Software Engineering

for

Answer Set Programming

2007

First International Workshop
May 2007, Tempe, Arizona, USA

Marina De Vos
Torsten Schaub (Eds.)






Preface

Over the last ten years, Answer Set Programming (ASP) has grown from a pure theo-
retical knowledge representation and reasoning formalism to a computational approach
with a very strong formal backing. At present, ASP is seen as the computational embod-
iment of non-monotonic reasoning, incorporating techniques of databases, knowledge
representation, logic and constraint programming. ASP has become an appealing tool
for knowledge representation and reasoning and thanks to the increasing efficiency of
the implementations of ASP solvers, the field has now started to tackle the first indus-
trially relevant applications.

Writing complex programs in any language is not an easy task, with ASP being
no exception. Most of the modern popular programming languages have an abundance
of tools and development methodologies to facilitate and improve the coding process.
Given the differences in language design, execution, and application domains for lan-
guages such as Java and C++, the existing methodologies and tools that are available are
generally not suitable for ASP. Therefore development tools and software engineering
methodologies specifically designed for ASP are required.

The SEA’07 workshop provides an international forum to discuss all software engi-
neering problems the field currently or in the future will experience.

SEA’07 is the first event in hopefully a long series of workshops. It is being held
in Tempe, Arizona, USA as a co-located workshop of LPNMR’07, one of the leading
conferences in the area of logic programming and in particular ASP.

Apart from the regular paper presentations, the workshop will also host the ”ASP
Language Forum”. The aim of this forum is to start a general discussion on the re-
quirements and specification of input, output and intermediate languages for answer set
solvers and grounders.

Within these proceedings are the six papers accepted for publications by our pro-
gramme committee as well as three position papers for the forum.

The programme committee and organisers wish to thank all the authors who sub-
mitted papers, the forum members, all participants and everyone who contributed to the
success of the workshop. We hope to see you all again at the meeting.

May 2007 Marina De Vos
Torsten Schaub

Organisers

SEA’07



VI



Executive Committee

Workshop Chairs:

Programme Committee

Martin Brain
Wolfgang Faber
Enrico Pontelli
Ken Satoh

Tran Cao Son
Tommi Syrjanen
Richard Watson
Stefan Woltran
Yan Zhang

Additional Referees

Francesco Calimeri

Organisation

Marina De Vos (University of Bath, UK)
Torsten Schaub (University of Potsdam, Germany)

(University of Bath, UK)

(University of Calabria, Italy)

(New Mexico State University, USA)
(National Institute of Informatics, Japan)
(New Mexico State University, USA)
(Helsinki University of Technology, Finland)
(Texas Tech University, USA)

(Technical University of Vienna, Austria)
(University of Western Sydney, Australia)



VIII



Table of Contents

I ASP Language Forum

Comments on Modeling Languages for Answer-Set Programming . ........... 3
Mirostaw Truszczyriski (University of Kentucky, USA

Intermediate Languages of ASP Solversand Tools ..................... ... 12
Tomi Janhunen (Helsinki University of Technology)

Martin Brain (University of Bath), Wolfgang Faber ( University of Calabria),
Marco Maratea (University of Genova), Axel Polleres (National University
of Ireland), Torsten Schaub (University of Potsdam), Roman Schindlauer
(University of Calabria, Technische Universitit Wien)

II Research Papers

Modules and Signature Declarations for A-Prolog: Progress Report........... 41
Marcello Balduccini (Texas Tech University)

Visual Querying and Application Programming Interface for an ASP-based

Ontology Language . . . ... ..ottt 56
Lorenzo Galucci (University of Calabria), Francesco Ricca (University of

Calabria)

“That is Illogical Captain!” — The Debugging Support Tool spock for

Answer-Set Programs: System Description . ............... .. .. .. .. . ... 71
Martin Brain (University of Bath), Martin Gebser (Universitdit Potsdam), Jorg

Piihrer (Technische Universitit Wien), Torsten Schaub (Universitdt Potsdam),

Hans Tompits (Technische Universitit Wien), Stefan Woltran (Technische

Universitdt Wien)

An integrated graphic tool for developing and testing DLV programs . ......... 86

S. Perri (Universita della Calabria), F. Ricca (Universita della Calabria), G.
Terracina (Universita della Calabria), D. Cianni (Universita della Calabria),
P. Veltri (Universita della Calabria)

APE: An AnsProlog* Environment .............. ... .. ... ... . ... ... 101
Adrian Sureshkumar (University of Bath), Marina De Vos (University of
Bath), Martin Brain (University of Bath), John Fitch (University of Bath)



X

Planning for Biochemical Pathways: A Case Study of Answer Set Planning in
Large Planning Problem Instances . ............. ... ... ... ... ... ... .....
Tran Cao Son (New Mexico State University), Enrico Pontelli (New Mexico

State University)

Author Index



Part 1

ASP Language Forum






Comments on Modeling Languages for Answer-Set
Programming

Mirostaw Truszczynski

Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA, mirek@cs.uky.edu

Abstract. Strong emphasis on intuitive and direct modeling of application do-
mains is one of the distinguishing features and major strengths of the answer-
set programming paradigm. It leads naturally to several key questions. Is there
a need for standardizing such languages? What functionality should these lan-
guages support? Are there any general design requirements for them? This note
attempts to propose some answers.

1 Introduction

Answer-set programming (ASP) is a paradigm for declarative programming. Speak-
ing informally, in ASP a problem is modeled as a theory in some language of logic.
This representation is designed so that once expanded with an encoding of particular
instance of the problem, it results in a theory whose models correspond to solutions to
the problem for this instance [13, 14].

Thus, the main automated reasoning task in support of the ASP paradigm is com-
puting models of theories. A typical approach is to ground a theory representing a
problem and its particular instance or, in other words, to compile the “program” and the
“data” into a low-level representation. The result of this step is a propositional theory
that has the same models as the original one. They are computed in the last step of the
process by programs called solvers.

This overview of the ASP process shows that when solving a problem one deals
with a theory in several different formats. First, there is a format determined by the
modeling language. Second, there is a format of the grounded (propositional) version
of this theory. Finally, there is “solver” format, a version of the ground theory in a
format accepted by solvers. A central issue to the design and development of software
tools in support of ASP is that of standards for theory formats at every stage of the
process.

My goal in this note is to address the matter of standards for ASP modeling lan-
guages. I argue that no specific standards are necessary. Instead I present several “desider-
ata” that should be taken into account when designing ASP modeling languages.

2 What is Answer-Set Programming?

In most general terms, ASP is a paradigm for modeling and solving search problems.
In order to talk about ASP and issues related to software tools for ASP, it will be con-



4 Mirostaw Truszczyniski

venient to introduce first a formal setting, in which search problems can be defined and
studied.

2.1 Search problems

In formal definitions of search problems, one typically assumes a fixed infinite count-
able set U, referred to throughout the note as the universe. A signature is a nonempty
set o of relation symbols 7, each with a positive integer arity k,. An instance of a sig-
nature o is a pair I = (D, R), where D C U is a finite set called the domain of I,
dom(I) in symbols, and

R = {r":r € 0 and 7! C D¥ is a relation of arity }.

Throughout the note, Inst, will stand for the set of all instances of ¢.

For two disjoint signatures o and 0%, a search problem over (o, c®) is a recursive
set IT C Inst,: X Inst,s such that for every (I, .5) € II, dom(I) = dom(S). Elements
of Inst,: are instances of II. If I € Inst,: thenevery S € Inst,s such that (I,S) € IT
is a solution to I1 for I.

Typically, given a search problem II € Inst,: X Inst,o. and its instance I € Inst,i,
the objective is to find a solution to I7 for I. From the practical point of view, there are
two crucial issues: how to model search problems — one must be able to specify them
in order to solve them, and how to find a solution given a problem specification and an
instance. Answer-set programming is a paradigm that addresses both issues.

2.2 Modeling search problems

Let £, be some logic language over o. For now, I specify neither the set of boolean
connectives of the language nor its set of well-formed formulas. The only assumption
I make is that there is a recursive relation |= that holds between instances in Inst,
and formulas in L. For example, if £, is the language of first-order logic (under our
definition of o — with no constant or function symbols), one could choose for |= the
standard satisfiability relation between a structure and a formula. If £, is the language
of logic programs, where formulas are conjunctions of program rules, one might define
I = ptohold if I is a stable model (an answer set) of ¢.

If o/ C o are signatures, then K € Inst, expands I € Inst,:, written as [ = K|,,/,
if dom(K) = dom(I) and for every r € o/, 71 = rX. Let ¢% and o* be two disjoint
signatures such that 0% U o® C ¢. Every formula ¢ € L, gives rise to a search problem

I, = {(K|si, K|s:): K € Insty and K |= ¢}

Indeed, dom(K|,i) = dom(K|4+) (each is equal to dom(K)) and, since |= is a recur-
sive relation, I1, is a recursive set.

3 A minimal requirement for an ASP language

The discussion so far implies that every logical language, for which there is a recur-
sive satisfiability relation = between instances and formulas provides a way to specify
search problems. In other words, it can be regarded as an ASP modeling language.



Comments on Modeling Languages for Answer-Set Programming 5

How good a modeling tool an ASP language is depends to a large degree on the
expressive power of the language — the class of search problems that are defined by
formulas in the language in the way described above. One could argue that at the very
least the expressive power of an ASP modeling language should be given by the class
NPMYV [18], as this class contains search problems of practical importance. In partic-
ular, all decision problems in the class NP (once they are recast as search problems)
belong to the class NPMV. The class NPMV is also known as the class NP-search, the
term I prefer as it makes a direct reference to search problems.

Of course, to be of practical use, the language also needs to be implemented, that is,
come with a way to specify signatures, instances and formulas in terms of expressions
that can be processed by computers, as well as with tools to compute solutions given a
problem description as a formula and its input specified as an instance to the problem.

These comments suggest the following minimal requirement for ASP modeling lan-
guages.

An ASP modeling language is a language of logic with a recursive satisfiability
relation |= between signature instances (structures) and formulas, and with the
expressive power equal at least to that of the class NP-search. The language
comes with an implementation — software that allows one to code problem
and instance specifications and, given the encodings, compute solutions (or
determine that none exists).

I do not think there is a need for any standardization of ASP modeling languages
beyond this basic requirement. However, there are several considerations that should
be taken into account when developing and evaluating ASP systems. Before discussing
them, I introduce two examples of ASP modeling languages.

4 Two examples

The most studied and widely used ASP modeling language is the language of logic
programming with the stable-model semantics [11, 13, 14]. In this formalism, problems
are modeled as logic program. For example, the graph 3-colorability problem can be
specified by the following program P,,;:

b(X) :— vtx(X), not r
r(X) :— vtx(X), not b
g(X) :— vtx(X), not r
- edge(X,Y), b(X), b
:— edge (X,Y), r(X), r
:— edge (X,Y), g(X), g

This program is presented in a format that is accepted by implementations of logic
programming as an ASP system such as Iparse/smodels [15,19] and dlv [8, 12]. Each
line lists a program rule — a single conjunct of the program. Commas in the bodies
of rules stand for the conjunction and not represents the negation (to be exact, the
negation-as-failure). The empty head stands for the contradiction. The program defines
implicitly the signature ¢ (in this case consisting of relation symbols b, r, g, vtz and



6 Mirostaw Truszczynski

edge), as well as the signature o?, which consists of those symbols that do not appear
in the heads of rules (symbols r, b and g),

An instance to the problem is a set of ground atoms of the form vtz () and edge(z, y)
defining an input graph. The domain is defined implicitly as the set of all constants used
in the description of the instance.

The program P,,; is indeed an encoding of the graph 3-colorability problem due to
the property that for every input instance 7, instances of the signature {b, r, g, vtz, edge}
expanding the input instance and such that they are stable models of P,,; U I determine
solutions to the problem. That is, extensions of the relations corresponding to b, r and
g in a stable model of P,,; U I form a proper 3-coloring of the graph represented by I,
and every proper 3-coloring has a representation as a stable model of P,,; U I.

Another language that received some attention is based on the logic of propositional
schemata [7]. In this logic, a basic formula is an implication with a conjunction of atoms
in the antecedent and the disjunction of atoms (possibly existentially quantified) in the
consequent. Search problems are represented as conjunctions (lists) of formulas in this
elementary syntax. In particular, the graph 3-colorability problem can be specified as
the conjunction of the following formulas:

rX), bX) —>

r(X), g(X) —>

b(X), b(X) —> .

edge (X,Y), b(X), b(Yy) ->
edge (X,Y), r(X), r(Y) ->
edge (X,Y), g(X), g(Y) —>

Also in this case, the program is given in the format accepted by an implementation
of the logic of propositional schemata [7]. In particular, commas in the antecedents rep-
resent the conjunction connective, —> and | stand for the implication and disjunction,
respectively. As before, the empty consequent represents the contradiction.

In the logic of propositional schemata signatures and input instances need to be
defined explicitly. Similarly as for the logic programming representation, instances
expanding an input instance and such that they are models of T,; correspond to 3-
colorings of the graph represented by the instance.

Both logic programming and the language PS can express the whole class NP-search
and each has been implemented. Thus, they satisfy the basic requirement identified
above. I note that a variant of logic programming, disjunctive logic programming, cap-
tures a wider class of problems — the class X}’ -search (wider, assuming the polynomial
hierarchy does not collapse) and also has an implementation (for instance, system dlv
[9, 12]).

5 Other requirements for ASP languages

These two examples of ASP modeling languages examples are simple and presented
here without much detail. Nevertheless they bring up several important points.



Comments on Modeling Languages for Answer-Set Programming 7

Definitions. Due to the KR roots of logic programming with the answer-set semantics,
ASP languages based on this formalism can handle effectively the problem of defini-
tions. Let us suppose, that p holds precisely when both ¢ and r hold or when both s and
t hold. In LP languages, this definition can be stated in terms of two clauses:

p - 49, r.
p :— s, t.

In the language of propositional schemata, specifying this simple definition is much
less concise — one needs to express in a CNF representation the formula p < (g1 A
g2) V (r1 A r2). It can be done, for instance, as follows:

a, r —> p.
s, t —> p.
p->49l s.
p—>q | t.
p —>r | s.
p —>r | t.

This is a more complex representation. Moreover, as the number of cases under
which p holds grows, the complexity of the CNF representation may grow exponen-
tially. To control this growth one typically introduces new symbols to the language.

In the case when p has a recursive definition matters get still more interesting. The
definition of an answer-set involves a fixpoint construction and so LP languages sup-
port concise and direct definitions of relations that are closures of other relations. For
instance, the following simple program defines the closure path of a relation arc,

path(X,X) :—= arc(X,Y).
path(X,X) :— arc(Y,X).
path(X,Y) :- arc(X,2), path(z,Y).

No such simple definitions of the closure of a relation is known in terms of the logic
of propositional schemata, where one needs to introduce several auxiliary predicates in
order to build a representation [7].

The importance of definitions in knowledge representation is broadly recognized.
Recent work on ID-logic [2,4] demonstrates convincingly that providing means to
model definitions is central to effective knowledge representation. These arguments
extend to ASP and give rise to the following requirement.

An ASP modeling language should offer means for concise and direct repre-
sentations of definitions and inductive definitions.

With respect to this postulate, LP languages score well and the language PS scores
poorly. Extending the language PS and, more generally, other languages based on first-
order logic, with inductive definitions [4, 6, 3] addresses the shortcoming. I claim that
this “definition-based” approach to ASP has substantial promise and deserves attention.
On the one hand, it explicitly subsumes the language PS , on the other hand, it allows
for straightforward and direct encodings of logic programs.



8 Mirostaw Truszczynski

Basic syntax. There are two major considerations one needs to have in mind when
deciding on the basic syntax of ASP languages. First, operators supported by the lan-
guage should reflect typical structure of problem statements given in natural language.
This is a “modeling” consideration. The second consideration is “computational”. The
syntax of an ASP language must be attuned to available tools for processing programs
and, most importantly, computing solutions. Currently, these tools are based on DPLL-
type backtracking search. In some cases they actually are SAT-solvers implementing
the DPLL procedure. The effectiveness of DPLL-type backtracking search depends to
a large degree on the effective unit propagation. The simpler the syntax of rules, the
stronger propagation methods one can apply, leading to better performance of solvers.
These considerations suggest the following postulate:

The basic syntax of ASP languages should be rooted in the notion of a clause
— a conjunction of literals implying a disjunction of atoms.

All LP languages and the language PS support formulas that are conjunctions of
clauses. The restriction to clauses does not pose any major problems for LP languages.
However, for the language PS, the restriction to clauses may make modeling even non-
recursive definitions difficult. One could alleviate the problem to some degree by allow-
ing additional connectives to the language, specifically, the “if and only if ” connective.
This approach does not address the problem in general (in particular, the problem of
inductive definitions). Thus, extensions of the language PS with Horn rules or logic
programs, as discussed above, may be a better solution.

On the other hand, the language PS is directly aligned with the syntax accepted by
SAT-solvers. Due to dramatic advances of SAT-solver technology, it is a major advan-
tage. Whenever specification of a search problem do not require modeling the closure
operation, the language PS might be the right modeling tool.

A formalism that takes full advantage of the syntax of clauses as defined above
is that of disjunctive logic programming. Disjunctive program rules are implications,
where the antecedent is a conjunction of atoms and negation-as-failure literals, the con-
sequent is a disjunctions of atoms. The two formalisms discussed above either do not
allow negation in the antecedent or disjunctions in the consequent. With the semantics
of answer sets, the disjunctive logic programming is an effective knowledge representa-
tion formalism and the basis for the dlv [9, 12], one of the most advanced ASP systems.
Two important features of this formalism are explicit means to model indefinite infor-
mation (through disjunctions) and its expressive power given by the class X4 -search.
Support for externally evaluated relations and functions. Most ASP languages sup-
port built-in integer arithmetic operations and integer arithmetic comparison relations.
They also support the equality relation over the domain of problem instances. These
modeling features of ASP languages turned out to be crucial for concise encodings of
problems of practical interest.

The benefits of built-in functions and relations can be expanded to custom-built
relations and functions coded in programming languages external to an ASP language.
In this way programmers are able to delegate simple computational tasks that are hard
to capture in a declarative fashion to much more effective procedural languages. Such
functionality is, for example, available in the Iparse/smodels system. This discussion
brings up the following requirement.



Comments on Modeling Languages for Answer-Set Programming 9

An ASP modeling language should have support for external evaluation of
relations and functions.

Aggregates. Aggregates in the form of cardinality and weight atoms were introduced to
ASP by Iparse/smodels system. Experiments demonstrated that constraints specifying
search problems often involve aggregates. Expanding the syntax of an ASP language
with aggregates often allows us to design representations of search problems that are
direct, intuitive and concise. Importantly, it turns out that computational tools devel-
oped for programs without aggregates can be generalized to the case with aggregates.
Moreover, due to significant decrease in the size of the representation and some new
propagation methods, the overall performance improves substantially. I feel that pro-
viding the functionality of aggregate operations is one of the most crucial requirements
for ASP:

An ASP modeling language must provide support for aggregate operations.

At present all ASP modeling languages provide some level of support for aggre-
gates. However, there are significant differences in the syntax and, on the side of LP
languages, some differences in the semantics of aggregates [19, 1,10, 16, 17]. As for
approaches stemming from the language PS and ID-logic, support for cardinality and
weight atoms is provided by the implementation of the logic PS+ [5]. There are no
semantic difficulties though, as long as aggregates do not appear in the definitions.
Optimization and preferences. Most problems of interest are not plain search prob-
lems, where any solution satisfying constraints will do. In most cases, there are prefer-
ences that users have and optimization criteria that they take into account.

An ASP modeling language must have means to specify user preferences, goal
functions, and optimization criteria.

Some current ASP languages provide support for preferences and optimization.
Most comprehensive approach is implemented by the dlv system. A more narrow ap-
proach, focusing on optimization of linear goal functions is available in [parse/smodels.
Nevertheless, I feel this is an area where the field has not bridged the gap between theo-
retical studies of preferences (there is a vast literature on the subject, much of it devoted
to preferences in logic programming) and practical implementations. Addressing the
problem of preferences in ASP modeling languages is one of the main problems for the
field.

Interoperability with databases. ASP languages can be regarded as query languages
for deductive database systems. In fact, much of the interest in logic programs with
negation came from the database community.

There are several reasons to do it. Let us consider a database of employees. The goal
is to select a team of at most five with particular skills and satisfying some additional
constraints (preventing some pairs of employees from being included together in a team,
ensuring that some skills are adequately represented, etc.). It may be the case that the
selection has to be repeated with some regularity and that the set of employees in the
company changes with time, the changes being reflected in a database. In this scenario,
an ASP modeling language should support accessing the company database, posing



10 Mirostaw Truszczynski

a query to extract tables specifying data needed for the team selection and, finally,
modeling the constraints and criteria to be used in the selection. Other applications
might concern data integration, and query processing in case of data inconsistency.
These comments serve as a justification for the following postulate:

An ASP modeling language must provide support for interactions with database
systems.

This postulate was one of the main principles guiding the development of the dlv
system. As a result, the dlv has all the functionality needed for the effective interoper-
ability with database systems.

6 Summary

This note presents a personal look at the problem of designing ASP modeling lan-
guages. I identified one general fundamental requirement related to the fact that the
main goal of ASP modeling languages is to offer ways to express search problems.
I also put forth several other postulates, based on the current state-of-the-art in ASP
systems.

