interface.

— Dynamic syntax checking his functionality checks the syntactical correctness of
the program during its development, warning the user in ohserors.

— Configuration of the interactions with the databasksllows the user to easily,
and graphically, specify which input data resides in exdbdatabases, and which
parts of the program output must be permanently stored inabeae.

— Configuration of the executioit allows to select the execution options for DLV.

— Presentation of resultsThe output of the program (either its answer sets, or the
database table contents) can be visualized within the sawi®ement.

— Debugging This functionality allows the user to interact with DLV inder to
understand why a program does not produce the expectedtoutpu

In the following, we describe in more detail system’s fuantlities, using some
screen-shots of the system to show how it works.

Interface overview

The general structure of the system interface is illusttateFigure 3. The central
area is the main editing area, where DLV programs and aunxilizectives can be
typed. The left part of the interface is dedicated to the lslsga management; in par-
ticular, as it will be more clear in the following, the list tie databases included in
the project, as well as some database management featarlesated in this portion
of the interface. The right part is dedicated to providing summary of the concepts
(atoms and predicates) defined in the currently open DLV janog and can be used
as a support for editing. The bottom part contains two paakdsving the system to
provide messages to the user, namelgaaningpanel, collecting all warning messages,
and aconsolepanel showing the output of the programs. Finally, in theaxpart of
the interface, classical menus and toolbars allow the wsactess all the features of
the system.

Project definition
Declarative programming allows specifying in a natural waynplex problems; it
is true. However, when the application scenario is compbgegveral sub-problems or
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Createnew Project .. x|

Insert the name of a new project
Mame |demoAirports

Insert the path of the new project

Path ‘C:lDocuments and Settingsite| |23 Browse

Choose type of Project

) Standard DLY ) DLY with Import { Export

(@) DLY with instantiation on database

@ oK

Fig. 4. The creation of a new project.

it requires the application of different reasoning modtihesuser can be easily involved
with several program components, which should be develapddested separately, but
which logically belong to the same project.

Moreover, the various kinds of DLV execution modality déised in Section 2 may
require different kinds of interaction of the user with th&iGe.g., the standard DLV
version does not require information about external daabavhich, on the contrary,
is necessary fobLV PZ andDLVv ) and different kinds of invocation parameter.

In order to face these issues, our system introduces themotproject i.e. a col-
lection of DLV programs, auxiliary directives, databasamections and configuration
options defining, as a whole, a complete project.

Figure 4 shows the interface allowing the definition of a newjgxrt. A project is
characterized by aame all its data is put in a folder having this name. Finally, the
user has to specify the project type, which determines the Bitecution modality to
exploit, and the kinds of interaction expected between ffae and the system. In Figure
4 the user is choosing to creat®av PZ project with namelenpAi r port s.

Automatic completion

Following the success of other systems for imperative @nogning (like Visual
C++, Eclipse, etc.) our system provides a functionalityt thaggests the user how to
complete the portions of programs he is writing, just dutimgtyping.

It is worth pointing out that imperative languages have lesgblicit data typing and
fixed language constructs; this allows a quite straightfwdadefinition of lists of legal
keywords or of user-defined variables to be used in the autog@mpletion facilities.

On the contrary, declarative languages in general, and Di_Wairticular, do not
comprise such features and, consequently, it is less ewdeat the automatic com-
pletion functionality must suggest to the user. In our systihe automatic completion
works on what has been “declared” by the programmer up tdithat in other words, it
works on the list of atoms previously specified in the progrBigure 5a illustrates this
functionality; each time a rule is typed, it is parsed andatwens it contains are added
to the list of atoms defined by the user. Then, when the useriigva new rule, the
system shows a pop-up window where an atom is highlightad friefix corresponds
to what the user is typing. Note that this functionality sfgantly simplifies the devel-
opment of complex programs constituted by several rulesaamahs. As an example,
consider the program of Example 1 and assume that the usto(withe support of
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(a) Program completion (b) Auxiliary directives completio

Fig. 5. The automatic completion feature.

the automatic completion) typeiest i nat i on instead ofdest i nat i ons; there is no
way for an automatic checker to understand whether the ntartion was to define a
new conceptlest i nat i on or if he just mistyped the predicate nauest i nati ons.
Helping to prevent these kinds of erratgringthe programming phase, may allow the
user to save a lot of time in the testing phase!