There are several issues that I have not discussed here but that are of importance
to ASP modeling languages. I will now mention two of them. First, there is a prob-
lem of ASP program development tools. As the complexity of applications grows, it
becomes acutely clear that they are necessary. Second, there is a problem of express-
ing the syntax of ASP programs within the framework of the Rule Markup Initia-
tive (cf. http://www.ruleml.org/). The problem has received some some attention (cf.
http://www.kr.tuwien.ac.at/staff/roman/aspruleml/). Nevertheless, it seems to me much
remains to be done, especially that the effort I mentioned has focused only on ASP
languages based on the logic programming formalism.

Acknowledgments

The author acknowledges the support of NSF grant IIS-0325063 and KSEF grant 1036-
RDE-008.

References

1. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and Gerald Pfeifer, Aggregate functions in dis-
Junctive logic programming: semantics, complexity, and implementation in DLV, Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-2003), Mor-
gan Kaufmann, 2003, pp. 847-852.

2. M. Denecker, The well-founded semantics is the principle of inductive definition, Logics
in Artificial Intelligence (J. Dix, L. Farifias del Cerro, and U. Furbach, eds.), vol. 1489,
Springer, 1998, pp. 1-16.

3. M. Denecker and E. Ternovska, A logic for non-monotone inductive definitions, ACM Trans-
actions on Computational Logic (2008), To appear.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Comments on Modeling Languages for Answer-Set Programming 11

. Marc Denecker, Extending classical logic with inductive definitions., Computational Logic -

CL 2000, Lecture Notes in Computer Science, vol. 1861, Springer, 2000, pp. 703-717.

. D. East, M. Iakhiaev, A. Mikitiuk, and M. Truszczyriski, Tools for modeling and solving

search problems, Al Comunications 19(4) (2006), 301-312.

. D. East and M. Truszczynski, Datalog with constraints, Proceedings of the 17th National

Conference on Artificial Intelligence (AAAI-2000), AAAI Press, 2000, pp. 163-168.

. D. East and M. Truszczynski, Predicate-calculus based logics for modeling and solving

search problems, ACM Transactions on Computational Logic 7 (2006), 38-83.

. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello, A deductive system for non-

monotonic reasoning, Logic programming and nonmonotonic reasoning (Dagstuhl, Ger-
many, 1997), Lecture Notes in Computer Science, vol. 1265, Springer, 1997, pp. 364-375.

, A KR system d1v: Progress report, comparisons and benchmarks, Proceeding of
the 6th International Conference on Knowledge Representation and Reasoning (KR-1998),
Morgan Kaufmann, 1998, pp. 406-417.

Wolfgang Faber, Nicola Leone, and Gerald Pfeifer, Recursive aggregates in disjunctive logic
programs: Semantics and complexity., Proceedings of the 9th European Conference on Arti-
ficial Intelligence (JELIA 2004), LNAI, vol. 3229, Springer, 2004, pp. 200 — 212.

M. Gelfond and V. Lifschitz, The stable semantics for logic programs, Proceedings of the
5th International Conference on Logic Programming, MIT Press, 1988, pp. 1070-1080.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello, The dlv system
for knowledge representation and reasoning, ACM Transactions on Computational Logic
7(3) (2006), 499-562.

V.W. Marek and M. Truszczyfiski, Stable models and an alternative logic programming
paradigm, The Logic Programming Paradigm: a 25-Year Perspective (K.R. Apt, W. Marek,
M. Truszczyriski, and D.S. Warren, eds.), Springer, Berlin, 1999, pp. 375-398.

1. Niemeld, Logic programming with stable model semantics as a constraint programming
paradigm, Annals of Mathematics and Artificial Intelligence 25 (1999), no. 3-4, 241-273.
I. Niemeld, P. Simons, and T. Syrjdnen, SLP solver smodels, 1997,
http://www.tcs.hut.fi/Software/smodels/.

N. Pelov, Semantics of logic programs with aggregates, PhD Thesis. Department of Com-
puter Science, K.U.Leuven, Leuven, Belgium (2004).

N. Pelov, M. Denecker, and M. Bruynooghe, Well-founded and stable semantics of logic
programs with aggregates, Theory and Practice of Logic Programming (2006), Accepted
(available at http://www.cs.kuleuven.ac.be/ dtai/projects/ ALP/TPLPY/).

A. Selman, A taxonomy of complexity classes of functions, Journal of Computer and System
Sciences 48 (1994), no. 2, 357-381.

P. Simons, 1. Niemeld, and T. Soininen, Extending and implementing the stable model se-
mantics, Artificial Intelligence 138 (2002), 181-234.




Intermediate Languages of ASP Systems and Tools

Tomi Janhunen

Helsinki University of Technology
Department of Computer Science and Engineering
P.O. Box 5400, FI-02015 TKK, Finland
Tomi.Janhunen@tkk.fi

Abstract. In answer set programming (ASP), a search problem is solved by de-
scribing its solutions in the input language of an answer set solver which is then
used to compute solutions to the problem. Usually, the problem is converted to
an intermediate representation before the actual computation of solutions starts.
The current ASP systems employ a number of simplified languages (file formats
or like) for this purpose. In this paper, we review a number of intermediate lan-
guages and analyse their properties. The goal is to identify best features of such
languages to be used as the basis of new designs and thus pave the way for the
standardisation of intermediate languages in ASP.

1 Introduction

Answer set programming (ASP) [1-3] is an approach to knowledge representation and
reasoning in which a search problem is formalised in a logical language so that the
models of the representation, i.e., a logic program, capture solutions to the problem.
Then the models of the program are computed in terms of a dedicated search engine,
hereafter called an answer set solver. A general architecture for an ASP system is de-
picted in Figure 1. A full-fledged ASP system provides a programmer with a rule-based
input language using which problems are encoded. The front-end of the system consists
of a parser for this language and the outcome is an intermediate representation of the
problem in a simplified language directly supported by the search engine. The search
of models, i.e., variable assignments potentially fulfilling additional criteria, is then
performed using the respective answer set solver. The architecture described above is
simplified in the sense that solvers may carry out optional compilation steps—possibly
giving rise to additional intermediate representations of the problem.

The goal of this paper is to analyse such intermediate representations and, in par-
ticular, general requirements for languages on which they are based. Some of these
languages can be merely viewed as machine-readable file formats that are easy to parse
by the respective solver. Other intermediate languages still resemble input languages
in the sense that they come with a concrete human-readable syntax but strict syntactic
restrictions may apply. Drawing the borderline between the two extremes may be diffi-
cult though. In what follows, we briefly review a number of solvers from the ASP and
related domains and point out some intermediate languages of our interest.

— The SMODELS system [4] has its own internal file format—hereafter referred to as
the SMODELS format [5]. The front-end of the system, LPARSE, is responsible for



Intermediate Languages of ASP Systems and Tools 13

Problem Parser | Intermediate | Solver | Variable
representation | = | representation | = | assignment
Fig. 1. General Architecture for Answer Set Programming

grounding and partially evaluating the input program which is then passed to the
SMODELS engine in the internal format. The user can access this representation but
it is not human-readable because of the numerical representation of rules.

— The Center for Discrete Mathematics and Theoretical Computer Science at Rut-
gers University (DIMACS) has specified two formats for propositional satisfiability
problems [6]. The DIMACS/CNF format is the input language for many satisfia-
bility (SAT) solvers!. In analogy to the SMODELS format, this format enables the
representation of propositional theories in conjunctive normal form (CNF).

— A number of ASP systems compile logic programs into propositional theories us-
ing Clark’s completion procedure [7]. However, additional constraints called loop
formulas are incrementally introduced to capture answer sets in general. This is
the strategy behind the ASSAT [8] and CMODELS [9] systems which understand a
subset of the SMODELS format as their input language. The DIMACS/CNF format
is used as an intermediate representation for the completion and loop formulas.
The author [10] has developed a single-shot transformation for the same purpose.
The respective implementation, i.e., the LP2SAT system, supports a subset of the
SMODELS format and produces a DIMACS/CNF representation of the program.

— There are mainly two systems developed for disjunctive logic programming: DLV
[11] and GNT [12]. As reported by Koch et al. [13], the former system exploits
SAT technology in checking the minimality of stable models. This implies that the
DIMACS/CNEF is used at least indirectly by DLV but the user has no access to the
representation. On the other hand, the GNT system consists of two cooperating
instances of the SMODELS engine. When GNT is used, disjunctive programs are
instantiated using LPARSE and hence an extension of the SMODELS format is used.
More recently, the CMODELS system was also extended for proper disjunctive rules.

— Boolean circuits (BCs) provide a viable alternative to propositional formulas as
they are able to share structure in a very natural way. The BCSAT system [14] im-
plements a check for BC satisfiability and it is based on a file format of its own [15].
The original BCSAT engine solved BCs in this format directly but now an optimised
translation into DIMACS/CNF is provided to exploit the rapid improvement of SAT
solvers. Therefore we view the BCSAT format as an intermediate language.

— Yet another format has been proposed for pseudo-Boolean solvers which deal with
linear constraints and objective functions rather than plain Boolean constraints. We
include the respective input format of PB06 evaluation [16] in our analysis.

In addition to the development of languages and solvers, the ASP community has
put forward systematic benchmarking in order to keep track what is the current state of

! Many SAT solvers can be accessed through http: //www.satlive.org/.



14 Tomi Janhunen

Syntactic expression Internal representation
(D]a < bi,...,bp, ~C1,...,~Cp. 1 #a(p+n) n,
HCi . LFHCn b1 #bp—
2)|a — L {b1,...,bp,~c1,...,~cn}. 2 F#a(p+n) n il

#Ciy .. H#Cn FFb1 . L#bp—
B){a1,...,an} < b1,...,bp,~c1, . ~ven. [BLRLHAL - LFFARL (P )Ny
H#HCi - LHFCnFEb1, - L #bp—

@D|a—1<[b1=wi,...,bp =wp, Sof#al(p+n)n,
~C1 = Wp41y...,~Cp = prrn}- #Clu . \_I#C"\_l#bl\_l . u#bpu
Wp+1 -« - uWpn Wiy - - - L Wp
(5)| minimize[ by = w1, ... ,by, = wy, 6.,0,(p+n) n,
~C1 = Wp41,...,~Cp = u)p+n]. #Clu NN \_I#C”\_l#bl\_l NN u#bmu
Wpt1y -« - yWptn Wiy, - - - Wp
6)|a1,...,an OF#ai a1 ... —F#a, an—0
(7)|compute{b1, ... by, ~c1,...,~Cn}. B+—>Fbi— ... —#b,—0—
B—«F#C1— ... —FHCc,— 0
(8)|Trailer when ¢ models are to be computed c—

Table 1. The internal file format of the SMODELS system

the art in ASP. The Dagstuhl initiative [17] led to the development of a dedicated bench-
marking system called ASPARAGUS?. Already the first competition showed the need of
commonly agreed representations for benchmark problems. As the first step in this di-
rection, a core language was drafted by the steering committee of the ASP competition
at LPNMR’04 [18]. A variant of the core format, the ground core format (GCORE), has
been recently proposed by Namasivayam et al. [19]. It is natural to address the GCORE
format in this context due to its potential role in future competitions.

The rest of this paper is organised according to the following plan. In Section 2, we
describe some of the formats introduced above in more detail. These pieces of infor-
mation serve as the basis for the analysis and discussion that follows in Section 3. The
interoperability of KR systems and the role of intermediate languages in this respect is
addressed in Section 4. Recommendations presented in Section 5 conclude this paper.

2 Examples of Intermediate Languages

This section provides an introduction to a number of intermediate languages. Some of
them are merely internal file formats exploited by ASP systems in practise whereas
others are of more general syntax and nature—some distinctions in this respects will
be made in Section 3. Meanwhile we will describe the details of five intermediate lan-
guages, i.e., the SMODELS format, the DIMACS/CNF format, the ground CORE format,
the PBO6 format, and the BCSAT format. Some extensions to these formats will be dis-

cussed, too. Two special symbols, literally “ " for (white) space and “«—" for newline,
appear in the format descriptions for the sake of concise representation.

2 The system is installed under http://asparagus.cs.uni-potsdam.de/.



Intermediate Languages of ASP Systems and Tools 15

Syntactic expression Internal representation
(1)|Header for n atoms and c clauses|p, ,cnf, n_c<
(2)|Comments c_,comment<

3)|b1V...Vby Voc1V...Vocs. |#bi ... #bp
—#C1 . —FCn 0

Table 2. The DIMACS/CNF format

As suggested by the list above, we begin by describing the SMODELS format that
provides an intermediate format for delivering a logic program from the front-end
LPARSE to the actual SMODELS engine [4] which implements the search for models.
A description of the format is included in the Appendix B of [5] but we present an
abridgment in Table 1. A basic assumption is that each ground atom a is assigned a
unique number denoted by #a. The representation of a program starts with a listing of
its basic rules (1), constraint rules (2), choice rules (3), weight rules (4), and minimize
statements (5) using the respective representations given in Table 1. Each line starts
with a fixed code that identifies the type of the rule in question.® For instance, a basic
rule a < b, ~c is represented by a single line “1 1 2 1 3 2«="—assuming atom
numbers #a = 1, #b = 2, and #c = 3. The next part (6) provides the symbol table for
the program, i.e., a mapping from atom numbers back to symbols. Programs may in-
volve invisible atoms without a symbolic name. Moreover, compute statements (7) may
be issued in order to constrain models to be computed by the solver. A summary of this
information, i.e., atoms assumed to be true and false, are listed in separate sections each
atom on a line of its own. The representation ends with the number of stable models to
be computed (8). All models should be computed if this count is nil.

Compared to the SMODELS format, the DIMACS/CNF format [6] has a much sim-
pler structure as specified in Table 2. The representation of a propositional theory in
CNF begins with a header line (1) which nicely enables the solver to allocate appropri-
ate data structures for n atoms and c clauses before reading them in. Any number of
comments (2) can be included; also before the header and the representation of clauses
(3). Actually, clauses are delimited by Os so that grouping to separate lines is not neces-
sary although advisable. Unfortunately, some SAT solvers do not support empty clauses,
i.e.,p = n = 01in (3), which is disappointing in view of logical completeness. The sim-
plicity of the format, however, suggests the DIMACS/CNF format as a machine code
for knowledge representation. This view is present in the design of systems like ASSAT,
CMODELS, and LP2SAT that transform programs represented in the SMODELS format
into a DIMACS/CNEF representation. The result of the transformation is usually more
complex/spacious than the original representation which goes back to fact that the ex-
pressiveness of rules under stable models strictly exceeds that of clauses [10].

The current extensions that have been proposed to the SMODELS format are listed in
Table 3. The first rule type (1) with an ordered disjunction in the head [20] is used only
internally by LPARSE, i.e., rules of this kind never appear in its output. The integration of
proper disjunctive rules (2) to the CMODELS system led to the introduction of the code

3 Code 4 is practically unused although the SMODELS engine still supports it.



16

Tomi Janhunen

Syntactic expression Internal representation
(D]ar X ... Xap < b1,...,bp,~c1, ... ,~ven. [T R #Ha1, - - L#FanL (0 + n)ny
HCi - LFCnF#b1 - F# b
@)a1]...lJan < b1,...,bp,~ec1, .. i~ven. [8LRGHAL - - AR, (P + )N
#C1y - LHFCaFb1 - L#Dp
(3)|b1V ... Vb, V —C1V...V-c,. 9 (p+n)n,
#r . HCn #bi Hby

Table 3. Some extensions to the SMODELS format

8 for such rules. As a result, the new versions of LPARSE are incompatible with the
GNT system [12] which abuses choice rules, represented under code 3, as substitutes
for disjunctive ones. The plan is to remove this discrepancy in the future versions of
GNT. Note that CMODELS is able to handle programs that contain both choice rules
and disjunctive rules. The third extension (3) has arisen in the context of translating
logic programs into clauses. The idea is to enrich the SMODELS format by incorporating
DIMACS/CNF as its subformat. Then tools like LP2SAT can handle rules and clauses
on equal basis and form mixed representations of such expressions if appropriate. The
status of the extensions listed in Table 3 is still unofficial and their existence in the
future is highly dependent on the developers of the tools involved. For now, there is no
official body that would control the evolution of the SMODELS format.

The CORE format [18], as decided by the steering committee of the ASP system
contest, aims to define a common syntax for disjunctive rules of the form (2) in Ta-
ble 3.* To this end, the format specifies (i) what kind of identifiers are used for constant,
variable, and predicate symbols, (ii) the syntax of atomic formulas, (iii) symbols for
logical connectives, and finally (iv) the syntax of rules. As an extensive example, the
reader may consider a disjunctive rule

* Note that basic/normal rules (1) from Table 1 form a special case of such rules.

Syntactic expression Internal representation
(Dja < by,...,bp,~cy, ... ,~Cp. v#a i Vv#EbL, o VD,
not v#Ci, ..., Ot VH#Cy .
2)|{a1,...,antu < b1,...,bp, AL vH#aL, .., VvH#aR} U i —
~C1,...,~Cnp. V#bllu"'luv#bplu
not v#Ci, ..., Ot VHC, .
B)la — l{b1,...,bp,~c1,...,~cptu. |vRa - L (VDL e VDR,
not v#ci, ..., ot v#Cy } u.
Bla—1< v#a -l L
[by = wr,...,bp = wp, v#bi=wi, ..., vH#bp=wp,
~Cl = Wptl,y...,~Cp = wp+n] not v#c1=wp+1 .- ot v#cn=wp+n,_|
< u. JLu.

Table 4. Examples of the GCORE format




Intermediate Languages of ASP Systems and Tools 17

Syntactic expression Internal representation
(1)|Header for v variables and c constraints|+_#variable=_v _#constraint=_c<
(2)|Comments % comment<«—
(3)|Objective function a1v1+ ... +anv, |[min: a1 x#FV1 ... Gn XFH U §
@Dlaivi+...+apvy, = b a1 XHFVL - 00 X FE U = b
BS)|arvi+...+tapvy, > b a1 XFVL - LGn X FUR >= b —

Table 5. The pseudo-Boolean format used at PB06 competition

open(X,Y); closed(X,Y) :- abscissa(X), ordinate(Y).

expressed in the CORE syntax. It may be questionable to view this format as an infer-
mediate language in the first place because it is merely a specification of a common
input language for a number of ASP solvers: A practicality when organising an ASP
solver contest. However, the GCORE format [19] is somewhat closer to the SMODELS
format in the sense that all rules are assumed to be ground. As an indication of this,
atom names are substituted by standard names of the form vn where n is a number. Ta-
ble 4 collects the representations of rules involved in the SMODELS format (recall Table
1) expressed using the GCORE format. Generally speaking, the GCORE format admits
a more liberal use of cardinality and weight constraints, recall the bodies of rules (3)
and (4) in Table 4, respectively, used in the heads and bodies of rules such as

1 {vl, v2} 2 := 1 {v3, v4}, {v5, vo} 2.

In this sense, the format is more general than the SMODELS format, has features of the
input language of LPARSE but only ground rules are supported. In view of the original
CORE format, however, no representation is reserved for proper disjunctive rules.

The last two formats taken into consideration originate from other paradigms than
ASP. Pseudo-Boolean solving generalises satisfiability checking in terms of traditional
linear constraints and an objective function subject to minimisation. Problems of this
kind are represented in a format described in Table 5. The headers (1) and comments
(2) are analogous to the DIMACS/CNF format. Boolean variables are represented as
in the GCORE format but canonical names start with “x” rather than “v”. The first
non-comment line may include an objective function (3) to be minimised. The pseudo-
Boolean constraints, i.e., equalities (4) and inequalities (5), follow. These constructs
resemble weight constraints used in ASP and an objective function can be expressed
using a minimisation statement (5) from Table 1. It is good to point out that the PB06
format can be viewed as a generalisation of the DIMACS/CNF format because a tradi-
tional Boolean clause by V ... Vb, V —c1V ... V¢, can be captured with an inequality
bi+...+b,—ci...—c, > 1 —n where b;’s and c;’s take either 0 or 1 as their values.

Boolean circuits provide yet another representation for Boolean functions. The input
language of the BCSAT system provides a flexible representation of Boolean circuits in
terms of gate definitions of the form g:=f where g is the name of the gate and f is a
Boolean formula associated with g. The syntax of formulas is summarised in Table 6.
Together, a set of gate definitions should form a non-circular definition of the Boolean
circuit under consideration. Besides variables, Boolean constants, and standard Boolean



18 Tomi Janhunen

variable | T | F

Fy==F, |EQUIV(Fy, ..., Fy)
Fy=>F> | IMPLY ( Fi , F»)

Fy | F2|OR(F1,...,Fn)
Fl&F2|AND(F1,...,Fn)

~ Fy |NOT ( Fy)
F1AF2|ODD(F1,...,F»,1)
EVEN( Fy, ..., Fyn)
ITE(Fy, F>, Fs)
[l,u] (Fi1,..., Fn)
(F1)

Table 6. Syntax of formulas used in the BCSAT format

connectives there are primitives for parity checking, the if-then-else connective adopted
from binary decision diagrams (BDDs), and cardinality constraints. These extensions
nicely increase the expressiveness of basic Boolean circuits in view of applications.
Gate definitions may be accompanied by gate assignments of the forms “ASSIGN g;”
or “ASSIGN ~g;” which set a specific gate g to true (T) or false (F), respectively, in
analogy to compute statements in the SMODELS format. Finally, we mention that a file
in the BCSAT format is supposed to start with a header line “BC1.0<".