The same functionality is provided by the system also fordsnition of the aux-
iliary directives, necessary f@Lv ”? projects. In this case, the automatic completion
is more context sensitive, because the auxiliary diresi@re characterized by a precise
grammar (see Figures 1 and 5b).

Dynamic syntax checking

When the user types a rule, it is parsed by the parsing modwuléta syntactical
correctness is verified. If an error is identified, a messaghsplayed in the warning
panel. Note that these warning messages do not block thentsgaction; this is im-
portant in order to let the system accommodate also to fugkiensions of the DLV
language currently not expected by the parser.

Presently, only the correctness of the syntax is checkedewer, we plan to extend
this feature to carry out more refined checking tasks. As amgke, one of the most
frequent errors in developing datalog rules is the mistypifa variable name involved
in a join; in this case, the rule is syntactically correct, baontains a semantic error. If
the system would warn the user about the presence of vasistd®me atom not joined
with any other atom of the rule, the user could easily checktivr this situation is
wanted or it is the result of a mistyped variable name.

Interaction with external databases

As pointed out in the previous sectioblLV’® andDLV”? extend the capabili-
ties of DLV allowing various kinds of interactions with extal databases via ODBC.
Our system provides various functionalities aiming to difgphe correct configuration
of DLV/? andDLV B, In more detail, it provides both functionalities for acsies,
querying and manipulating data residing in external dat@baand functionalities for
graphically compiling the auxiliary directives.

Figure 6 illustrates some of the capabilities for accesamtjquerying data residing
in external databases. Each database is accessed via OlB&asequently, in order
to access it, the database name, the user and password fastitbe supplied. For
each opened database, the list of tables and their struatarshown. Moreover, the
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Fig. 6. Interaction with external databases.

user can visualize the content of the various tables (in tharg, the content of table
f1ight_rel is shown). Finally, other editing operations can be cardat] such as
the execution of SQL statements (including CREATE or ALTE&ements) and table
deletion. In other words, the system provides a restridiatigommon) set of database
management features.

Concerning the support in compiling auxiliary directivesen ifDLV P2 provides
several simplifications in their specification (see the nzon the system’s web site),
writing them by hand could by quite hard for a non speciakstr this reason, our
system provides both the automatic completion facility andautomatic generation
feature for such directives. Figures 5b and 7 graphicalisboth of them.

In particular, Figure 5b illustrates an example of automatimpletion for the&JSEDB
directive; here, the grammar specifies that afterufeDB keyword the database con-
nection parameters must be specified. Then, the system staggech information,
based on the databases currently open in the project.

Figure 7 illustrates the form to automatically creatéSk directive. It can be acti-
vated with a right-click on the table that must be “used” gsuinn the program; the
system automatically retrieves from the database all thoerimation necessary to gener-
ate the directive. Moreover, it provides the user with a f@e\of it, in order to let him
check the correctneSSREATE directives can be generated analogously; in this case, the
user must select one of the predicates listed in the rightgbdine main interface.

Configuration of project execution

The execution of a DLV program can be often a tricky task fooa apecialist; in
fact, the wide range of extensions developed for DLV in ttst fan years produced a
wide set of options that can be specified within the commamel I[Dur system deals
with this situation providing the comprehensive set of DLptions in a user-friendly
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- ‘lf demodirports.dl rdemnnirpuns.typ |
AEe

| usene dhvenzostores postures LIKE POSTGRES

¢ @ somimors |
o |Z #| fight_rel i

? @ dbCommercial Id-->> warchar
- codeshare_re FromX--»> warchar

ToY--»> warchar

Company-->> warchar

AS SQL-Satement:

USE flight_rel "ld" "Fram:" "ToY" " Company")
FROM dbairports : postares : postgres
MAPTO flight_rel (warchar warcharwarchar varchar),

Fig. 7. Automatic generation of auxiliary directives.

x|
[ Settings | General Option | Front End Option |

[] Limit integers [ ORdr ["] No boty reordering.

[] Mumber of Motel [JORdr- || [] Advanced body reordering

[ Predicates Filter [CJos (] Simple body reordering

[ Firter [Joep [[] misa read input from stdin

[] Costhound []ocp-

[]ocs

Deterministic | | [] Input Rewriting.
o i “ [] Emplay Heuristics in the Model Generator

Silent Disable input rewriting
2 - " o [] Disable Heuristics inthe Model Generator
o ati [] Disable Optimizati . o

[] Enable partial model checking “forwards”
[ wvait ["] Disable Moel Checker .