3 Analysis and Discussion

The purpose of this section is to present an analysis of five intermediate languages intro-
duced in Section 2: the DIMACS/CNF, SMODELS, GCORE, PB06, and BCSAT formats.
In the sequel, a number of properties of these languages will be pointed out and followed
by a discussion on their prevalence among the quintet under consideration. A summary
of these results is collected in Table 7. However, certain properties shared/lacked by all
formats are not mentioned for space reasons but subsequently discussed in Section 3.1.
The labels of the following items refer to the columns of Table 7.

1. FF: The language has been designed as a pure (machine-readable) file format.
This is clearly true for DIMACS/CNF and SMODELS formats. As an indication
of this, it is straightforward to implement a parser for these formats—a simple
automaton will do the job. The ease of parsing is also a goal of the PB06 format
although it insists on a support for arbitrarily long integers. A further aspect of
the these low-level file formats is that they are no longer valid input for the parser
depicted in the general architecture (recall Figure 1), i.e., they do not correspond to
a syntactic fragment of the input language. Indeed, the GCORE format is based on a
simplified LPARSE syntax in which ground atoms are additionally represented using
standard names v1, v2, ...and so on. This means in principle that programs in the
GCORE format can be recycled through the parser but this may not be feasible for
the sake of efficiency. For instance, a simplified parser called GLPARSE is exploited
by the ASPARAGUS system in order not to affect benchmarking times of solvers by



Intermediate Languages of ASP Systems and Tools 19

Format FF|VI|CL|SN|EX
DIMACS/CNF| x | x | x
SMODELS X X | %
GCORE X X
PB06 X X X
BCSAT X | x| x|x

Table 7. Properties of Certain Intermediate Languages Summarised

the time spent on parsing. It is also worth mentioning LPLIST> which transforms
problem representations in the SMODELS format, or alternatively DIMACS/CNF,
back to a symbolic representation that can be parsed again. Among the formats
subject to analysis herein, the BCSAT format is in its own category as it is based on
arecursive syntax and thus requires more sophisticated methods for parsing. In any
case, the BCSAT format needs not be a fragment of the input language of the overall
system in analogy to DIMACS/CNF and the SMODELS format.

2. VI: The format includes version information that enables revisions in the future.
This feature boils down to having a header to carry such information in the format.
This is the case for DIMACS/CNF and the BCSAT format although only the latter
has a proper version number incorporated. The other three formats do not have
headers which makes it difficult to detect format versions reliably. For instance,
the extensions of the SMODELS format described in Table 3 cannot be perceived
if no rules under codes 7—8 are present. The integrity of headers is naturally a
prerequisite for reliable detection. Moreover, it does not appear as a good idea to
express version information in comment lines in an ad-hoc manner.

3. CL: The use of comment lines is allowed.

All formats under consideration except the SMODELS format have this property.

4. SN: The language carries symbolic names for (propositional) variables.

This property is significant from the user’s point of view, i.e., it enables the respec-
tive solver to print variable assignments in a human-understandable way in the last
phase of answer set computation (recall Figure 1). The users of SAT solvers have
to live with the lack of this property in DIMACS/CNF and digest lists of integers or
binary vectors in a way or another. Fortunately, the mainstream ASP solvers have
carried symbolic information from the very beginning. To this end, the SMODELS
format includes a symbol table as specified by (6) in Table 1. On the other hand, the
BCSAT format uses symbolic names of variables as lexical elements thus avoiding
loss of information in this respect. The lack of support for symbolic names can be
alleviated to some extent by incorporating such information within comment lines.
But this is only a partial solution because the format itself does not specify the
representation of symbolic names which may therefore diverge.

5. EX: The language is easily extendible with new syntactic expressions.

The poor extendibility of DIMACS/CNF goes back to the type information “cnf”
given in the header. Thus it is unnatural to introduce new expressions unless several

3 At least for now, LPLIST is distributed with CIRC2DLP at http://www.tcs.hut.fi/
Software/circ2dlp/.



20 Tomi Janhunen

representations are concatenated one after another. The flexibility of the SMODELS
format has already been demonstrated in Table 3 where new codes for rules are
introduced. The encoding of objective functions under the PB0O6 format (recall Ta-
ble 5) suggests a strategy for extensions using labels for types. The remaining two
formats are easy to extend by new syntax due to flexibility of their grammars.

Interestingly, none of the formats under consideration has all of properties sum-
marised in Table 7. The BCSAT format appears to be closest to having them all. On the
other hand, the coverage of syntactic primitives was not introduced as a criterion for the
analysis because the languages have been designed for slightly different purposes.

3.1 Further Properties

In what follows, we will address further properties of intermediate languages: (i) pros
and cons of binary file formats, (ii) modularity aspects of intermediate languages, and
(iii) the possibility of embedding metadata in intermediate representations.

All the formats addressed above are based on a textual (ASCII) representation either
using numbers or character strings as lexical tokens. Thus none of them is comparable
to binary file formats produced by compilers of conventional programming languages.
This is perhaps advantageous because, on one hand, binary representations are more
tedious to implement in a machine independent way. On the other hand, textual for-
mats provide a less compact representation but can be improved using compression
techniques if space complexity becomes a concern.

The study of module systems and modularity in general are receiving growing atten-
tion in ASP [21-23]. Inspired by modular notions of program equivalence, the author
has implemented a link editor LPCAT® for programs in SMODELS format—enabling the
construction of larger programs by linking smaller ones together. This is analogous to
the use of object modules and libraries in conventional programming systems. For tools
like LPCAT symbolic information plays a crucial role and thus formats that support sym-
bolic names are best off in view of implementing a module system. For instance, the
SMODELS format does not have a built-in support for modules, i.e., it has been designed
in order to represent a single program consisting of a set of rules. However, due to sepa-
rators used in the SMODELS format, libraries could be formed by simple concatenation
of files. Yet another strategy is to use file archive tools for storing program modules,
e.g., PKZIP provides random access to compressed modules in contrast to the use of
TAR and GZIP. The other format with symbolic names, i.e., the BCSAT format, does
neither have a module system. At least in principle, circuit definitions can be joined
together as long as the acyclicity of definitions is not endangered by such operations.
The headers of circuit descriptions make only a minor obstacle for concatenation.

There are two fundamental pieces of information associated with a symbol: its name
and the unique number assigned to it. Invisible symbols, as addressed in [10], can be
identified with their numbers. The role of symbols and symbol tables can be developed
further in the intermediate languages of ASP systems. Building a proper support for

® This tool is used in our translation-based implementation of prioritised circumscription, the
PRIO2CIRC system, available at http://www.tcs.hut.fi/Software/circ2dlp/.



Intermediate Languages of ASP Systems and Tools 21

lparse program.lp | smodels
lparse program.lp | lp2atomic | lp2sat | minisat

Table 8. Shell pipelines for computing stable models using SMODELS, LP2SAT, and MINISAT

modular program construction requires the distinction of symbol types in addition to
names. For instance, certain symbols act as the input interface for a module whereas
some other symbols mediate its output to other modules in a program. Further exten-
sions become necessary if the support for external function calls is integrated. In the
wildest scenarios, we should be ready to associate arbitrary metadata with symbols.
Such features are not present in the formats listed in Table 7.

4 On the Interoperability of ASP Tools

The development of feasible intermediate languages for ASP solvers can substantially
enhance their interoperability and usability with other related tools. So far, our expe-
riences have restricted to the use and development of tools based on the SMODELS
format and its extensions as well as DIMACS/CNF. As an example, let us consider the
use of LPARSE and SMODELS according to the general ASP architecture in Figure 1.
The first line in Table 8 shows an exemplary command line for running LPARSE and
SMODELS using a shell pipe “I” in between. When executed, the program in the input
file “program. 1p” is read in and grounded by LPARSE. Then the ground program is
forwarded in the SMODELS format through the pipe for the computation of one stable
model by SMODELS; further models could be requested using command line options.

The second command line in Table 8 presents a pipeline for the same task but using
a translator from the SMODELS format to DIMACS/CNF [10] and the MINISAT solver
[24]. The first translator, viz. LP2SAT, removes positive body literals from the pro-
gram which remains in the SMODELS format. In the next step, another translator called
LP2SAT forms the Clark’s completion for the program and outputs a DIMACS/CNF rep-
resentation for it. Finally, MINISAT is used to search a model for the completion. The
use of DIMACS/CNF complicates the task of extracting a stable model from the model
of the completion because symbolic information is lost in the last phase—decreasing
the interoperability of tools involved. However, in order to circumvent this problem in
practise, we include a symbol table in the comment lines of the DIMACS/CNF repre-
sentation and replace MINISAT with a shell script that extracts names of atoms from
comments, stores them in a temporary file, runs MINISAT, extracts a model from its
output, and maps atom numbers in the model back to their symbolic names. By this
procedure we obtain a degree of usability similar to that of SMODELS. These observa-
tions suggests a need for an interface specification for ASP/SAT solvers themselves.

In addition to enhanced interoperability, intermediate languages that are commonly
agreed upon can facilitate the development of new ASP tools. For instance the rapid ad-
vancement of SAT solvers is partly due to a shared format that enables straightforward
exchange of benchmarks among the developers. Similar development is going on in the
area of ASP. For instance, ASSAT and CMODELS are new solvers that have been de-



22 Tomi Janhunen

veloped around the SMODELS format. Quite recently, the combination of LPARSE and
SMODELS as illustrated in Table 8 is getting a challenger from that of GRINGO’ and
CLASP [25]. Again, an intermediate format plays a role in this development by separat-
ing the phase of parsing and grounding from that of solving and computing models.

In view of the interoperability of systems and tools, it is also worth raising two “po-
litical” aspects for discussion. First of all, we have several examples from the software
industry where file formats are used as vehicles in marketing policy, i.e., to prevent non-
customers from using a particular tool; or to force customers to purchase a new version
of the tool for compatibility reasons. To avoid such side-effects in the ASP community,
the development of intermediate formats should become a joint standardisation effort
the community. The work around the ASP system competition has taken first steps in
this direction [18] but this work is still at preliminary stage. In our group, we have taken
initiatives in this respect in the development of tools like DLPEQ [26] and CIRC2DLP
[27] for disjunctive logic programming. They have been designed to support both GNT
[12] and DLV [11] as their back-end solvers as to benefit the users of both systems. The
second issue is that new versions of intermediate languages tend to emerge from the
initiatives of individual system developers—with little coordination. The same applies
to revisions to existing formats which are prone to divergence if there is no control. For
instance, the assignment of codes 7—9 in Table 3 is a compromise proposed herein in
order to satisfy the needs of a number of tools. A lesson to learn is that, in the long run,
the ASP community should have an official body to regulate intermediate languages
and to coordinate any proposed extensions to them.

5 Conclusion

In this paper, we have presented the details of five existing intermediate languages re-
lated to ASP, brought attention to some of their properties through a systematic analysis,
and raised the enhanced interoperability of ASP tools as one of the main goals in the
development of new formats. On the basis of the analysis presented in Section 3, my
recommendations for any future proposals of intermediate languages are as follows:

1. The format should be easy to extend and for this reason it should also include
version information, e.g., for backward compatibility.

2. The format should carry symbolic information; preferably in the form of a symbol
table. The entries of the table should have optional fields for type information and
metadata, e.g., in view of future extensions.

3. The format should include support for comment lines or a separate section for
comments—enabling the integration of documentation in natural language.

4. The format should be based on a textual or numeric representation of the expres-
sions involved in the intermediate language. In comparison with a binary represen-
tation, savings in space can still be achieved using explicit compression methods.

5. The format should have a proper module architecture which facilitates modular
program development and enables the construction of module libraries.

7 Available at http://www.cs.uni-potsdam.de/~sthiele/gringo/.



Intermediate Languages of ASP Systems and Tools 23

The five items above cover most of the aspects raised in the analysis carried out
in Section 3. However, one aspect of the format remains open in view of Table 7, i.e.,
whether to have a numeric low-level file format or one with a more general syntax
and symbols as lexical elements. This is somewhat a matter of taste and hence no firm
recommendation is spelled out in this respect. It could be even a good idea to have both
given translators between the two variants.® Nevertheless, the SMODELS and GCORE
formats are closest candidates in this respect but as indicated by the recommendations
above not totally satisfactory as such—which leaves us with a call for new designs.

It is likely that there are other technical requirements that have not been addressed
in this paper and which could serve as a basis for further recommendations. Such factors
may also arise in the sequel when ASP evolves as a paradigm. For instance, the support
for non-ground representations may become a necessity in the future. There are also
other aspects in the development of intermediate formats. Any serious format should be
(i) properly published, (ii) provided with basic input/output routines in a number of pro-
gramming languages, and (iii) equipped with tools, like LPCAT and LPLIST mentioned
above, to handle representations in the format. A great deal of organisational work is
also required if real standard formats are to be developed for the ASP community.

There are also other formats and intermediate languages that can be taken into con-
sideration for the sake of contrast and comparison. In this respect, one candidate is
the specification of an on-line library of benchmarks for satisfiability modulo theories
(SMT-LIB) [28]. However, we excluded the analysis of the SMT-LIB format from the
current paper due to its inherent complexity: The format is based on a many-sorted
version of first-order logic with equality. In any case, the SMT-LIB format provides
an interesting generalisation of propositional theories with external theories and it may
provide useful insight how to incorporate external functions and predicates into inter-
mediate languages designed for ASP. In particular, the representation of aggregates,
such as cardinality and weight constraints introduced above, is of our central interest.

At the moment, the DIMACS/CNF format can be viewed as the de facto standard for
representing satisfiability problems for SAT solvers. An interesting question is whether
some new intermediate language will reach at least similar status in the ASP com-
munity. Hopefully, the five recommendations listed above pave the way in the design
of a good candidate for such a language. To this end, it is high time to make serious
proposals because expected benefits are manifold. For instance, it is likely that the in-
teroperability of ASP tools is enhanced and the development of ASP solvers is boosted
by extensive benchmarking enabled by a standard format. Moreover, a modular format
may turn out highly useful in controlling the complexity of grounding which is viewed
as a bottleneck of current ASP systems.

Acknowledgements

This work was partially supported by the Academy of Finland under project #211025
titled “Advanced Constraint Programming Techniques for Large Structured Problems”.

8 Actually, the tools LPLIST and GLPARSE almost provide such facilities for the SMODELS for-
mat and the respective fragment of the input language accepted by LPARSE.



24

Tomi Janhunen

References

12.

13.

14.

15.

16.
17.

18.

19.

. Marek, W., Truszczyiiski, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm: a 25-Year Perspective. Springer-Verlag (1999) 375—
398

Niemeld, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3—4) (1999) 241-273
Gelfond, M., Leone, N.: Logic programming and knowledge representation—the A-Prolog
perspective. Artificial Intelligence 138 (2002) 3-38

Simons, P., Niemel4, 1., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181-234

Syrjanen, T.: Lparse 1.0 user’s manual®. Available at the SMODELS website (2001) Appendix
B, pp. 86-89.

DIMACS: Satisfiability suggested format. Available at the ftp server'® of Rutgers University
(1993)

Clark, K.L.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data Bases.
Plenum Press, New York (1978) 293-322

Lin, F,, Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157 (2004) 115-137

Lierler, Y., Maratea, M.: CMODELS-2: SAT-based answer set solver enhanced to non-tight
programs. [29] 346-350

Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16(1-2) (2006) 35-86

. Leone, N., Pfeifer, G., Faber, W, Eiter, T., Gottlob, G., Scarcello, F.: The DLV system for

knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3)
(2006) 499-562

Janhunen, T., Niemeld, 1., Seipel, D., Simons, P., You, J.H.: Unfolding partiality and disjunc-
tions in stable model semantics. ACM Transactions on Computational Logic 7(1) (2006)
1-37

Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic programming systems by SAT
checkers. Artificial Intelligence 151(1-2) (2003) 177-212

Junttila, T., Niemel4, I.: Towards an efficient tableau method for boolean circuit satisfiability
checking. In Lloyd, J.W., et al., eds.: Proc. of CL 2000. Volume 1861 of LNCS., Springer
(2000) 553-567

Junttila, T.: File format for boolean circuit satisfiability. Available at the BCSAT website'!
(2006)

Roussel, O.: PB06: Input format'2. Available at the PBO7 website (2006)

Borchert, P., Anger, C., Schaub, T., Truszczynski, M.: Towards systematic benchmarking in
answer set programming: The Dagstuhl initiative. [29] 3-7

Leone, N, et al.: Core language for ASP solver competitions. Available at the ASPARAGUS
website'® (2004) Minutes of the steering committee meeting at LPNMR’04.

Namasivayam, G., Liu, L., Truszczynski, M.: Syntax for ground logic programs — a proposal.
Available at URL'* (2006)

http://www.tcs.hut.fi/software/smodels/lparse.ps

0 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/
Uhttp://www.tcs.hut.fi/~tjunttil/besat/
2 http://www.cril.univ-artois.fr/pb07/pb06_inputformat.html

Bhttp://asparagus.cs.uni-potsdam.de/
“nttp://www.cs.uky.edu/ai/groundlp-grammar—-proposal.txt



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Intermediate Languages of ASP Systems and Tools 25

Brewka, G., Niemeld, 1., Syrjdnen, T.: Implementing ordered disjunction using answer set
solvers for normal programs. In Flesca, S., et al., eds.: Proc. of JELIA’02. Volume 2424 of
LNCS., Springer (2002) 444-455

Ianni, G., lelpa, G., Pietramala, A., Santoro, A., Calimeri, F.: Enhancing answer set program-
ming with templates. In Delgrande, J.P., Schaub, T., eds.: 10th International Workshop on
Non-Monotonic Reasoning, Whistler, Canada, June 6-8, 2004, Proceedings. (2004) 233-239
Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles in modular
answer set programming. In: Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006). Volume 4079 of LNCS., Springer (2006) 376-390

Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In Brewka,
G, et al., eds.: Proc. of ECAI’06, IOS Press (2006) 412416

Eén, N., Sorensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella, A., eds.:
Proc. of SAT’03. Volume 2919 of LNCS., Springer (2003) 502-518

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In
Veloso, M., ed.: Proc. of IICAI’07. (2007) 386-392

Oikarinen, E., Janhunen, T.: Verifying the equivalence of logic programs in the disjunctive
case. [29] 180-193

Oikarinen, E., Janhunen, T.: CIRC2DLP—translating circumscription into disjunctive logic
programming. In Baral, C., et al., eds.: Proc. of LPNMR’05. Volume 3662 of LNCS.,
Springer (2005) 405409

Ranise, S., Tinelli, C.: The SMT-LIB standard. Available at the SMT-LIB website'® (2006)
Version 1.2.

Lifschitz, V., Niemeld, 1., eds.: Logic Programming and Nonmonotonic Reasoning, 7th In-
ternational Conference, LPNMR 2004, Fort Lauderdale, FL, USA, January 6-8, 2004, Pro-
ceedings. In Lifschitz, V., Niemeld, 1., eds.: LPNMR. Volume 2923 of LNCS., Springer
(2004)

Shttp://combination.cs.uiowa.edu/smtlib/papers.html



What should an ASP Solver output?
A Multiple Position Paper *

Martin Brain', Wolfgang Faber?, Marco Maratea®, Axel Polleres?, Torsten Schaub®,
and Roman Schindlauer-2

1 Department of Computer Science, University of Bath, United Kingdom
mjb@cs.bath.ac.uk
2 Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy
faber@mat.unical.it
3 DIST - University of Genova, Viale F. Causa 15, 16145, Genova, Italy
marco@dist.unige.it
4 Digital Enterprise Research Institute, National University of Ireland, Galway
axel.polleres@deri.org
5 TInstitut fiir Informatik, Univ. Potsdam, August-Bebel-Str. 89, D-14482 Potsdam, Germany,
torsten@cs.uni-potsdam.de
S Tnstitut fiir Informationssysteme 184/3, Technische Universitit Wien, Favoritenstrafle 9-11,
A-1040 Vienna, Austria, roman@kr.tuwien.ac.at

Abstract. This position paper raises some issues regarding the output of solvers
for Answer Set Programming and discusses experiences made in several different
settings. The first set of issues was raised in the context of the first ASP system
competition, which led to a first suggestion for a standardised yet miniature out-
put format. We then turn to experiences made in related fields, like Satisfiability
Checking, and finally adopt an application point of view by investigating inter-
face issues both with simple tools and in the context of the Semantic Web and
query answering.

1 Motivation

The development of solvers for Answer Set Programming (ASP;[1]) constitutes nowa-
days a major driving force of the field. This goes hand in hand with a growing range of
applications along with more and more substantial collections of benchmark suites. The
latter allow for a broad comparison among different ASP solvers. And benchmarking as
such plays a major role for progressing ASP solver technology, as already experienced
in many related areas, such as Automated Theorem Proving [2] or Satisfiability Check-
ing [3]. Although many benchmarks stem from distinguished application areas, certain
applications need dedicated formats due to sophisticated interactions with ASP solvers.
This is an important issue when interfacing ASP solvers with other software modules
in real-world applications.

* This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-
NO4, and by the European Commission through the IST Networks of Excellence REWERSE
(IST-2003-506779).



What should an ASP Solver output? A Multiple Position Paper 27

This paper is one out of three position papers providing the basis for a discussion
forum to be held on ASP languages at the occasion of the Workshop on Software Engi-
neering for Answer Set Programming (SEA’07), co-located with the Ninth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07;[4]).
While the two other papers offer perspectives on input and intermediate languages’,
we concentrate in what follows on issues related to the output of ASP solvers. We begin
with a discussion on experiences made during the first ASP system competition. This is
complemented in Section 3 by lessons learned in related fields, like Satisfiability Check-
ing. Section 4 outlines the minimum requirements for an output format, based on end
user experience. In Section 5 we discuss interface issues that arise in a particular area of
application, namely the Semantic Web. Finally, in Section 6, we discuss requirements
for the output of query answering, a major reasoning mode for ASP solvers.

2 Lessons from the First ASP System Competition

The first ASP system competition [5]%, held in conjunction with LPNMR’07, provided
us with a first glance at issues arising from the distinct output formats of existing ASP
solvers. For example, the original design of the underlying Asparagus platform [6]° was
based on trust, insofar as the output of a solver was never inspected.

This was changed when running the ASP system competition, for which the output
of solvers had to conform to the following formats (in typewriter font):

SAT: Answer Set: atoml atom2 ... atomN
The output is one line containing the keywords ‘Answer Set:’ and the names
of the atoms in the answer set. Each atom’s name is preceded by a single space.
Spaces must not occur within atom names.

UNSAT: No Answer Set
The output is one line containing the keywords ‘No Answer Set’.

The following list comments on some issues that arose during the competition; it
also raises some further topics that might we worth considering in the future.

Result. The definition of the above basic output format was a big step forward in ac-
cessing the result of a solver’s computation in a uniform way.

However, the distinction between satisfiable and unsatisfiable results quickly turned
out to be insufficient. In future, we definitely need (at least) a third indicating string, say
UNKNOWN, signalling that the solver terminated without finding a solution, although
there might exist one. In fact, in the competition, we only had to deal with a single
incomplete solver, whose output had then to be checked by hand. However, such an
indicator also makes sense, for instance, in view of error handling (see below), where
an encountered error should not lead to an indicative output (for instance, of UNSAT),
simply because the wrapping script defaults to it.

7 That is, a language format for communication among grounders and solvers.
8 http://asparagus.cs.uni-potsdam.de/contest/
o http://asparagus.cs.uni-potsdam.de/



28 Martin Brain et al.

Moreover, the competition only required the computation of a single answer set;
hence, no format for producing all answer sets was put forward. On the other hand,
printing a combinatorial elevated number of solutions is time consuming and presum-
ably not necessarily desired in the context of a system competition. Also, it is unclear
how the result could be verified in a reasonable amount of time (see below). Unlike
this, however, it may be interesting to simply count the number of answer sets and
have solvers report the number of answer sets they were able to compute within an
allotted time. The number of solutions is actually relevant in some applications, like
bio-informatics. On the other hand, it is unclear how such a result ought to be verified.

Certification. The second major advancement of the ASP competition was the verifi-
cation of solutions. This worked, however, only for satisfiable instances, and it is yet an
open problem how unsatisfiability should be certified.

The verification process builds upon the output of a certificate, given by an entire
answer set or simply a subset of distinguished predicate instances representing a solu-
tion. (The latter was needed in the modelling track of the competition.) However, what
should a solver output in case it treats an unsatisfiable instance? During the system com-
petition, this issue was resolved pragmatically by trusting the majority of outcomes; and
of course, whenever a single solver found a solution, we were able to check whether it
was right.

Another major hurdle is given by the computational complexity underlying the ver-
ification problem. While it is easy for normal logic programs, it becomes significantly
more difficult for disjunctive logic programs. But even in case of normal logic pro-
grams, we faced problem instances where the certificate became simply too large to be
treated in a pragmatic fashion.

In a nutshell, the output of a certificate is essential for trusting the result of an ASP
solver, however, there are still cases where it is yet unclear what constitutes a good
certificate or at least a good approximation of it.

Performance. During the ASP competition, the performance of ASP solvers was mea-
sured externally by regarding the number of timeouts and, in case of ties, the run time
of the respective solvers.

For a more fine-grained comparison among ASP solvers, one might be interested
in some information that can only be gathered by the solvers itself. One such piece of
information is the number of assignments, or to be more precise, the number of assign-
ments due to propagation and the one due to heuristic choice operations, which could
provide a much more detailed picture of the traversed search space. But apart from
finding an agreement on the output format of such information, we first need solver
developers to agree on collecting information in the same way. For instance, systems
like smodels or dlv report information about choice points, while having different def-
initions of what constitutes a choice point. Moreover, a system based on learning and
back-jumping like clasp does not even (explicitly) flip assignments at choice points.
Other solvers like cmodels, using SAT solvers as search engine, may not even have
easy access to this type of information. So, this is an example where an agreement on
an output format has to be preceded by a consideration of the underlying concepts.



What should an ASP Solver output? A Multiple Position Paper 29

Error handling. Asparagus controls the execution of each solver run by limiting it in
time and space. An excess of either limit is detected and recorded by Asparagus.

In fact, some solvers, or to be more precise, their wrapping scripts, output UNSAT
by default, even though they get interrupted by the run time system of Asparagus. Sim-
ilarly, we had situations in which solvers returned within time and space limits, despite
having encountered internal (e.g., input) errors. It becomes tricky when this happens
with a solver whose wrapper reports UNSAT by default and which actually attempted
to solve an unsatisfiable problem instance.

What is needed here is a systematic way of treating errors (or even termination)
through appropriate signals. We need to define different error categories and how errors
should be signalled (for instance, to standard error as opposed to standard output).

Moreover, it would be a great help, if solvers could receive termination signals,
output some relevant information, and terminate by themselves.

Optimisation. The first edition of the ASP system competition dealt exclusively with
decision problems, although more and more solvers allow for dealing with optimisation
problems as well.

Although one may treat optimisation problems as decision problems, by asking
whether a solution with optimal value of the objective function has been found, it is
also of interest to regard the value of the best solution a solver came up with, even
though it did not terminate within the allotted time. This is difficult because one needs
an output from an externally terminated program (see above).

As with error handling, it makes sense to find a consensus of how to handle this
problem in a uniform way.

3 Experiences from Related Areas

In this section, we will see how the issues that came up in the ASP Competition, and
pointed out in Section 2, have been raised (assuming they are) in other research areas.
It is interesting to note that also in other areas these issues showed up together with the
definition and organization of Competitions/Evaluations.

SAT. Propositional Satisfiability (SAT) is one of the most studied problems in Artificial
Intelligence and Computer Science. SAT Competitions'? are organized by years, with
a great impact on the performance of SAT solvers. SAT output format already fixed the
point about an UNKNOWN result by explicitly allowing it as a “valid” output, other
than SATISFIABLE and UNSATISFIABLE. These words have to be put in a new line
starting with “s” followed by a space, e.g., “s SATISFIABLE”. Then, if a formula is
satisfiable, a bunch of O-terminated lines starting with “v” and representing a satisfying
assignment has to be printed as certificate.

Moreover, in order to automatically check the correctness of solvers’ answers, all
solvers must also exit with an error code which characterizes its answer on the consid-
ered instance. This is done in addition to the automatic syntactic analysis of solvers’
output. The error code must be:

10 http://www.satcompetition.org/



30 Martin Brain et al.

10 for SATISFIABLE

20 for UNSATISFIABLE

0 for UNKNOWN

any other error code for internal errors (considered as UNKNOWN)

The issue of certifying an unsatisfiable formula is not raised in the SAT Competi-
tions (last year, SAT race'!). Nonetheless, the need to cope with this problem is evident
in the community and has opened the way to significant research efforts in this direction.

OSAT. Quantified SAT (QSAT) is the extension of SAT where variables are to be explic-
itly quantified, universally or existentially. QSAT is the prototypical PSPACE-complete
problem. QBF Evaluations and Competitions'? are organized since five years and have
significantly contributed to this emerging research area. The output format requested
to QBF solvers is very similar to the one for SAT solvers (the output must be 1, 0
or -1 instead of SATISFIABLE, UNSATISFIABLE and UNKNOWN, respectively). A
main difference arises when certifying a formula: given the complexity of the problem,
no compact certification is known. At the moment, QBF solvers output just a partial
certificate of the input QBF’s truth or falsity.

Beyond the already detailed explanation of the output format, the organizers of the
QBF events have made available a “formal” description of such an output format, using
a BNF grammar.'® This document can be very useful for both competitors and organiz-
ers, in particular, when the “complexity” of the output increases, which is the direction a
future output format is likely to follow for expressing a non-trivial form of certification.

PB. In Pseudo-Boolean (PB) (optimization) problems, solvers have to satisfy a set of
on linear inequalities (with Boolean variables), while optimizing an objective function.
The PB07 Evaluation'* is the third event of the series. Given the nature of the problem,
solvers can output a new type of solution line, i.e., “s OPTIMUM FOUND”, when they
claim to have found the optimal value for the objective function. PB Evaluations intro-
duced a nice idea related to the optimization of solutions: each solver is asked to output
a line starting with "o’ each time it finds a solution with a better value of the objective
function, even if it might not be optimal. This line should only contain the value of
the objective function for the new solution. This enables an analysis of the way solvers
progress toward the best solution. The utility of this information is (at least) twofold:
given the simplicity, a graphical view on the progression toward the best solution can
be provided, it is easy to () better understand a solver’s behavior, and (ii) perform a
deep analysis that can be used, for example, in the report of the competition.

Other series of Competitions/Evaluations can be interesting in the way they (try to)
certify solutions, often related to the “complexity” of the problems.

In the Deterministic track of the International Planning Competition (IPC) compe-
titions (the last being IPC-5'), the found plan is printed into a solution file and then

"http://fmv. jku.at/sat-race-2006/

2 http://www.gbflib.org/

B http://www.gbflib.org/qdimacs.html
“http://www.cril.univ-artois.fr/PB07/
B http://zeus.ing.unibs.it/ipc-5/



What should an ASP Solver output? A Multiple Position Paper 31

checked by a plan validator made available by the IPC organizers. In the SMT Com-
petitions'® (SMT-COMP), a solver has to find solutions to formulas from decidable
(quantifier-free) fragments of first-order logic, allowing for theories, like arithmetic,
uninterpreted function, arrays, bit vectors, and their combinations. The SMT-COMP
organizers ask for “suitable evidence” of the results, allowing for a “third-party proof
checker publicly available, or a source code for it”, and asking for an explicit option of
the solver (‘——evidence’) to dump the proof/model into a file because of the possibly
huge size. Then “the verification is let to a Competition panel, separately to the main
part of the competition” and “check is to be performed on small formulas”. The CADE
ATP System Competition (CASC) is related to first-order Automated Theorem Prov-
ing. Given the complexity of the problems, the organizers just “look for ‘acceptable’
proof/model”.

Finally, the International Competition of Constraint Satisfaction Problems (CSP)!’
uses XML format, in this case to represent input instances. It could be fruitful to broaden
the use of such a format: a motivating example for such a direction can be found in the
next section.

4 An End User Perspective

From the point of view of an end user of answer set solvers, a standardised output
format is highly desirable but raises two important questions: what output from a solver
is needed and what is commonly done with this information? Output can be broken into
three categories:

1. Zero or more answer sets or a message saying that there aren’t any answer sets.

2. Optionally an error message of some sort (most commonly out of time or out of
memory).

3. Optionally some statistics.

Obviously as more sophisticated approaches to computing answer sets are devel-
oped, new types of information may be output (for example, problem specific analysis
results of tuning parameters), but most applications current use only these three areas.

In turn, there are three common uses of this information (and thus three key require-
ments for the output format):

1. Answer sets are read by a human. Either to find out the answer to the initial prob-
lem, or to diagnose problems with the encoding. Thus a human readable format
would seem to be a requirement.

2. Answer sets are ignored (or quickly checked), only the statistics are used. This is
the common case in the development and benchmarking of solvers. Thus some way
of quickly extracting the statistics would seem to be a good idea.

16 http://www.csl.sri.com/users/demoura/smt-comp/
17 http://www.cril.univ-artois.fr/CPAIO6/



32 Martin Brain et al.

3. The output is parsed into another program'® for further interpretation / application.
Thus a format which is easy to parse would seem to be a requirement.

Additionally, there are practical arguments for keeping the output format as simple
as possible (so more complex output formats can be layered over them with minimal
overhead) and for minimising the amount of modification required for existing solvers.

Given these options, the simplest output standard seem to be roughly as follows:

— The success of the solver is given by it’s system return code. O for 1 or more an-
swer sets given, 1 for a program with no answer sets and any other return code
constituting an error. This is in keeping with the POSIX standard, GNU/Linux im-
plementations (a process killed due to signals, i.e. out of time, out of memory, etc.
can be recognised from it’s return code) and requires little to no extra implementa-
tion.

— Output is divided into lines, each prefixed by one of a number of codes. The actual
codes aren’t particularly important, but keeping to either the existing convention of
human readable strings (i.e. Answer Set)orthe SAT convention of single letters,
seems sensible.

Answer Set : Indicates the solver has found an answer set, which is given
as a space separated list literals in the answer set. If any lines of this kind
are present, the return value of the solver must be 0 and no lines starting No
Answer Sets should be present.

No Answer Sets Indicates the solver has shown that the program contains no
answer sets. The line should contain nothing else. If any lines of this kind are
present, the return value of the solver must be 1 and no lines starting Answer
Set : should be present.

Statistic : Indicates a solver generated statistic, which should be given on
the rest of the line, preferably in a form that could be easily parsed. As an
appendix to the standard, a list of statistic names and how they are computed
would make analysis easier.

Comment : A catch all field for other solver output intended for humans.

Any other line would be a considered an error message and the solver must return

something other than 0 or 1.

5 Interfacing the Semantic Web

In recent years, several endeavours have been undertaken to deploy ASP in the area of
the Semantic Web, as a powerful rule language to complement and extend the possibil-
ities of established formalisms such as RDF and ontology languages. This development
requires ASP solvers to interoperate with other software in a complex reasoning frame-
work. Due to the heterogeneity of data in the domain of the Semantic Web, the most
straightforward approach to such interfacing tasks is usually to use an XML-based lan-
guage as data interchange format.

'8 In this case, often the solver is being called from another program thus a standard calling
convention and some standard option flags would be useful.



What should an ASP Solver output? A Multiple Position Paper 33

A prominent attempt to create a Web-suitable syntax for rule languages in general
is the RuleML initiative [7], which aims at providing a Rule-Markup Language based
on XML and/or RDF, in order to facilitate a common representation and exchange of
rules. Also, the chosen format allows the possibility of annotating further information,
as needed in the Semantic-Web context. However, it is not trivial to embed in a general
framework the wide number of pre-existing rule-based formalisms, each of which pro-
vides its own variety of syntactic features. Thus, different classes of RuleML languages
have been gradually introduced, in order to support constructs such as default negation
or constraints.

One particular such branch of RuleML tailored to ASP and its extensions has been
presented in [9]. There, the authors integrate a general construct into the framework of
RuleML that can be used to express features such as built-in predicates, external atoms,
or cardinality constraints. However, in this work the authors do not explicitly consider
to encode the output of an ASP solver in RuleML. This can in fact be accomplished by
using the notions of RuleML atoms, conjunction, disjunction, and negation. In general,
RuleML does not impose specific semantics on its constructs; however, for the subset
of operators needed to represent answer sets and our purposes, the intuition is rather
straightforward. Atoms within the same answer set are connected by conjunction, while
multiple answer sets are joined by disjunction.

For instance, a single atom edge(a, b), i.e., a positive literal, is expressed in RuleML
as follows:



34 Martin Brain et al.

<Atom>
<Rel>edge</Rel>
<Ind>a</Ind>
<Ind>b</Ind>
</Atom>

The Tag <Rel> denotes the atom’s predicate name, while <Ind> surrounds indi-
vidual constants.!® An atom is negated by embedding it into a <Neg> tag. A conjunc-
tion of atoms is expressed by an enclosing <And> tag, a disjunction by <Or>. Thus,
the single answer set { edge(a, b), edge(a, c), color(a, blue)} would be written as

<Assert>
<And>
<Atom>
<Rel>edge</Rel>
<Ind>a</Ind> <Ind>b</Ind>
</Atom>
<Atom>
<Rel>edge</Rel>
<Ind>a</Ind> <Ind>c</Ind>
</Atom>
<Atom>
<Rel>color</Rel>
<Ind>a</Ind> <Ind>blue</Ind>
</Atom>
</And>
</Assert>

The outermost <Assert > tag acts as a wrapper and denotes a declarative content.?? A
complete result by an ASP solver comprises several answer sets, joined by a disjunction:

<Assert>
<Or>
<And> ... </And>
<And> ... </And>
</0r>
</Assert>

An empty answer set corresponds to an empty <And> tag, while an empty <Or> clause
denotes an empty result, i.e., no answer set.

' In the context of the Semantic Web, individual names might well contain special chars, for
example URIs of resources. In XML we can simply encapsulate such strings within CDATA
sections.

2 <Assert> provides an attribute mapClosure to specify existential or universal closure
within the assertion, but since ASP results are currently always ground, we can omit this in-
formation.



What should an ASP Solver output? A Multiple Position Paper 35

Currently, this output format is supported by the HEX-program solver dlvhex.?!
HEX-programs are an extension of ASP towards interoperability in the Semantic Web [8],
providing a mechanism to exchange knowledge with external sources of information.

Other ongoing streams in the Semantic Web realm

Standard formats. Apart from RuleML, there are other ongoing efforts worthwhile to
monitor in the context of how we could interface with the Semantic Web. First of all,
the Rule Interchange Format (RIF) working group?? is producing first results toward
channeling various proposals, of which RuleML is only one into a real standard for
exchanging rules. Emerging formats from this group will likely replace attempts like
RuleML which were not governed by an official standardization body. Whereas RIF
will likely be a good candidate for Web exchange of answer set programs, the exchange
of results of the evaluation of rules though is not (yet) an explicit goal yet in RIF, but
will likely arise as soon as people start to pick up these formats to a larger extent.

Standard formats. The Semantic Web and Web 2.0 ideas go towards piping results be-
tween different distributed applications. Such applications do not only require standard
input and output formats, but moreover standard protocols and interfaces to be used.
A good example for the definition of such normative interfaces and protocols is pro-
vided by W3C’s Data access working group, who are in charge of defining SPARQL?,
a standard query language for RDF. However, they also went one step further, defining
a protocol along with defining both the concrete message formats for sending a query
and receiving the results to a SPARQL endpoint, ie. an online interface for a SPARQL-
capable query engine. The definiton of such standard interfaces, makes smooth interplay
of semantic Web interfaces possible which can be invoked via standard Web Service in-
terfaces in the Web Services Definition Language (WSDL?*).

When we think about defining defined standard input and output formats for ASP-
solvers, we also might think about extending such interface definitions like the one
defined for SPARQL toward standard Web service interfaces for ASP solvers in order
to make them accessible within the service-oriented world [10].

6 Query Answering

While many answer set solvers currently focus on computing answer sets, there are
applications that require query answering, among them Information Integration [11],
Enterprise Information Systems [12], and Text Classification [13]. In this section, we
will mainly discuss in which way the output requirements for query answering differ
from those for answer set generation. In particular, we shall argue that calculating query
answers from a standard answer set output in an easy way is not feasible in all cases,
thus giving rise to a native query answering output mode.

X http://www.kr.tuwien.ac.at/research/dlvhex/
2 http://www.w3.0rg/2005/rules/
23http://www.w3.org/TR/rdffsparqlfquery/
*nttp://wuw.w3.org/TR/wsdl



36 Martin Brain et al.

Given the fact that there may be any number of stable models, there is no unique way
of defining the consequence relation which is used for answering queries. Traditionally,
there are two major reasoning modes: Brave (also known as credulous) and cautious
(also known as skeptical) reasoning. For brave reasoning, a formula follows from a
program if it holds in one of the answer sets of the program, while for cautious reasoning
a formula follows if it holds in all answer sets.

Query answering is then defined as the set of ground substitutions over variables
in the query formula, such that the substituted formula follows (bravely or cautiously)
from the program. For ground queries, this means that the answer is either the empty
set (corresponding to “no”) or a set containing the empty substitution (corresponding
to “yes”). Usually, as for rules, queries are required to be domain independent, that is,
the query answer must not depend on the domain chosen to interpret the program. In
practice, queries are required to be safe (cf. [14]).

An important observation is that complex query formulas can be rewritten by means
of additional fresh predicates and rules to programs with an atomic query, which does
not contain constants (or function symbols). Ground queries therefore are reduced to
a query containing a predicate of arity 0. Let this predicate be p, one can simulate
brave reasoning by adding a constraint «+— notp to the program and checking whether
this program has an answer set, answering with the empty substitution if it does. For
cautious reasoning, one may add < p to the program and check whether this program
has an answer set, answering with the empty substitution if it does not.

For nonground queries, such a simple simulation is not easily possible. For brave
reasoning, one could compute the answer sets projected onto the query predicate by
eliminating duplicates and extracting the substitutions from the resulting set. For cau-
tious reasoning, things are not as easy; for example, if there is no answer set, the answer
should comprise all possible substitutions over the Herbrand Universe. As a result, es-
pecially for cautious reasoning, just providing all answer sets does not appear like an
acceptable solution.