[ Disable partial madel checking “forwards™
[] Statistic

v Ok

Fig. 8. Options for the execution of DLV programs.

fashion, as shown in Figure 8. The user can choose graphibalheeded options and
the system automatically generates the correspondingppast command line. The

system is also open to further extensions of DLV allowinguber to input personalized
execution options. This configuration phase can be cartiédrce and for all the runs
of the current project.

After this, when the user wants to run his project, the sygtesposes him the list of
program files currently active, and the user can choose thusgthat must be included
in the current run. Moreover, an expert user can personi&zeommand line proposed
by the system, if he think it is necessary.

Presentation of results

During the execution of DLV (resppLVv’?, DLV PP) the output is redirected to the
consolepanel, located in the lower part of the interface (see Fig@ri@ such a way
that the user can check the program output from the sameoamént. Moreover, the
output redirected to database table®iv’® or DLV PZ can be analyzed as illustrated
in Figure 6.
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5

STOP
RESTART

WWHT
NEXT MODEL _instantiation>
ntiation=
b(0)

PRINT MODEL

e
%

PRINT iNSTANTIATION .
Enter a ground literal:

OK CANCEL

Fig. 9. The Debugger graphical interface.

Debugging of a Program

The debugging of a program is, in general, a crucial taskeéndéwvelopment of an
application. In MSUALDLY it can be carried out through a graphic interface (se@fég
9); this is promptly displayed when the user asks to run DL\Aébugging mode. In
this case, VSUALDLYV transparently adds to the invocation parameters theliud)”
option. Figure 9 shows the first model found by DLV for the pang:

a(xX) v b(X) :- #int(X). c(X):-a(X), X<3. #maxint(10).
and the answer of the debugger to the user request “prirritigtion”.

All the debugging commands available for the user can beatetl with the menus
on the left side of the interface, as shown in Figure 9; thes@aatomatically translated
and forwarded to DLV in the proper format (as XML tags).

Note that, the debugger interface is a non-modal windowhabthe programmer
can contemporarily look at the input program during a delnggession (without the
need to stop the debugger). However, the debugger mustlbamehed after any mod-
ification to the input program is applied.

4.2 Architecture

The architecture of the system is shown in Figure 10. The BcapUser Interface
(GUI) allows the user to access all the system’s functitiesliThese are implemented
by five main modules.

The Parser, is responsible of translating DLV programs and auxiliaimectives,
taken both from the user interface and by pre-existing filesuitable internal data
structures. These are currently used for the automatic keiop and the dynamic syn-
tax checking features, but can be the basis also for morestefumctionalities (e.g., a
graphical representation of the dependencies betweemngmggredicates, etc.).

The Editor module implements classical file editing operations andiges the
automatic completion feature.

The DB Connection Handlemanages all the interactions of the system with the
external databases, such as ODBC connections, table teutewing, database query-
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H DB Connection| Configuration DLV
Parser Editor ¢ Handler Handler > Executor

ST S

DLV Auxiliary External
Files Directives DBMSs

Fig. 10. The general architecture of the system.

ing and manipulation, etc. Moreover, it interacts with thdl@or the generation of the
auxiliary directives.

TheConfiguration Handlers responsible of storing and managing all configuration
information of the current project. In particular, it takeso account both the project
typology and the options specified by the user through therfete, to compose the
correct command line needed to invoke DLV (respy /@, DLV PB).

The DLV Executorinvokes the proper versions of DLV (including the debugging
version) and redirects the corresponding output (posséftyrmatted) to the GUI.

Note that, the proposed tool might be extended in order tpatwther flavors of
ASP, e.g, the Smodels language. This can be done by addihgspetialized parser
and executor modulés

5 Conclusions

In this paper we have presented a graphic integrated emagot called YSUALDLYV,
for the development of DLV applications. Our system repnésa first step toward the
implementation of an integrated and complete suite of tfmyla DLV developer. It in-
tegrates many interesting features which help the progrrsiduring the development
phases: editing, configuration, interaction with exteDBMS, debugging, and deploy-
ment. We are currently working on several improvements@#gtkisting functionalities
(e.g. enabling drag-and-drop facilities for the generatib DLV P? directives, etc.),
and we are planning the introduction of additional captaégij such as a graphical rep-
resentation of program dependencies and a tree view of assise
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