Concerning the representation of the output for query answering, the query language
SPARQL, which has already been mentioned in Section 5, also defines a format for
query results®®. As an example, two substitutions for variables X and Y, where one
substitutes a for X and b for Y, and the other one substitutes b for X and ¢ for Y, would
be represented as follows:

<?xml version="1.0"7?>
<spargl xmlns="http://www.w3.0rg/2005/spargl-results#">
<head>
<variable name="X"/>
<variable name="Y"/>
</head>
<results ordered="false" distinct="true">
<result>
<binding name="X">a</binding>
<binding name="Y">b</binding>

B nttp://wuw.w3.org/TR/rdf-sparql-XMLres/



What should an ASP Solver output? A Multiple Position Paper 37

</result>
<result>
<binding name="X">b</binding>
<binding name="Y">c</binding>
</result>
</results>
</sparqgl>

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Sutcliffe, G.: CASC-J3 — The 3rd IICAR ATP System Competition. In Furbach, U., Shankar,
N., eds.: Proceedings of IJCAR. Springer (2006) 572-573

3. Berre, D.L., Simon, L., eds.: In Berre, D.L., Simon, L., eds.: Special Volume on the SAT 2005
Competitions and Evaluations. Journal on Satisfiability, Boolean Modeling and Computation,
10S Press (2006)

4. Baral, C., Brewka, G., Schlipf, J., eds.: Proceedings of the Ninth International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’07), Springer (2007) To appear.

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyriski, M.: The first
answer set programming system competition. In [4] To appear.

6. Borchert, P, Anger, C., Schaub, T., Truszczynski, M.: Towards systematic benchmarking in
answer set programming: The Dagstuhl initiative. In Lifschitz, V., Niemeld, 1., eds.: Pro-
ceedings of the Seventh International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’04). Springer (2004) 3-7

7. Boley, H., Tabet, S., Wagner, G.: Design Rationale for RuleML: A Markup Language
for Semantic Web Rules. In: Proceedings of the first Semantic Web Working Symposium
(SWWS’01). (2001) 381-401. See also http://www.ruleml.org.

8. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: Proc. IJCAI 2005,
Morgan Kaufmann (2005) 90-97

9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A RuleML Syntax for Answer-Set Program-
ming. In Polleres, A., Decker, S., Gupta, G., de Bruijn, J., eds.: Informal Proceedings of the
Workshop on Applications of Logic Programming in the Semantic Web and Semantic Web
Services (ALPSWS’06). (2006) 107-108

10. Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Comm. ACM, vol.
46, no. 10, (2003) 25-28

11. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Katka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005). (2005) 915-917

12. Ruffolo, M., Manna, M.: A Logic-Based Approach to Semantic Information Extraction In:
ICEIS 2006 - Proceedings of the Eighth International Conference on Enterprise Information
Systems: Databases and Information Systems Integration. (2006) 115-123

13. Cumbo, C., liritano, S., Rullo, P.: OLEX - A Reasoning-Based Text Classifier In: Logics in
Artificial Intelligence, 9th European Conference, JELIA 2004, Proceedings. (2004) 722-725

14. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases Addison-Wesley (1995)



38 Martin Brain et al.



Part 11

Research Papers






Modules and Signature Declarations for A-Prolog:
Progress Report

Marcello Balduccini

Computer Science Department
Texas Tech University
Lubbock, TX 79409 USA
marcello.balduccini@ttu.edu

Abstract. It has been demonstrated that A-Prolog can be used effectively to
encode knowledge about complex domains. However, there is still a lack of
well-established software engineering inspired tools and methodologies aimed at
helping the programmer in this task. Rather than going through a substantial
redesign of the language, as in most approaches from the literature, our purpose
here is to propose a light-weight extension of the language, introducing only a
few simple constructs with straightforward semantics, and nonetheless providing
key support for simple modular design of programs. Drawing from our
experience of encoding knowledge in A-Prolog, we identify two main
requirements that, we believe, need to be satisfied by such a simple extension of
A-Prolog. Next, we design our extension of A-Prolog, called RSig to satisty
these requirements. A parser for RSig has been implemented, based on LPARSE,
and is available online. It is our belief that RSig can be quickly learned and used
by average A-Prolog users to both write new programs and restructure existing
programs. We also hope that the experience with RSig can promote the transition
towards more sophisticated extensions of A-Prolog.

1 Introduction

As demonstrated by several authors in recent years (see for example [18, 17,8, 3]), A-
Prolog [10, 11] is a powerful knowledge representation language that allows the encod-
ing of commonsense knowledge about the most diverse domains, and the definition of
reasoning modules capable of planning, diagnostics, and learning.

Although A-Prolog can be used effectively to encode knowledge about complex do-
mains, there is still a lack of well-established software engineering inspired tools and
methodologies aimed at helping the programmer in this task. Most existing approaches
[7,6,9,4] involve a substantial language redesign, and need to tackle important issues
involved in the design of modular extensions of non-monotonic formalisms. Finalizing
the design of such a language, its implementation, and its spreading through the com-
munity, is still likely to require a considerable amount time.

In this paper, we propose a light-weight extension of A-Prolog, called RSig, intro-
ducing only a few simple constructs with straightforward semantics, and nonetheless
providing key support for simple modular design of programs. It is our belief that RSig
can be quickly learned and used by average A-Prolog users to both write new programs



42 Marcello Balduccini

and restructure existing programs, thus providing a first step towards the use of more
sophisticated extensions of A-Prolog.

Drawing from our experience of encoding knowledge in A-Prolog, we have iden-
tified two main requirements that, we believe, need to be satisfied by any extension of
A-Prolog aimed at simplifying the task of encoding complex knowledge bases:

1. It should be possible to develop portions of an A-Prolog program independently
from each other.

2. In the inference engines that require typing of variables, such as LPARSE, the ac-
tions needed to provide such typing should interfere as little as possible with the
programming task.

The first requirement involves the ability, frequently used in imperative programming,
to define modules. Ideally, a module should be viewed by the module’s users as a black-
box, with clearly specified input and output. The module’s users should be able to en-
tirely disregard the actual implementation of the module.

If we turn our attention to the goal of limiting the burden of variable typing as much
as possible, we see that, of the two most widely used inference engines, only DLV [5]
satisfies this second requirement, because it does not require the typing of variables.
However, if a programmer chooses to use variable typing for efficiency reasons, then
he is forced to do that explicitly. Moreover, DLV still lacks the ability to work with
function symbols, which substantially limits its applicability in the encoding of complex
domains.

The requirement is not satisfied by LPARSE+SMODELS! [19, 16], as well as by the
inference engines that rely on LPARSE (e.g. [13, 1, 14, 15]). In fact, with LPARSE, a pro-
grammer either explicitly types every variable, or uses the implicit typing facility pro-
vided by the #domain directive. Unfortunately, #domain fails to satisfy the require-
ment on typing: first of all, it forces the programmer to adhere to strict, and often unnat-
ural, conventions on the use of variables; moreover, it forces the programmer to keep
in mind one extra piece of information: the association between variables and their do-
mains, with the consequence of interfering with the programming task; finally, it limits
the ability of dividing a program in independent modules, because of the global scope
of the #domain directive.

On the other hand, we believe that RSig satisfies both requirements above, and sim-
plifies the task of representing knowledge for complex domains, by introducing only a
small number of new constructs. The extension is based on the introduction of signa-
ture declarations and module definitions.

Although the main ideas behind RSig are substantially independent from a
particular inference engine, here we concentrate on extending the language of
LPARSE. The choice is motivated by the fact that LPARSE already
allows function symbols, and that its sources are publicly available. An
implementation of a parser for RSig, based on LPARSE, is available online from
http://krlab.cs.ttu.edu/~marcy/RSig/.

! As here we are mostly concerned with language issues, rather than with inference algorithms,
from now on we will refer to the pair LPARSE+SMODELS by the term LPARSE.



Modules and Signature Declarations for A-Prolog: Progress Report 43

The paper is organized as follows. In the next section, we give an informal presenta-
tion of RSig. In Sections 3 and 4, we define the syntax and semantics of the language. In
Section 5 we show an example of use of RSig. In the final sections, we discuss related
work and draw conclusions.

2 RSig: The General Idea

Before we give a precise definition of RSig, let us describe the general idea behind the
language.

As we mentioned above, RSig introduces signature declarations and module defi-
nitions. We call signature declaration of a function or relation the specification of the
types of its arguments. The type of an argument is a sort — a unary predicate defined in
the program. For example, let us specify the signature of a relation sign(n, s) where n
is an integer between given constants min and max, and sis —1, 0, or 1.

We begin by defining suitable sorts:

num(min..mazx).

sign_type(—1).
sign_type(0).
sign_type(1).

The signature of sign is given by a statement:
#sig rel sign(num, sign_type).

Its informal meaning is “relation sign takes one argument of type num followed by
one of type sign_type.” The keyword rel specifies that we are declaring the signature
of a relation.

Avoiding explicit typing has substantial advantages in terms of program readability
and writability, including the elimination of certain types of programming errors. As an
example, let us see how relation sign above can be defined with and without signature
declarations.? Recall that, mathematically, the function “sign” can be defined as:

1 ifn>0

sign(n) =4¢ 0 ifn=20
—1 otherwise.

The definition can be encoded in A-Prolog as:

sign(N,1) «— N > 0.
sign(0,0).
sign(N, —1) < not sign(N,S),S # —1.

where the body of the last rule encodes “otherwise.” Unfortunately, these rules cannot
be used directly with LPARSE. In fact, the variables occurring in numerical expressions

% In this part of the paper, we do not consider the #domain directive of LPARSE. A discussion
on #domain can be found in Section 6.



44 Marcello Balduccini

such as “N > 0” need to be explicitly typed. Variable S needs to be explicitly typed,
too, because it occurs in the scope of default negation. The resulting LPARSE program
is:

num(min..maz).

sign_type(—1).

sign_type(0).

sign_type(1).

sign(N,1) <« num(N), N > 0.
sign(0,0).
sign(N, —1) < num(N), sign_type(S),not sign(N,S),S # —1.
For rules that contain several variables, explicit typing substantially reduces the read-
ability of the program, and increases the chances of errors due to mistakes in specifying
the types.
Using the signature declarations of RSig, the definition of sign becomes:

num(min..max).
sign_type(—1).
sign_type(0).
sign_type(1).

#sig rel sign(num, sign_type).

sign(N,1) «— N > 0.
sign(0,0).
sign(N, —1) « not sign(N,S),S # —1.

The resulting definition of sign is arguably more natural and easier to read and the
chances of mistakes in writing the program are smaller.

The information from signature declarations also affects the special atoms of
LPARSE, i.e. those expressions of the form:

min{p(X,Y) : ¢(X) : r(Y)}maz

and
min[p(X,Y) : ¢(X) : r(Y)]max

The typing information extracted from the signature declarations is used for the condi-
tion part of the special atom. Thus, the program:

q(0..3).

#sig rel p(q).

is as an abbreviation of:



Modules and Signature Declarations for A-Prolog: Progress Report 45

Let us now focus on module definitions. A module definition in RSig is a collection
of import/export declarations, signature declarations, and statements from the language
of LPARSE. Unless overridden by an import/export declaration, the interpretation of
each relation and function in a module is independent from the interpretations used
outside the module. For example, the program:

P — T

#module m1.
—-r

#end module.

does not entail p, while of course the program consisting of {p < —r. —r.} does. This
separation of interpretations allows to work on different parts of the program indepen-
dently, as each module can be viewed as a black-box, of which only the import/export
declarations need to be known. For example, relation r in module m1 above could be
used as an auxiliary relation, whose meaning is independent from that of the relation r
used in the first rule of the program.

The import and export declarations allow to make the interpretations of some
relations and functions in a module coincide with those used outside the module. A
relation or function occurring in the scope of an import or export declaration is called
global. Intuitively, these statements specify respectively “input” and “output” relations
and functions of the module. The distinction between import and export declarations
has the purpose of improving the readability of the program: when a global relation or
function is intended to occur in the head of a module’s rules, it is be listed in an export
declaration. Similarly, when it occurs in the body of a module’s rules, it is to occur in
an import declaration.

Thus, if the interpretations of the two occurrences of relation r in the program above
are intended to coincide, we add an #export declaration to module m1. The program:

D .

#module m1.
#export rel r.
-

#end module.

entails p. As with any module-based approach, the relations declared in the import and
export statements should be carefully selected during the design phase, in order to avoid
conflicts. We say that a relation r is local to a module m if literals formed by r occur in
the rules of m, and r does not occur in an import/export declaration within m.
To help the debugging of programs, RSig also introduces a new variant of the #hide
directive of LPARSE:
#hide * .

The new directive can be used only inside modules. The intuitive meaning of such a
statement occurring in a module m is that all the literals formed by relations local to m



46 Marcello Balduccini

are hidden in SMODELS’ output, unless they are explicitly shown by a #show directive
in m. For example, given the program:

p < not r.

#module m1.
r.
#hide * .

#end module.

SMODELS displays:
Answer 1
Stable Model: p

Notice that whenever relations local to a module are displayed by SMODELS, they are
prefixed by the name of the module. For example, given the program:

D .

#module m1.
F#import rel r.
#export rel r.
-

q < not r.
t<q.

#hide * .
#show q.
#end module.

SMODELS displays:
Answer 1
Stable Model: p =r m1.q

As the reader may have noticed, ¢, although true, is not displayed because of the
#hide * directive in m1.

3 Syntax

Let us begin the definition of the syntax of RSig by summarizing the syntax of the
language of LPARSE.?

In the language of LPARSE, terms, atoms, and literals are defined as in A-Prolog. A
special atom is an expression of the form:

min{ly :la:l3: ... lp}max

3 For sake of simplicity, in this paper we consider a simplification of the language of LPARSE.
However, our approach extends in a natural way to the full language.



Modules and Signature Declarations for A-Prolog: Progress Report 47

or
minfly :ls s : ... lg]max
where [;’s are literals and min, max are integers or variables.
An LPARSE rule, or regular rule, is an expression of the form:

lo—é€1,...,em,not Iy, ... [,.

where [y and e;’s are literals or special atoms, and /;’s are literals.
LPARSE directives, or regular directives, are expressions of the form:

#show lqy,...,1,.
#hide ly, ..., 1,.

where [;’s are literals (the list may be empty).

A program in the language of LPARSE, or regular program, is a collection of regu-
lar rules and regular directives. Next, we describe the extensions of the language intro-
duced by RSig.

A relation signature declaration is a statement:

#S’Lg rel rl(p%vpév cee apllél)v cee 7Tm(p1n7p;nv s 7p;cnm)'

where r;’s are relations of arity k; and p’;’s are names of sorts. The informal meaning
of the statement (for every 7) is “the arguments of relation r; are respectively of types
Pis Py - Py, A function signature declaration is a statement:

#sig func f1(p1,py, - Dh,) = Pos- - fm(PTD5, . DR ) — Py

where f;’s are functions of arity k; and pj-’s are as above. The informal reading of the
statement is “the arguments of function f; are respectively of types Pl phs .. o D}, and
terms formed by function f; are of type pg.” The term signature declaration identifies
both relation and function signature declarations.

A relation import (resp., export) declaration is a statement:

#import rel ri(oy .oy )yee oy Tan(oy ooy o).
or, respectively:
Hexport rel r1(cy ooy )y ey Py oy e ey o).
where r;’s are relation symbols, and the number of anonymous variables “_” listed

matches the arity of each r;. The informal reading of the #import statement is
“symbol 71 denotes the same relation associated with symbol r; outside the module,”
and similarly for all r;’s and for the #export statement.

A function import (resp., export) declaration is a statement:

#import func f1( ooy fm(soeoey ).

or, respectively:

#Hexport func f1(o, o)y, fin(o ey o).



48 Marcello Balduccini

where f;’s are function symbols. The informal meaning is similar to that of relation
import and export declarations. By import declaration we mean both relation import
and function import declaration. Similarly for export declaration.

A module definition (or module for short) is the sequence of statements:

#module p.
L1

lm

P1

Pn

#end module.
where 4 is a constant denoting the name of the module (the name of a module must
be unique), ¢;’s are optional import and export declarations, and p;’s are regular rules,
regular directives (with the exception of directives #show. and #hide., which are not
allowed in modules), signature declarations, or the new directive #hide *. We denote
the set p1, ..., pn, by I'(1). The relations listed in ¢1, . . ., ¢y, are called global relations
of p, and are denoted by O (). The literals from p, formed by relations that are not in
O(p), are called local literals of p. The functions listed in ¢1, . . ., ¢,, are called global
functions of u, and are denoted by A(pu). If global relations of 1 occur in the head of the
regular rules of I"(1), they must be listed in an export declaration. If they occur in the
body of the regular rules of I" (), they must be listed in an import declaration. Similarly
for global functions. For simplicity, from now on we assume that each predicate and
function symbol is associated with a unique arity, and that the same symbol cannot
denote both a predicate and a function.*

An RSig program is a collection of regular rules, regular directives, signature dec-

larations, and module definitions.

4 Semantics

We give the semantics of RSig programs by defining a mapping from RSig programs
to programs in the language of LPARSE. We proceed in two steps: first we eliminate
module definitions, and in the resulting program we introduce explicit typing for the
arguments of the functions and relations for which signature declarations are given.

Intuitively, the elimination of module definitions is based on the addition of suitable
prefixes to the occurrences of predicate and function symbols in a module.

Let i be a module. The module-elimination of a function symbol f with respect to
u (denoted by f*)is f if f is a global function of y, and u.f otherwise. The module-
elimination of a variable is the variable itself. The module-elimination of a term ¢t =
f(t1,...,tx), denoted by t#, is f*(t),... t}).

* Our approach applies beyond these restrictions, thanks to the use of the “rel” and “func” key-
words in signature and import/export declarations.



Modules and Signature Declarations for A-Prolog: Progress Report 49

The module-elimination of a predicate symbol p with respect to i (denoted by p*)
is p if p is a global relation of u, and p.p otherwise. The module-elimination of an atom
p(x1,...,x,) with respect to g is: p* (', ..., 2% ). Similarly, the module-elimination
of aliteral —p(x1, ..., xy,) is ~pH(af, ..., ). We denote the module-elimination of
a literal [ with respect to p by [#.

The module-elimination of a special atom min{ly : Iy : ... : I }max is the special
atom man{l}’ : 1§ : ... : I}’ }maz. The module-elimination of special atom ¢ with
respect to . is denoted by c#.

The module-elimination of a regular rule, regular directive, or signature declaration
p is obtained by replacing all literals, special atoms, and terms in p with their module-
eliminations. The resulting statement is denoted by p*.

The module-elimination of a directive #hide % with respect to a module p is a
directive #hide 11,12, . . ., 1, where [;’s are all those local literals of x, which do not
appear in any #show directive of p. For example, the module-elimination of #hide *
in the program:

D — .

#module m1.
F#import rel r.
#export rel r.
-,

q <— not r.
t—q.

#hide * .
#show q.
#end module.

is #hide t.
The module-elimination of a module 1 is the set

I'(p) = {p"[p € T(W)}

The module-elimination of a program I/ is obtained by replacing every definition
of a module 1 by I'”(11). The following proposition follows easily from the construction
of the module-elimination of I7:

Proposition 1. For every program I1, the module-elimination of II contains no module
definitions and no #hide x directives.

The programs obtained by the module-elimination process are called module-free pro-
grams.

The next step of the translation consists in providing typing for the arguments of the
functions and relations listed in the signature declarations.

Given a module-free program I7, A(IT) denotes the set of signature declarations
from II. For every predicate p or function symbol f such that, respectively,
(81,82, ., 8m) or f(s1,82,...,8,) — 8o occur in A(IT), let 53} denote s; (recall
that s;’s are names of unary predicates).



50 Marcello Balduccini

The explicit-typing set of a constant or variable is the empty set. The explicit-typing

setofaterm ¢t = f(t1,...,t) is denoted by ¢?, and consists of the set of atoms:
{69(6), 0} (t1), 0% (t2), ..., ok (te)} U | ¢7.
1<i<k

For example, given the declaration:

#sig func g(r,s) — u, h(q) — 7.

the explicit-typing set of term g(X,Y") is {u(g(X,Y)),r(X), s(Y)}, and the explicit-
typing set of g(X, h(2)) is {u(g(X, h(2))), r(X), s(h(Z)),r(h(Z)), 4(Z)}.

The explicit-typing set of an atom a = p(t1, ..., tx), denoted by a?, is the set:
{04(t1), 00 (t2), ..., okt U (] 7.
1<i<k

The explicit-typing set of a literal —a is a”. For example, given the declarations:

#sig rel p(u,v).

tsig func g(r,s) — u, h(g) — 1.
the explicit-typing set of p(X,Y) is {u(X),v(Y)}; the explicit-typing set of
p(g(X,Y),Z) is {u(g(X,Y)),v(Z),r(X),s(Y)}; the explicit-typing set of
pla(XY),h(2)) is {ulg(X, Y ). 0(h(2)), 7(X), V), r(h(2), a(2)}.

The explicit-typing set of a special atom ¢ = min{ly : la : ... : lx}mazisc” = 1.

For example, given 1{p(g(X,Y"), Z)}2 and the signature declarations from the previous
example, the explicit-typing set is:

{u(g(X,Y)),v(2),r(X),s(Y)}.

We can finally define the explicit-typing set of a regular rule. Given a regular rule p,
let lit(p) denote the set of literals from p (only the special atoms from p do not belong
to lit(p)). The explicit-typing set of a regular rule p is the set

P’ = U .
lelit(p)

For example, the explicit-typing set of the rule in the program:

#sig rel p(u,v), w(r).
tsig func g(r,s) — u, h(g) — 7.
Hp(9(X,Y), 2)}2 — w(h(2)).
is:
{r(h(2)),q(2)}.

Intuitively, the explicit-typing set provides the typing information for the arguments
of functions and relations. To complete the translation, we modify each rule by adding



Modules and Signature Declarations for A-Prolog: Progress Report 51

to it the atoms from suitable explicit-typing sets. This operation is called explicit-typing,
and is defined more precisely as follows.

The explicit-typing of a special atom ¢ = min{ly : Iy : ... : lx}maz is the atom
¢ =minf{ly :ly:...:lg:p1 P2 ... pmtmaz, where ¢ = {p1,p2,...,Dm}-
For instance, the explicit-typing of special atom 1{p(g(X,Y"), Z)}2 from the example
above is:

T

Hp(g(X,Y), Z) s u(g(X,Y)) s v(Z) : 7(X) : s(Y)}2.
The explicit-typing of a regular rule p is the rule p”, obtained from p by replacing

every special atom c with its explicit-typing c”, and by adding p“ to the body of p”. For
example, the explicit-typing of the rule in:

#sig rel p(u,v),w(r).
dsig func g(r.s) — u, h(q) — .
Hp(9(X,Y), 2)}2 — w(h(Z)).
is:
Hp(9(X,Y), Z) - u(g(X,Y)) s 0(Z) : r(X) : s(Y)}2 — w(h(2)),r(h(Z)), 4(Z).
Finally, the explicit-typing of a module-free program 11 is the program 1™, consist-
ing of:

— The explicit-typing of every rule from I7;
— All the regular directives of II.

The following proposition follows directly from the above construction.

Proposition 2. For every module-free program II, the explicit-typing of I1 is a regular
program.

The semantics of RSig associates every RSig program I1 with the program obtained by
applying module-elimination to I, followed by explicit-typing. The resulting program
is denoted by I7*. The following corollary holds:

Corollary 1. For every RSig program II, IT* is a regular program.

5 Example of Use of RSig

To demonstrate the use of RSig, in this section we employ the new language to combine
existing programs from the literature. Suppose we want to combine the Military Exam-
ple from Section 4 of [12] with the theory of intended actions from [9]. Program I,
from [12] consists of the declaration (refer to Section 6 for a discussion on #domain):

#domain step(T), agent(A), fluent(F), target(T AR), report_id(R).
together with the set of rules R;:

h(F,T) « report(R,T), content(R, F,t),not problematic(R).
problematic_agent(A) «— problematic(R), author(R, A).
h(destroyed(TAR),T + 1) «— o(attack(T AR),T), —failed(attack(T AR),T).



52 Marcello Balduccini

Axioms II; for intentions, on the other hand, include the declaration:
#domain step(I), action(A).
together with the set of rules R;:

occurs(A,I) « intend(A, I),not —occurs(A,I).
intend(A, I1) «— next(I1,1),intend(A, I), moccurs(A, I),not —~intend(A, I1).

Combining IIp; and II7 using only A-Prolog is non-trivial, because the programs
are written rather differently. Key issues are: (1) variable A is used for both actions and
agents; (2) relations o from I1; and occurs from I1; must be connected; (3) 11, and
II; have to be inspected to ensure that the same predicate and function names are not
used with different meanings. In general, the sets of rules being combined will need to
be modified by hand, which is a time-consuming and error-prone task.

On the other hand, using RSig, the programs can be merged without changes to the
existing rules. All that is needed is removing the #domain declarations, and adding
suitable declarations of signatures and modules. The program combining I1,; and 11y,
outlined below, consists of: (1) signature declarations for relations and functions of
global scope; (2) module military, containing Rj; together with appropriate
import/export declarations and signature declarations for local relations and functions;
(3) module intentions, containing R; together with import/export and signature

declarations.
#sig rel h( fluent, step), occurs(action, step).

#sig rel failed(action, step).

#module military.
#import rel occurs(-, ), failed(, ).

#export rel problematic_agent(_).
#Hexport rel h(_, ).
#sig rel o(action, step).

o(A,T) : —occurs(A,T).

Ry
#end module.

#module intentions.
#import rel occurs(-, -), intend(-, -), next(-, ).
#export rel occurs(-, ), intend(-, -).

Ry
#end module.



Modules and Signature Declarations for A-Prolog: Progress Report 53

6 Related Work

The language of LPARSE includes a directive, #domain, which aims at allowing
implicit typing. Differently from the signature declarations presented here, #domain
specifies an association between each variable and a type. Thus, a declaration:

#domain r(X).

states that occurrences of X denote an object of type r. For simple cases, #domain is
fairly effective. For example, it allows to write a definition of relation sign that is as
compact as the one in RSig:

num(min..max).
sign_type(—1).
sign_type(0).
sign_type(1).

#domain num(N).
#domain sign_type(S).

sign(N,1) «— N > 0.
sign(0,0).
sign(N, —1) < not sign(N,S),S # —1.

However, #domain directives apply to all the occurrences of a variable in the program.
This substantially complicates the task of adding other rules, because the programmer
needs to keep in mind the typing of all the variables already declared. Suppose, for
example, that we were to use the above definition of sign in a program that already
contains a formalization of sets. Such a program could contain rules defining when a
set is empty, similar to:

%% If O is a member of set S, then S has at least one member.
at_least_one_member(S) «— member(0, S).

%% Set S is empty unless we know that S has at least one member.
empty(S) < not at_least_one_member(S).

Unfortunately, the two sets of rules cannot be combined directly, because the
#domain directive for variable S forces the domain of S to be {—1,0, 1} even in the
rules about sets: the programmer needs to carefully rename the variables in either set
of rules. If, instead, he is writing new rules, the programmer has to select carefully the
variables, in order to match the intended argument types for the relations or functions
he is using. Additional difficulties arise when special atoms are used in the program, as
the occurrence, in these atoms, of variables from a #domain directive often yields
unintended results. On the other hand, when writing rules in RSig, one only needs
information about the argument types of relations and functions, different sets of rules
can be more easily combined, and the signature declarations do not interfere with
special atoms.



54 Marcello Balduccini

Various languages for the modular encoding of knowledge have been proposed in
[7,6,9,4]. All of these efforts are far more ambitious than RSig, in that they allows so-
phisticated definitions of classes or templates, including various degrees of the specifi-
cation of object-oriented style inheritance and parametrization. We believe that learning
and mastering these extensions requires a substantial effort. The goal of our work was
to provide a simpler extension of A-Prolog that can be easily learned, mastered, and
used for both new and existing programs.

7 Conclusions and Future Work

In this paper, we have presented an extension of A-Prolog satisfying the two main re-
quirements for the simplification of the task of encoding complex knowledge bases.
‘We believe that the resulting language, RSig, is simple to learn for average A-Prolog
users, and yet effective in satisfying those requirements.
An implementation of RSig, based on LPARSE, is available from
http://krlab.cs.ttu.edu/~marcy/RSig/. With respect to the language
described here, the implementation has the following limitations:

— The types used in signature declarations must be domain predicates.

The parser does not check for duplicated module names.

The parser does not check for directives #show. and #hide. occurring inside
module definitions.

Import and export declarations are allowed to occur anywhere inside a module def-
inition.

No error checking is done for improper import/export declarations, for example
when a global relation is used in the head of a module’s rules, but is not listed in an
export directive.

In the future, we expect to assess the effectiveness and ease of use of RSig by en-
coding various complex knowledge bases. In this respect, we have already begun using
RSig for a sophisticated intelligent system (partially covered in [2]) that applies deep
reasoning to question answering in the context of natural language understanding.

8 Acknowledgments

The author would like to thank Michael Gelfond and Yana Maximova Todorova for
their suggestions, and the anonymous reviewers for drawing attention to related works.
This work was partially supported by NASA contract NASA-NNGO5GP48G and by
ATEE/DTO contract ASU-06-C-0143.

References

1. Marcello Balduccini. CR-MODELS: An Inference Engine for CR-Prolog. In LPNMR 2007,
May 2007.



11.

12.

13.

14.

15.

16.

17.

19.

Modules and Signature Declarations for A-Prolog: Progress Report 55

Marcello Balduccini and Chitta Baral. Knowledge Representation and Question Answering,
chapter 21. Handbook of Knowledge Representation. Elsevier, 2006.

Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Jan 2003.

Chitta Baral, Juraj Dzifcak, and Hiro Takahashi. Macros, Macro Calls and Use of Ensembles
in Modular Answer Set Programming. In Proceedings of ICLP-06, pages 376-390, 2006.
Francesco Calimeri, Tina Dell’ Armi, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Giovan-
battista [anni, Giuseppe Ielpa, Christoph Koch, Nicola Leone, Simona Perri, Gerard Pfeifer,
and Axel Polleres. The DLV System. In Sergio Flesca and Giovanbattista Ianni, editors,
Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002), Sep
2002.

Francesco Calimeri, Giovanbattista lanni, Giuseppe lelpa, Adriana Pietramala, and
Maria Carmela Santoro. A System with Template Answer Set Programs. In JELIA 2004,
2004.

Thomas Eiter, Georg Gottlob, and Helmuth Veith. Modular Logic Programming and Gen-
eralized Quantifiers. In Proceedings of the 4th International Conference on Logic Program-
ming and Non-Monotonic Reasoning (LPNMR’97), volume 1265 of Lecture Notes in Artifi-
cial Intelligence (LNCS), pages 290-309, 1997.

Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C. Kakas and Fariba
Sadri, editors, Computational Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part 1, volume 2408, pages 413—-451. Springer Verlag, Berlin, 2002.
Michael Gelfond. Going places - notes on a modular development of knowledge about travel.
In AAAI Spring 2006 Symposium on Knowledge Repositories, 2006.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proceedings of ICLP-88, pages 1070-1080, 1988.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, pages 365-385, 1991.

Nicholas Gianoutsos. Detecting Suspicious Input in Intelligent Systems using Answer Set
Programming. Master’s thesis, Texas Tech University, May 2005.

Yulia Lierler and Marco Maratea. Cmodels-2: SAT-based Answer Sets Solver Enhanced to
Non-tight Programs. In Proceedings of LPNMR-7, Jan 2004.

Veena S. Mellarkod. Optimizing the Computation of Stable Models using Merged Rules.
Master’s thesis, Texas Tech University, May 2002.

Veena S. Mellarkod and Michael Gelfond. Enhancing ASP Systems for Planning with Tem-
poral Constraints. In LPNMR 2007, pages 309-314, May 2007.

Ilkka Niemela, Patrik Simons, and Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181-234, Jun 2002.

Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew
Barry. An A-Prolog decision support system for the Space Shuttle. In PADL 2001, pages
169-183, 2001.

. Timo Soininen and Ilkka Niemela. Developing a declarative rule language for applications

in product configuration. In Proceedings of the First International Workshop on Practical
Aspects of Declarative Languages, May 1999.

Tommi Syrjanen. Implementation of logical grounding for logic programs with stable model
semantics. Technical Report 18, Digital Systems Laboratory, Helsinki University of Tech-
nology, 1998.



Visual Querying and Application Programming
Interface for an ASP-based Ontology Language

Lorenzo Gallucd® and Francesco Ricta

1 Department of Mathematics, University of Calabria, 8702#ié&e (CS), ltaly
ricca@mt. unical.it
2 DEIS, University of Calabria, 87036 Rende (CS), Itghi | ucci @lei s. unical . it
3 Exeura S.r.l., c/o University of Calabria, 87036 Rende (@&)y gal | ucci @xeura. it

Abstract. Answer Set Programming (ASP) is a logic-based programmengdi-
gm which has been recently exploited for solving complex-veald applica-
tions in an effective way. However, ASP systems currentlgsninportant tools
for the development of industry-level applications, susheasy-to-use graphic
environments and application programming interfaces.

In this paper, we present two new tools, tailored for Onto{aR ASP-based
ontology representation and reasoning language), whiesent a step towards
overcoming the above-mentioned limitations: a novel Jisuegerying interface,
which allows non-expert users to compose and run querigsaaava API, en-
abling the development of software systems embedding A8 ams.

1 Introduction

Motivation. Answer Set Programming (ASP) is a novel programming paragigich
has been proposed in the area of non-monotonic reasonirlgginghrogramming. The
idea of ASP is to represent a given computational problem logia program whose
answer sets correspond to solutions, and then use a sofiredt Buch a solution [1]. The
language of ASP is able to express all problems belongirgetedmplexity classess’
and 7§ (under brave and cautious reasoning, respectively) [2LsTIASP is strictly
more powerful than SAT-based programming (unless somelyidieved complexity
assumptions do not hold), and, at the beginning, it has beefitgbly exploited to
solve problems of high complexity from the Al field (e.g. di@gis and planning under
incomplete knowleddt.

Furthermore, the availability of some efficient ASP systdike DLV [3], GnT [4],
Clasp [5], NoMore+[6] and Cmodels [7], made ASP a powerful tool for developing
advanced knowledge-based applications; and the vialifitthe approach has been
confirmed by the recent applications of ASP systems for sglproblems in the areas
of Knowledge Management (KM), Security, and Informatiotefyration [8].

* Supported by M.I.U.R. within the PRIN project “Potenziarteee Applicazioni della Pro-
grammazione Logica Disgiuntiva” and within Internatiamation project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensieonihe di ottimizzazione.”

4 Note that, both the above-mentioned problems are compbeténé complexity clas? or
13



Visual Querying and API for ASP-based Ontology Languages 57

However, ASP systems are far away from comfortably enaliliegdevelopment
of industry-level applications, mainly because they mispartant tools for supporting
users and programmers. In particular, friendly user iater$ are missing, and there is
a lack of advanced Application Programming Interfaces jA&1 implementing appli-
cations on top of ASP systems.

In this paper, we try to overcome the above-mentioned limitg by developing
and implementing advanced interfaces for both users angr@mmers of an ASP-
based system called OntoDLV [9]. OntoDLV is conceived fotabogy representation
and reasoning, and it is already employed in a couple of in@dliapplications [10, 11].

OntoDLP. An ontology is the specification of a common vocabulary byrdefj the
meaning of terms and their relations, usually modeled bygugrimitives such as con-
cepts organized in taxonomy, relations, and axioms. Ogyolepresentation languages
have become a central tool in many research areas and icartin the field of
the Semantic Web. However, in general, the most common eg¢dhnguages miés
“rule-based” inference mechanisms, an important featansidered indispensable for
enabling agents to reason about the knowledge represenggdointology [14].

OntoDLP [9] is a novel ontology representation languagectvhiaturally com-
bines the reasoning power of ASP with the benefits of a set mlagy-representation
constructs. In particular, the language includes, bedidesoncept ofelation, the
object-oriented notions aflass object (class instancepbject-identity, complex ob-
ject, (multiple) inheritance, and the concept of modular programming by means of
reasoning modules

A classcan be thought of as a collection of individuals that belmygther because
they share some features. An individual ofyject is any identifiable entity in the uni-
verse of discourse. Objects, also called class instaneaanambiguously identified by
their object-identifier (oid) and belong to a class. A clasdefined by a name (which
is unique) and an ordered list of attributes, identifying firoperties of its instances.
Each attribute has a name and a type, which is, in truth, &.cldss allows for the
specification otomplex objectéobjects made of other objects).

Classes can be organized in a specialization hierarchyafartype taxonomy) us-
ing the built-inis-arelation fnultiple inheritancg

Relationships among objects are represented by mearedations which, like
classes, are defined by a (unique) name and an ordered listribfiges (with name
and type). As in DLP, logic programs are sets of logic rule$ @mnstraints. However,
OntoDLP extends the definition of logic atom by introducitass and relation predi-
cates, and complex terms (allowing for a direct access teobbyoperties). In this way,
the OntoDLP rules merge, in a simple and natural way, theadative style of logic
programming with the navigational style of the object-otedl systems. In addition,
OntoDLP logic programs are organizedreasoning modulesaking advantage of the
benefits of modular programming.

The OntoDLP language has been implemented in the OntoDL¥®)8], which
is a cross-platform visual development environment fonvikdledge modeling and ad-

5 Even if there are some proposal combining Description Ligised languages with rules (e.g.
see [12,13])



58 Lorenzo Gallucci and Francesco Ricca

vanced knowledge-based reasoning. The OntoDLV systemlsssisnintegrates the
DLV system [3] exploiting the power of a stable and efficiehtDsolver.

Importantly, the strongly-typed nature of OntoDLP allowedthe implementation
of a number of type-checking routines that verify the camess of a specification on
the fly, resulting in an help for the programmer.

Contribution. In this paper, we present two novel and important featuréseOn-
toDLV system which represent a first step towards overcortiiegabove-mentioned
limitations of ASP systems:

— anadvanced visual-quering interfacehich allows the user to formulate and run
queries on OntoDLV by using an intuitive graphic interfacka QBE;

— and, anApplication Programming Interfacerhich enables the implementation of
Java applications embedding OntoDLP ontologies and réagomodules.

The remainder of this paper is structured as follows. In #vd Bection, we present
an informal overview of the OntoDLP language; followed, iecBon 3 by a descrip-
tion of the OntoDLV system. After that, in Section 4 and 5, wesent the visual-query
interface and the OntoDLV API , respectively. Finally, Sect6 we draw our conclu-
sions.

2 The OntoDLP Language

In this section we informally describe the OntoDLP languaglenowledge representa-
tion and reasoning language which allows one to define anebson on ontologies.

An ontology in OntoDLP can be specified by meanslaésesndrelations Classes
are organized in amheritance(ISA) hierarchy, while the properties to be respected are
expressed through suitabdéxioms whose satisfaction guarantees the consistency of
the ontology.Reasoning modulesllow us to express rich forms of reasoning on the
ontologies.

For a better understanding, we will describe each constmacseparate section and
we will exploit an example (th&ving being ontology, which will be built throughout
the whole section, thus illustrating the features of thglaye.

OntoDLP is actually an extension of the ASP language, whiah theen enriched
by ontology representation concepts, and hereafter werasthe reader to be familiar
with ASP syntax and semantics (for further details refe3ip. [

2.1 Classes

A classcan be thought of as a collection of individuals that belovgether because
they share some properties.

Classes can be defined in OntoDLP by using the the keyealass$followed by its
name, and class attributes can be specified by means of aiilsute-name : attribute-
type) whereattribute-namds the name of the property amdtribute-typeis the class
the attribute belongs to.

Suppose we want to model ttiging beingdomain, and we have identified four
classes of individualgpersonsanimals food, andplaces



Visual Querying and API for ASP-based Ontology Languages 59

For instance, we can define the clagssonhaving the attributes name, age, father,
mother, and birthplace, as follows:

class person(name:string, age:integer, father:person, mathenson, birthplace:place).

Note that, this definition is “recursive” (both father andtimer are of typeersor).
Moreover, the possibility of specifying user-defined ciessas attribute types allows
for the definition of complex objects, i.e. objects made dfeotobjects. Moreover,
many properties can be represented by using alphanumérigstand numbers by
exploiting the built-in classestring and integer (respectively representing the class
of all alphanumeric strings and the class of non-negativebrars).

In the same way, we could specify the other above mentiorzsses in our domain
as follows:

class placepame:string
class food(hame:string, origin:plage
class animal(hame:string, age:integer, speed:int¢ger

Each class definition contains a set of attributes, whiclalledclass schemelhe
class scheme represents, somehow, the “structure” of étaext have about) the indi-
viduals belonging to a class.

Next section illustrates how we represent individuals indDi_P.

2.2 Objects

Domains contain individuals which are callebjectsor instances

Each individual in OntoDLP belongs to a class and is uniMgédéntified by using
a constant calledbject identifier(oid) or surrogate

Objects are declared by asserting a special kind of logis fasserting that a given
instance belongs to a class). For example, with the follgwivo facts

rome : place(name:"Rome”).
john:person(name:”John”, age:34, father:jack, mothenm birthplace:rome).

we declare that “Rome” and “John” are instances of the gtdase and person re-
spectively. Note that, when we declare an instance, we inatedg give an oid to the
instance (e.gromeidentifies a place named “Rome”), which may be used to fill an at
tribute of another object. In the example above, the atteibirthplace is filled with the
oid romemodeling the fact that “John” was born in Rome; in the same, jagk’ and
“anr’ are suitable oids respectively filling the attributiesher, mother(both of type
person).

The language semantics (and our implementation) guastieereferential in-
tegrity, bothjack, annandromehave to exist whejohnis declared.

8 Attributes model the properties thaustbe present in all class instances; propertiesrtiight
be present or not should be modeled by using relations. kretbrds, an attributén : k) of
a classe is a total function frone to k; while partial functions frone to & can be represented
by a binary relation orfc, k).



60 Lorenzo Gallucci and Francesco Ricca

2.3 Inheritance

OntoDLP allows one to model taxonomies of objects by usirgakll-known mecha-
nism of inheritance.

Inheritance is supported by OntoDLP by using the specianryinelationisa. For
instance, one can exploit inheritance to represent sonmsadmategories of persons,
like studentandemployeeshaving some extra attribute, like a school, a company etc.
This can be done in OntoDLP as follows:

class studentisa {persor}( classemployeésa {persor}(
code:string, salary:integer,
school:string, skill:string,

tutor:person). company:string,

tutor:employeg

In this case, we have thpersonis a more generic concept superclassand both
studentaindemployea@re a specialization (@ubclasyof person Moreover, an instance
of studentwill have both the attributes: code, school, and tutor, Wwtace defined lo-
cally, and the attributes: name, age, father, mother, ardgbéace, which are defined
in person We say that the latter are “inherited” from the supercfzamson An analo-
gous consideration can be made for the attributesrgiloyeevhich will be name, age,
father, mother, birthplace, salary, skill, company, aridrtu

An important (and useful) consequence of this declarasahat each proper in-
stance of botlemployeandstudentwill also be automatically considered an instance
of person(the opposite does not hold!).

For example, consider the following instancestident

al:student(name:"Alfred”, age:20, father:jack, mothéetty, birthplace:rome,
code:"100", school:"Cambridge”, tutor:hanna).

Itis automatically considered also instance of person ksfe:
al:person(name:”Alfred”, age:20, father:jack, motheetiy, birthplace:rome).

Note that it is not necessary to assert the above instance.

In OntoDLP there is no limitation on the number of supera@ags.e. multiple in-
heritance is allowed). We complete the description of iithece recalling that there is
also another built-in class in OntoDLP, which is the supssslof all the other classes
and is calletbbject (or T). For a formal description of inheritance we refer the reade
to [9].

2.4 Relations

Relationships can be modeled in OntoDLP by mearRel&tions

Relationsare declared like classes: the keywogthtion (instead otlasg precedes
a list of attributes.

As an example, the relatidniend, which models the friendship between two per-
sons, can be declared as follows:



Visual Querying and API for ASP-based Ontology Languages 61

relation friend(persl:person, pers2:person).

Like classes, the set of attributes of a relation is calditemewhile the cardinality
of the scheme is called arity. The scheme of a relation defireestructure of its tuples
(this term is borrowed from database terminology).

In particular, to assert that two persons, say “john” andl™hre friends (of each
other), we write the following logic facts (that we call teg):

friend(persl:john, pers2:bill). friend(persl:bill, pg2:john).

Thus, tuples of a relation are specified similarly to clasances, that is, by assert-
ing a set of facts (but tuples are not equipped with an oid).

2.5 Axioms and Consistency

An axiomis a consistency-control construct modeling sentencéstealways true (at
least, if everything we specified is correct). They can bediseseveral purposes, such
as constraining the information contained in the ontolagy eerifying its correctness.

As an example suppose we declared the relation colleaguieh absociates persons
working together in a company, as follows:

relation colleague (empl:employee, emp2:employee).

Itis clear that the information about the company of an elygxq(recall that there is
an attribute company in the scheme of the class employed)baunsistent with the
information contained in the tuples of the relation colleagTo enforce this property
we assert the following axioms:

(1) :—colleague(empl : X1,emp2 : X2),not colleague(empl : X2,emp2 : X1)
(2):—colleague(empl : X1,emp2 : X2),
X1 : employee(company : C),not X2 : employee(company : C).

The above axioms states thét) the relation colleague is symmetric, aft if two
persons are colleagues and the first one works for a comgeeyalso the second one
works for the same company.

If an axiom is violated, then we say that the ontology is irgistent (that is, it con-
tains information which is, somehow, contradictory or notnpliant with the intended
perception of the domain).

2.6 Reasoning modules

Given an ontology, it can be very useful to reason about tkeeitldescribes.

Reasoning moduleare the language components endowing OntoDLP with power-
ful reasoning capabilities. Basicallyr@asoning modulés a disjunctive logic program
conceived to reason about the data described in an ontdegygoning modules in On-
toDLP are identified by a name and are defined by a set of (dpstigjunctive) logic
rules and integrity constraints.



62 Lorenzo Gallucci and Francesco Ricca

Syntactically, the name of the module is preceded by the keywodulewhile
the logic rules are enclosed in curly brackets (this allows to collect all the rules
constituting the encoding of a problem in a unique definitdentified by a name).

As an example consider the following module, which allowssitogle out in the
derived predicatyoungAndShthe names of the persons who are less than 18 years
old, and who have less than ten friends:

module(shy Friends){
youngAndShy(N):—P : person(name : N,age : A), A < 18,
#eount{F : friend(persl: P, pers2: F)} < 10.}

Note that, this information is implicitly present in the oldgy, and the reasoning
module just allows to make it explicit.

2.7 Querying

An important feature of the language is the possibility dfimg queries in order to
extract knowledge contained in the ontology, but not diyeexpressed. As in DLP a
query can be expressed by a conjunction of atoms, which, ialdkP, can also contain
complex terms.

As an example, we can ask for the list of persons having arfathe is born in
Rome as follows:

X:person(father:person(birthplace:place(name: “Rong?

Note that we are not obliged to specify all attributes; ratixe can indicate only the
relevant ones for querying. In general, we can use in a quatythe predicates defined
in the ontology and the derived predicates in the reasondutes.

For instance, consider the reasoning modtigFriendslefined in the previous sec-
tion, the following query asks whether there is a person whasne is “Jack” and is
“young and shy”:

youngAndShy(X), X:person(name:”Jack”))?

3 The OntoDLV System

OntoDLV is a complete framework that allows one to speciéigate, query and per-
form reasoning on OntoDLP ontologies. We refrain from diésieg the implementation
details of OntoDLYV in this paper. Rather, we illustrate the@ll OntoDLV architec-
ture, and present the main features of the system; subsiygterhe following sec-
tions, we will describe the main components of the graphisat interface of OntoDLV.

The system architecture of OntoDLV, depicted in Figure b, loa divided in three
abstraction levels. The lowest level, nant@atoDLV corecontains the components im-
plementing the main functionalities of the system, nam@grsistency Manager, Type
Checker andRewriter The Persistency Manager provides all the methods needed to
store and manipulate the ontology components. In particiil@xploits theParser



Visual Querying and API for ASP-based Ontology Languages 63

submodule to analyze and load the content of several OntaBktFfiles, and DB
Managersubmodule to implement data persistency on relationabaats through Hi-
bernate/JDBC.

The admissibility of an ontology is ensured by the Type Cleeckodule which
implements a number of type checking routines. Rawvritermodule translates On-
toDLP ontologies, axioms, reasoning modules and queries tequivalent ASP pro-
gram which runs on the DLV system, and redirects results assiple error mes-
sages to the Persistency Manager. Ruasvriterfeatures a number of optimization and
caching techniques in order to reduce the time used by uttegawith DLV. All

Graphical User Interface
(GUI

Application Interface
(OntoDLV API)

OntoDLV Core
B Persistency Manager (
Type
Rewriter = DB
Parser Manager Checker
L 3 A ) 4
v Y \d
ONEEE
TextFles

Fig. 1. The OntoDLV architecture

the features implemented by tmtoDLV corg(data persistency, browsing invocations
results etc.) can be employed by both system developersragdagmmers through a
sophisticated application interface (which will be delsed in detail in Section 5): the
OntoDLV API Eventually, the end user exploits the system through ay+asse vi-
sual environment calle@Ul (Graphical User Interface), which is built on top of the
OntoDLV API TheGUI combines a number of specialized visual tools for authoring
browsing and querying a OntoDLP ontology. In particulag @UI features a graph-
based ontology viewer and a graphical query environmenicfwhill be described in
detail in the next Section).

The OntoDLV system has been implemented in Java and exgheitSLV system,
a state-of-the-art ASP solver that has been shown to peréffioiently on both hard
and “easy” (having polynomial complexity) problems

The DLV system is a highly portable software written in IS@+Cavailable for
various operating systems. Thus, the OntoDLV system rudsievariety of operating
systems.

4 Visual Querying

In this section we describe the visual query interface oQh&DLV system. This tool
has been designed in a way that a non-expert user can aslegjugtinout worrying
about the syntax of the language, and a programmer can cenapaistest in an easy
way complex queries. The query interface is integratederQhtoDLV Graphical User



64 Lorenzo Gallucci and Francesco Ricca

Interface. We fist report a description of the GUI, in ordegiee an idea of the en-
vironment in which the query tool is embedded, and then desdt by running an
example.

4.1 The OntoDLV GUI

The OntoDLV GUI was designed to be simple for a novice to us@ed and use,
and powerful enough to support experienced users. A snapsltoe system running
the ontology described in Section 2 is depicted in Figuretz GUI presents several

?

ene OntoDLY - people.dipp
File Options Help
[<l2]3] Consistency Check |
Class || Refation | 3| clss  Retation | i | Axom | Query
L Class Name: pereon N -
@ @ ovisct a_:" employee ! otyect
-0 escrigntion studont
°
° e
¢ ‘; Instarces Nusber. 0
¢
o Class Attributes
°

Name Type Restricions |
rng

L 1 -
L ap —!
L far » -
L birthpisce ol )
nwodved in Axloms.
| el 1 | Global Attrinses | ff_xmwam:v:.v:wmm
New | Remove | Newinstance | |\ p E—
e ‘- emove | Moddty | « | ceson  Showl.
Wornings (L)
PR kg b pecject NRahanTolephonebiumber |
| ;
e & @ 2
b ]
¥ . 4 ¥ vgloyes]
52— Jotect!
wd A £y %
* ) »
»
plocel” ,
P —~a 7 stod
) N personl 4, s St
city| nation| PO

Fig. 2. OntoDLV GUI: Browsing and editing the ontology.

panels offering access to several facilities combininglttevsing environment with
the editing environment.

The class/subclass hierarchy is displayed both in an iedetgixt (on the left in
Figure 2) and a graph-based form (on the bottom in Figure 2).

The user can browse the ontology by double-clicking the stamthe panels. The
structure of each ontology entity (classes, relations, iasthnces) can be displayed
in the middle of the screen by switching between severalgdiganels. For example,
in Figure 2 the class person is selected in the class listlamdlass panel shows the
scheme of that class. In particular, the name and the typheotlass attributes are
shown in a table, while, on the left, both the relations arel dkioms involving the
class, together with the list of the instances, are repanted indented text form.



Visual Querying and API for ASP-based Ontology Languages 65

In the editing phase, the user enters the domain informatdiiling in the blanks
of intuitive forms and selecting items from lists (explogian simple mechanism based
on drag-and-drop). An up-to-date list of messages infotmesuser about the occur-
rence of errors (e.g. type checking messages, etc.) in tiodogy under development.
When the user clicks on an error message item the system gyoshppws the entity
involved in it. Reasoning and querying can be performed tgctiag the appropriate
panel, where the user can create/edit reasoning moduleguanies, respectively. The
reasoning module panel contains a text editor featuringagycoloring and a simple
auto-complete feature. The interface also allows the réaganodality (both brave
reasoning and cautious reasoning are supported) to beestlaad the reasoning mod-
ules needed to solve the specified reasoning task to be efdiblbled.

4.2 Querying Interface

After creating or loading an ontology, the most common opengerformed by users
is to query the system to obtain information stored in theolmgly. This task can be
performed in OntoDLV by running queries through an apprmaterinterfacé Even if
the OntoDLP language simplifies (w.r.t. standard ASP laggapthe task of writing
a query by exploiting both complex terms and strong typihgs bperation may be
performed by expert users only. In order to make more inigind easy this task, and
to allow a non-expert user to query an ontology, the systaatufes a full graphical
query interface similar to the QBE (Query By Example) editavhich are nowadays
largely adopted for formulating queries on relational Bates. Compared to relational
QBE interfaces (like, e.g., the QBE of MS Access), ours fat is more powerful
thanks to the exploitation of the strong typing informatafrihe underlying language.
Thus, by using the graphical interface an user can creatéeguweithout worrying about
the syntax, simply selecting classes and relations fromptreels (elements can be
added exploiting drag-and-drop) and creating links betwadgss attributes and relation
parameters.

In order to practically understand how the interface wonkessdescribe it by the fol-
lowing example. Suppose the system already loaded thglbgimg ontology described
in Section 2, and an we want to compose the following query:

X : person(father : person(birthPlace : place(name : ” Rome”)))?

(i.e. who are the people whose father was born in a place n&oet:?).

This query can be easily composed by selecting from the &fep displaying the list
of classes of the ontology (Fig. 3a), the person class, anldnging it inside the query
panel. Automatically, a box representing the person clagsther with its attributes
(name, age, father, and birthplace, namely) appears inahel gFig. 3b). To complete
the query we now have to indicate that the father of this pergas born in a place
named “Rome”. To do that, we just drag the attribute fathe¢iodthe box representing
the class person (Fig. 3c). The system automatically buldist (by exploiting the

strongly typed nature of the language) suggesting clasgbsetations that can correctly
“join” with the attribute father, which is of the type pers@rig. 3d). In this case, we

" Due to space constraints, and since we are mainly interastiscribing the graphical query
editor, we refrain from describing the text-based quergriiace.



66 Lorenzo Gallucci and Francesco Ricca

] [Fie ovtions_Help
Consistency Che <¢|9] >
{[[Class { motaion ra.-mﬁ Glass [ rotaion |
| isn ust
[ @ otject i ¢ @ ovject
& animal e & animal
® food ® wod
i b {3
o sian 0_o | @ s
O_name
O age o !;. A1
O_taer O e
[ _mother | ) _mother_|
[ virthplace (] virthplace.

(@) (b) ©

File Options  Help Filo Options  Help
<[] >] Consistency Chieck Reasoning <[] consistency Check Reasoning
Class | Retation | [ Class | Reltion | Class nstance | T oiom | Class | Relation [ Class | Relation | Class Instance | Relaton! T oiom |
[(15A ['usT | (15 ['usT | Visual
+ 8 oject Class | Relation | Collection Class | intensional Relation | Asgregate Operator ¢ 8 object ‘Class | Relation | Collection Class | Intensional Relation | Auregate Operator
@;’::\i‘ e — : vsﬂl:;ml |
& rson [ &+
@ skl Oo_ o Relation femployee O skl O_ o O o b
Pl o 0o S
O__age [Fiudent_smployee| O age O ap
O] tather 1 _father O tother
[]_mother 1_mothor 1. motner
O vitipace | [ birthplace 7 birthplace

(d (e)

File Options Help File Options  Help
<[2]>] Consistency Check | Reasoning ¢[D[>] Consistency Check | Reasoning
Class | Retation | §[["Class | Relation | Class stance | Reation! [ Aiom | Class [ Relaton | Class | Relation | Class Instance | Reltion! [ Aiom |
(1A | st [ Toxtual | Visuat | Eysal | Totual | visual |
+ @ oujsat iass | Relation | Collection Class | ntensional Retaion | Agoregate Operator 8 ovjeet
® animal e ® animal
00 o0
o @ person o © person
® pice © piace
® skl © skl

[ father:va
] _meother
L) birthplace

® ®

Fio_options_Help ] [Fie options Heip |
<[a]>] Consistency Check Reasoning <[a[>] Consistency Check Reasoning
Class | Relation |( Class | Refation | Class nstance | Relation instance | Axiom | Reasoning Modulg Class | Relation [ Class | Relation | Class Instance | Relation Instance | Axiom | Reasoning Modu
(15 [ust ] s [ st |
¢ @ object Class | Relation | Collection Class | intensional Relation erator ¢ @@ object Ciass | Relation | Collection Class | itensional Relation | Aggregate Operator

© animal —_—— |  anmat ——_—————————— |
8 oms © food
o bersin — & persai
© place person [ person | [“place | © pace
© sl O_w | [ O ous o skil
7 _nome [ O e
O_ape | O age .
1 father:vs O__tather
0 mothor | ] motner
] birthplace. [ birthplace:vs | ¢
() @

File Options  Help
<[o[>] Consistency Check Reasoning
Class | Relation | | Class | Relation | Class Instance | Rolation [ rxiom | [ auery | 4 instances Search |

(1sA | ust | Visual ] \(—\mm:c':;

o
* @gm::‘lml Ciass | Relation | Collection Class | mtensional Retation | Aggregate Operator Iﬂ
® tood erson
1S [ persn | i
© place 200 [ person place }
S skl -] O v (=] D5,
[ __name | O name [l marme=="Rome=
O__ae | O age .
[ fatherva [l N
I mother A==
[ birthplace [ virmplace:vs k

@

Fig. 3. OntoDLV GUI: How to build a query.



Visual Querying and API for ASP-based Ontology Languages 67

select the person class in order to indicate that the fash@pierson having birthplace
attribute valued to rome. Consequently, another box of fygrson appears (Fig. 3e),
and we link the oid field with the father attribute of the ongi person box (Fig. 3f).
We continue by applying the same criterion; in particulag, erag-out (Fig. 3g) the
birthplace attribute (which is of type place) of the secortspn box (representing the
father) and we select the place class (creating a place bkediwith the birthplace
attribute, see Fig. 3h). Finally, we double click on the natigbute (which is of type
string) of the place box to set the value of this attributeRorhe” (Fig. 3i). The obtained
query is shown in Figure 3j. It is easy to see that the graplmterface makes the
meaning of that query more intuitive, and it allows an uneigreed user to work with
the system without knowledge about the underlying syntarilde Importantly, the
system helps the user suggesting the classes or the retflatibare allowed to “join”
a given attribute, exploiting the strongly-typed naturetlté language. Moreover, to
help expert users, a sort of “reverse-engineering” proeedllows to smoothly switch
between the text editing and the visual editing environment

5 OntoDLV API

In order to enable third parties develop their own knowledgeed applications on
top of OntoDLV, we developed an application programmingiifiice named OntoDLV
API. Since OntoDLV is a Java application, the OntoDLV API teen written in this
language. In particular, all the operations the user canirege.g. creation and brows-
ing of ontology elements, reasoner invocations etc.) argena@ailable through a suit-
able set of Java interfaces. It is worth noting that, the Oh¥6API is characterized by
a rather high level of abstraction; and it is composed ofatiradly rich set of Java inter-
faces, together with a single factory class (like, e.g.,Jfi§P API from Sun). However,
the extensive usage of standard Java components (e.g.heoihtérfaces”ollection
andIterator play a central role) makes expert programmers rapidly famaith our
interface.

Itis impossible, due to space constraints, to give here alepth description of all
the methods and classes which constitute the OntoDLV ARVgver, in the following
subsections we describe its core components and we sketaloliking principles by
running an example.

5.1 Core APl Components and Ontology browsing

In the core part of the OntoDLV API each language construesé&schema, relation
schema, instance etc.) has an associated Java interfaméuhegit. In particular, the
available interfaces ar€’lass, Relation, ClassInstance, Tuple, Query, Axiom,
ReasoningM odule. All the concrete objects implementing the above-mentioine
terfaces are made available to the user through anothefacéecontaining a set of
browsing methods calle@omponent Browser. In particular,Component Browser
has seven methods which return lists of component, naméglyses(), relations(),
classInstances(), tuples(), queries(), axioms(), modules(). The first method re-
turns the list of all class objects, the second one the listllafelation objects and so



68 Lorenzo Gallucci and Francesco Ricca

forth. For example, itb is aComponent Browser, one can print out the definition of
all known classes with this code:

for (Class cl: ch.classes()) Systemout.println(cl);

It is worth noting that these lists are not “materializagdf the corresponding
entitie$; they rather represent virtual “views” aggregating a seblojects, possibly
coming from many sources (e.qg. different physical stotpgmd they are a extensions
of Java standard’ollections, which henceforth can manipulated using well-known
Java methods such add(), contains(), remove(), etc.

The same principle, based on lists@mponents, is applied to browse the content
of schemas and instances. For example,dless component has a method which
returns the list of all superclasses of the given class objéareover, the lists returned
by the browsing methods also provide the user the abilityetbgpmselectionover the
set of objects through specialized methods. Those methatsd “selectors”, return a
list of the same kind as the one they were called on (cascadiligare allowed), but
filtered on the basis of a given criterion.

A number of selection criteria has been designed by explpitie properties of each
collection; and, for instance, a list of classes has a sgi@dialized selectors that deal
with the schema properties (suchfasingSubclass() andhavingSuperclass()). As
an example, the following code snippet allows one to prirtttbe names of all classes
(if any) which are common ancestors of batfilass andbClass:

Systemout.printf("Cl ass names are: %",
cb. cl asses(). havi ngSubcl ass(ad ass).
havi ngSubcl ass(bC ass) . nanes());

Similarly, a list of instances (namely, eith€iassInstanceLists or T'upleLists)
may be queried for the occurrence of a particular value foataibute by using the
methodhavingValue(). For example, one can obtain the list of instancesa@f
class) having, among their attribute values, both the nud®#4 and the string “Rome”
(clearly, for different attributes of a given instance) listway:

Cl assl nst anceLi st speci al | nstances =
cb. cl assl nst ances() . havi ngVal ue(1974) . havi ngVval ue(" Rone") ;

5.2 OntoDLP API Usage

In this section, we show how to use OntoDLV API by running aaraple. In particular,
we describe a snippet of Java code which uses the API to déalthe living being
ontology introduced in Section 2. We refrain from reportalbthe technical details
(package inclusions, main function declaration etc.) levhie focus on the part of the
code where the APl methods are used. In particular, we regodgram which executes
the following four operations:

8 Importantly, whereas core data is always kept in memory, infgrmation derived by the
framework for internal purposes (such as collections, déeecy graphs, computed attributes,
etc.) is “memoized” (basically, it is stored to make the catagion efficient); but, if needed,
the garbage collector of the Java virtual machine can medtaiTl his allows the API to dynam-
ically adapt the memory usage to the available system ressur

9 As described in Secion 3 OntoDLV Core supports both filesysted database persistency,
which are handled transparently by the API



Visual Querying and API for ASP-based Ontology Languages 69

. load a text file containing the living being ontology;

add some new data to the relatipriends;

. build the reasoning modubéy F'riends described in Section 2.6;

. perform the queryoungAndShy(X), X:person(name:”Jack”)}@nd print the ob-
tained results in standard output.

AWM R

To perform step 1, we first create an instance ofRtgectclass, which, in general,
allows one to handle many different sources of data (e.g.files, and/or, relational
databases).

Proj ect project = ProjectFactory. buil dEnptyProject();
Then, we load the "living-beings.dlpp” text by writing:

proj ect. buil dSt reanRepository("LB",
new File("living-beings.dlpp"));

This statement, actually, creates a riRepositoryclass object that handles the data
stored in the "living-beings.dlpp” text file. Basically,ehext file is parsed, and an in-
memory representation of its content can be handled ekpjditat object.

Then, we add some tuple to the relatirends (step 2) by writing as follows:

repository. buil dTupl e("friend(persl:ted, pers2:frank).");
repository. buil dTupl e("friend(persl:frank, pers2:josh).");

In order to perform step 3, we build an object of the clRemsoningModuleand
we add a rule within it:

Reasoni nghbdul e nodul e = ont ol ogy. bui | dReasoni nghvbdul e(
"shyFriends");
nmodul e. bui | dRul e("youngAndShy(N) :- P:person(nane: N, age:A),
A<18, #count{ F : friend(persl:P, pers2:F)} < 10.");

Eventually, we perform step 5 by buildinguerylnvocatiorobject as follows:

String queryText = "youngAndShy(X), X person(nane:"Jack"))?";
Queryl nvocation queryl nvocation =

proj ect. get Engi ne() . performuery(queryText, Derivati onvbde. BRAVE);
queryl nvocati on. i nvokeSynchronousl y();

The last statement, basically, performs a synchronousatian of the internal rea-
soner (i.e. the current thread it is constrained to waitl timt output is computed); then
we get and print the results on standard output by writing:

QueryResult result = querylnvocation. get Results();
Systemout.printf("Results: \%", result.toString());

6 Conclusions

In this paper we have presented two novel tools tailored fomgegrated ontology
development and reasoning platform called OntoDLV:



70

Lorenzo Gallucci and Francesco Ricca

— avisual query interfaca la QBE, which simplifies the usage of the system for both

developers and unexperienced users;

— anapplication programming interfacevhich enables the programmers to embed

ASP programs in systems that are based on Java.

These tools represent a step towards the development oéfvarks supporting the
implementation of industry-level applications based orPAS

References

1.

10.

11.

12.

13.

14.

Lifschitz, V.: Answer Set Planning. In Schreye, D.D.,:d€LP’99, Las Cruces, New
Mexico, USA, The MIT Press (1999) 23-37

. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalo§CM TODS 22(3) (1997) 364-418
. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, Berri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACMIT@R) (2006) 499-562

. Janhunen, T., Niemela, I.: Gnt - a solver for disjunctagic programs. In: Proceedings of

the Seventh International Conference on Logic ProgrammimtgNonmonotonic Reasoning
(LPNMR-7). LNCS 2923

. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Cdlitcven Answer Set Solving.

In: Proceedings of the Twentieth International Joint Coerfiee on Artificial Intelligence
(IJCAI'07), AAAI Press/The MIT Press (2007)

. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, The nomore++ Approach to

Answer Set Solving. In: Logic for Programming, Artificialtéiligence, and Reasoning,
12th International Conference, LPAR 2005. LNCS 3835

. Lierler, Y.: Cmodels for Tight Disjunctive Logic Programin: W(C)LP 19th Workshop on

(Constraint) Logic Programming, Ulm, Germany. Ulmer Imhatik-Berichte, Universitat
Ulm, Germany (2005) 163—-166

. Leone, N, Gottlob, G., Rosati, R., Eiter, T., Faber, WakFM., Greco, G., lanni, G., Kalka,

E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, MStaniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incompleteldnconsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Confeeeno Management of Data
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (200859917

. Ricca, F., Leone, N.: Disjunctive logic programming wigpes and objects: The divsys-

tem. Journal of Applied Logics (2005) To appear.t p: / / www. kr. t uwi en. ac. at/
research/reports/rr0510. ps. gz.

Ruffolo, M., Leone, N., Manna, M., Sacca’, D., Zavatto; Axploiting ASP for Semantic
Information Extraction. In: Proceedings ASP05 - Answer Beigramming: Advances in
Theory and Implementation, Bath, UK (2005)

Cumbo, C., liritano, S., Rullo, P.: Reasoning-basedwadge extraction for text classifica-
tion. In: Discovery Science. (2004) 380-387

Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Deption logic programs: Combining
logic programs with description logics. In: Proceedingshaf Twelfth International World
Wide Web Conference, WWW2003, Budapest, Hungary. (2003548

Horrocks, |., Patel-Schneider, P.F.: A proposal for ahrales language. In: Proceedings
of the 13th international conference on World Wide Web, (WVZ004), New York, USA
(2004) 723-731

Horrocks, |., Patel-Schneider, P.F., Boley, H., TaBet,Grosof, B., Dean, M.: Swrl: A
semantic web rule language combining owl and ruleml| (2008CW/iember Submission.
http://ww. w3. or g/ Subm ssi on/ SVRL/ .



“That is lllogical Captain!” — The Debugging Support
Tool spock for Answer-Set Programs:
System Descriptiorf

Martin Brain', Martin Gebset, Jorg Puihret, Torsten Schatf
Hans Tompit3, and Stefan Woltrah

! Department of Computer Science, University of Bath,
Bath, BA2 7AY, United Kingdom
n b@s. bat h. ac. uk

2 Institut fur Informatik, Universitat Potsdam,
August-Bebel-StralRe 89, D-14482 Potsdam, Germany

{gebser, torsten}@s. uni - pot sdam de
3 Institut fur Informationssysteme, Technische Univérsivien,

Favoritenstraf3e 9-11, A—1040 Vienna, Austria
{puehrer,tonpits, stefan}@r.tuw en. ac. at

Abstract. Answer-set programming (ASP) is a logic programming payadior
declarative problem solving which gained increasing ingroee during the last
decade. However, so far hardly any tools exist supportitfiigvace engineers in
developing answer-set programs, and there are no standaidologies for
handling unexpected outcomes of a program. Thus, writiisgvanset programs
is sometimes quite intricate, especially when large progréor real-world appli-
cations are required. In order to increase the usability®PAhe development of
appropriate debugging strategies is therefore vital. implaper, we describe the
systemspock, a debugging support tool for answer-set programs makiagiis
ASP itself. The implemented techniques maintain the datier nature of ASP
within the debugging process and are independent from th@lacomputation
of answer sets.

1 Introduction

Answer-set programmin@ASP) [1] is an important logic-programming paradigm for
declarative problem solving, based on principles of nonmtamic reasoning. Any answer-
set program consists of logical rules specifying a problemwhich each of the pro-
gram’s answer sets is a solution. Since every rule of a prograght significantly
influence the resulting answer sets, it is hard to find thecgsuof errors in large pro-
grams in case of a mismatch between the program’s output@naser’s expectations.
For example, consider the problem of inviting guests to &perthe renowned starship
Enterprise. Sulu wants to give a party for his colleaguesjever facing the compli-
cation that some of them would appear only if certain other®ddo not attend the
festivity. Knowing the social preferences of potentialtpayuests, Sulu tries to get an

* This work was partially supported by the Austrian Scienced<-WF) under project P18019.



72 Martin Brain et al.

overview of possible invitation scenarios by means of amsgé programming and
ends up with the following rules for a prograffy,,,, where each atom represents the
actual appearing of a potential party visitor:

o = Jim «— vhura, ry = chekov < not bones,
rg = jim < not chekov, rs =  bones < jim,
rg = wuwhura < chekov, not scotty, r¢ =  scotty < not uhura.

This program has two answer sets, V{zhekov, scotty} and {bones, jim, scotty}.
Sulu is quite perplexed by this result, wondering why there iscenario where only
Chekov and Scotty attend who merely have a neutral relati@ath other rather than
a friendship. On the other hand, Sulu is astonished as thaesatisfactory possibility
such that Uhura and Jim can jointly be invited. The only wayappears to consult his
half-Vulcan half-Human friend, Spock, for advice.

In this paper, we describe a system helping developers oferset programs to
detect and locate errors in their programs. We call our sysfgock, making reference
to its ability of supporting users detecting errors basegrimciples of logic, since the
implemented techniques make use of ASP itself for debugasgver-set programs. In
contrast to other debugging strategies in logic progrargironr methodology works
independently of specific ASP solvers and preserves thaudivie nature of ASP.

The theoretical background for our approach was introdirc@devious work [2],
and relies on aagging techniquas used by Delgrande et al. [3] for compiling or-
dered logic programs into standard ones. In our approachggram to debug/7, is
translated into another prograffi[//], equipped with several meta atoms, caliags
which allow for controlling the formation of answer sets aatlect different properties
(like the applicability status of a rule, for instance). kay, we have the possibility
of investigating the actual answer setsiof 7« [/1] can be regarded askarnel trans-
formationthat may be extended for further debugging techniques. Octe extension,
featured byspock, is the extrapolation of non-existing answer sets in couom
with explanations why an interpretation is not an answeo&é&f.

The paper is organised as follows. Section 2 gives the netgu@requisites about
ASP, while Section 3 reviews the theoretical backgrounduwftool. The main features
of our tool, then, are described in Section 4. The paper i€loded with Section 5
containing some general remarks and a discussion abottdeleork. An appendix
lists specific commands sfpock.

2 Background

A (norma) logic program(over an alphabetl) is a finite set of rules of the form
a<—by,...,by,notcy,...,not cy,, ()

wherea andb;, c; € A are atoms, fop < i < m, 0 < j < n. A literal is an atomu
or its negationnot a. For a ruler as in (1), lethead(r) = a be theheadof r and
body(r) = {b1,...,bm,not c1,...,not c,} the bodyof r. Furthermore, we define
body™ (r) = {b1,...,by} andbody ™ (r) = {ci,...,cn}. The set of atoms occurring



The Debugging Support Toslpock for Answer-Set Programs 73

in a programiI is denoted byA¢(IT). For collecting rules sharing the same head
we usedef (a,II) = {r € II | head(r) = a}. For uniformity, we assume that any
integrity constraint— body(r) is expressed as a rule «— body(r), not w, wherew

is a globally new atom. Moreover, we allow nested expressnform not not a,
wherea is some atom, in the body of rules. Such rules are identifiek mormal rules
in which not not a is replaced bynot a*, wherea* is a globally new atom, together
with an additional rule:* — not a. We also take advantage of (singulehpice rules
of form {a} « body(r) [4], which are an abbreviation far < body(r), not not a.

A program/7 is positiveif body ™ (r) = 0, for all r € IT. By Cn(II), we denote the
smallest model of a positive prografh

The definition of an answer set is as follows. Tieeluct I7~, of a programiT
relative to a sefX of atoms is the positive prografhead(r) « body™ (r) | r € II,
body~(r) N X = 0}. Then,X is ananswer sebf IT iff Cn(I1X) = X. The set of all
answer sets of a prograff is denoted byA S (I7).

An alternative characterisation of answer sets is provigethe Lin-Zhao Theo-
rem [5], qualifying answer sets as models of dwenpletionof a program in the sense
of Clark [6] and thdoop formulasof the program. We make use of this perspective on
the answer-set semantics to identify sources of errors weRerapolating non-existing
answer sets as described in the following section.

3 Tag-Based Debugging Methodology

Our approach relies on thagging techniquas used by Delgrande et al. [3]. In what
follows, we sketch the theoretical principles underlying systenspock. For a more
detailed discussion, we refer to Brain et al. [2].

The basic idea of tagging is to decompose the rules of a pmodfaover A into
several other rules, in order to gain control over their eygyility and for analysing
their mutual interferences. To be able to refer to individukes, we use a bijectiom,,
assigning each rule over A a unique name,.. We call a pairn,. : r, comprising a
ruler and its name,., alabeled rule and a set of labeled ruledabeled programThe
semantics of a labeled prografhis given by the semantics of the ordinary program
{r | n, : r € II}. In view of this straightforward correspondence betweaymms
(resp., rules) and labeled programs (resp., labeled rules)yill usually not distinguish
between them in the sequel.

For decomposing the rules of a program, so-calisggsare introduced, which are
new, pairwise distinct propositional atoms, givendp(n,.), bl(n,), ok(n,), J(nr),
ko(n,), aby(n,), ab.(a), andab;(a), for eachr € II anda € At(II). Intuitively,
ap(n,) andbl(n,) indicate whether some rule is currently applicable or blocked,
respectively, whilek(n,.), ok(n,), andko(n,.) are used to include or exclude particular
rules from a debugging request. Furthermore,abaormalitytagsab,(n.), ab.(a),
andab;(a) inform the user what went wrong in case no answer set for tbgram
under consideration exists. We explain their particulactioning in detail below.

In a first transformation step, thernel transformationZx, rewrites a given pro-
gram,II, such that, for every € II, ap(n,) (resp.,bl(n,)) is contained in an answer
set of 7 [I1] whenever can be applied (resp., is blocked). Apart from tags, the answ



74 Martin Brain et al.

sets ofI] and7k|[I1] are preserved. Formall§x maps a logic programi over.4 into
another prograrfix[I] over an extended alphahdt" in the following way: for every
r € I1,b € body™ (r), andc € body ™ (r), Tx[II] contains

head(r) < ap(n,), not ko(n,), (2)
ap(ny) — ok(y), body (1), @)
bl(n,) < ok(n,), not b, 4)
bl(n,) < ok(n,), not not c, (5)
ok(n,) « not ok(n,). (6)

Intuitively, everyr € IT is split into Rules (2) and (3), separating the head and tdg bo
of r, thereby decoupling the applicability of indicated by the tagp(n,.), from the
conclusionhead(r) of r. Rules (4) and (5) derive tags(n,) whenever is blocked.
The tagok(n,.), along withok(n,.), provides a handle for switching‘on or off”.

The progran¥k[/I] plays the role of a basic module for various debugging relgues
Extension modules may add new rules, using tagds..), ok(n,.), andko(n,.) for ma-
nipulating the applicability of a rule, in order to analyse the behaviour Gt

Example 1.Reconsider the prograii;,, from the introduction, having the answer sets
{chekov, scotty} and{bones, jim, scotty}. The answer sets @ [I1;,] are

X1 = {chekov, scotty,ap(nr, ), ap(nr, ), bl(ny, ), bl(nr, ), bl(n, ), bl(n5) } U OK,
and
Xo = {bonesaﬁm> scotly, ap(nT2)7 ap(nrs)v ap(nT6)7 bl(nrl )7 bl(nra)v bl(nm)}UOKv

where OK = {ok(n,,),ok(n,,),ok(n,,),ok(n,,),ok(n,,),ok(n.;)}. The presence
of ap(n,,) in X, indicates that rule is applicable with respect t&(;, and hence
chekov € Xy butbones ¢ X, while bl(n,,) € X; indicates thats is blocked with
respect taX;. This is becausecotty € X;. O

As stated above, the tagged kernel progf&fiI] can be used as a basic submod-
ule for more enhanced programs, facilitating debuggingiests. One such extension
scenario is the extrapolation of non-existing answer setpoogrami’ over.A. Using
further translations of the original program, we may inigege why an interpretation
is not an answer set dff. An answer setX T, of the transformed program offers in-
formation about the interpretatioi = X+ N A of IT in form of the three abnormal-
ity tags,ab,(n,), ab.(a), andab;(a). Their presence signals why is not an answer
set, by detecting problems originating from the prograsmciampletion, and its non-
trivial loop formulas, respectively. For the detectionloése three problem sources, we
have the corresponding program translati@psZc, andZ., which are used together
with the kernel tagging of the respective program, yieldamgoverall transformation
Tex[I1, X] = T[T U Tp[IT) U Tc[{1, X] U 7 [ X], whereX C At¢(II).

The program-oriented abnormality tag, () indicates that rule is applicable
but not satisfied with respect &, i.e., body+(r) C X, body™ (r) N X = 0, but



The Debugging Support Toslpock for Answer-Set Programs 75

head(r) ¢ X. The respective translatidf [17] over A™ is given by the set of all rules

ko(ny) —, (7
{head(r)} — ap(n), ©)
ab,(n,) < ap(n,), not head(r), 9)

for r € I1. By adding the facts of form (7), the rules of form (2) are led. Their
purpose, deriving the consequences of the original ridesow fulfilled by the rules of
form (8). However, the head atom of an original rules not necessarily derived, even
whenr is applicable. Whenever an applicable rule is not appliedile of form (9)
provides the program-oriented abnormality tég (7).

Example 2.Consider progranil,, = { n, : chekov «— not bones }. The empty set is

not an answer set df,,, sincer is applicable with respect bbut chekov ¢ 0. This is

reflected byZe«[I1,, At(II,)] in that it possesses an answer et containing abnor-

mality tagab,(n,-) and X+ N At(I11,) = 0. O
The completion-oriented abnormality tab.(a) is included inX+ whenever is

in the considered interpretation but all rules havings head are blocked. The logic

programZc[II, X ] over A, for X C At(II), is given by the set of all rules

{a} < bl(ny,),...,bl(n,,), (10)
ab.(a) < bl(ny,),...,bl(n,),a, (11)

fora € X, where{ry,...,rc} = def(a, II).

The rules of form (10) allow an atom € At(II) to be derived even if all rules
r € def(a,IT) are blocked. Whenever this happens, a rule of form (11) des/the
completion-oriented abnormality tag.(a).

Example 3.Consider progranil. = { n, : uhura < chekov }. The interpretatiot’ =
{uhura} is not an answer set 1., since the only rule derivinghura is not applicable.
Accordingly, there is an answer sEt" of 7g, [, At(II..)] containing abnormality tag
ab.(uhura) and X+ N At(I1.) = X.

Finally, the presence of a loop-oriented abnormalitysiaga) in X+ indicates that
the occurrence of atommight recursively depend anitself and, therefore, violate the
minimality criterion for answer sets. The correspondirg#iation?; [X] over AT, for
X C At(II), is given by the following set of rules, for eaghe X:

{ab;(a)} < not ab.(a), (12)
a < aby(a). (13)
The rules of form (12) allow to add a loop-oriented abnortgdtigab; (a) fora € X+,
providing a is supported. The rules of form (13) ensure thdt actually contained
in X+,
Example 4.Consider progranil;, consisting of
Ny, @ jim < bones and n,, : bones «— jim.

The interpretationX = {bones, jim} is a classical model off; but does not satisfy
the loop formulas of7;. So, every answer s&f ™ of 7, [I1;, At(II;)] such thatX + N
At(IT;) = X includes one of the abnormality tagls; (bones) or ab;(jim). O



76 Martin Brain et al.

Table 1.Labeled program syntax sfpock.

*

program := (*.)*rule(( *.)*rule)*( .)

rule := (rulelabel ...*:"...)? (head..."." |
head...":-"...body..."." |':-"...body...".")

head 1= atom

body := literal(‘,’ ... literal)”

literal := atom | ‘not’...atom

atom :=symb (‘("...term(‘, " ...term)*...")")?

term := variable | symb

rulelabel := (‘a’ — 'z’ ['A —'Z' ['0’ —'9")*
Variable = (LA! _ lZ!)(lal _ LZI | LAI _ lz! | lol _ 19! | l_l)*
Symb = (Lal_lzl |10|_19|)(La1_12| |KAV_IZ| |lo|_197

=) (L)
= ()

l_))*

4 System

Our debugging systempock implements the program translations described in the
previous section. It is a command-line oriented tool, peysind translating its input,
which is taken from standard input and text files. The progigmritten in Java 5.0
and published under the GNU General Public License [7]. it loa used either with
DLV [8] or with Snpdel s [4] (together withl par se) and is publicly available at

http://ww. kr.tuw en. ac. at/resear ch/ debug

as a jar-package including binaries and sources.

4.1 Usage
Generallyspock is executed by a shell command of the form
java -jar spock.jar { OPTION | FILENAME }*,

assuming ava is the execution command for the Java virtual machine. Ifleadime
is given,spock expects input from the operation system’s standard inpuistPof
important options is given in Appendix A.

4.2 System Input

The input primarily consists of the logic programs whichtarbe debugged. Addition-
ally, spock also accepts debugging statements, and various solveifispeput. The
accepted program syntax is closely related to the core EgegioDLV andSnodel s.
Here, we restrict ourselves to labeled normal logic prograltbeits pock accepts also
programs with a richer syntax like disjunctive logic promgia The basic input language
of spock is depicted in Table 1 using regular expressions.



The Debugging Support Toslpock for Answer-Set Programs 77

Command Line
Arguments

Input Program l

f spock
|
|
|

Internal

Program and .
— .| Parser Answer Set Answer Sets

Representation

4 |

Solver Specific
Program Syntax

’ Solver \

Fig. 1. Data flow of answer-set computation for labeled normal @og.

Rule labeling is introduced as a device to explicitly refecértain rules. As stated in
Table 1, arule may have its label omitted. For a previouslgheled rulespock auto-
matically assigns the label according to the line numberin which it appears in the
program. Note that duplicate rule labels will produce a wagmnmessage. If the input
is spread over multiple input files, their contents will beemmally joined as if it were
only one file. Additional content read from standard inpuewlusing the- -’ flag is
also appended to any input from files.

Since labeled rules cannot be read by conventional ASP rsplspock offers
an interface tdLV andSnodel s providing answer-set computation for labeled pro-
grams, described next.

4.3 Answer-Set Computation for Labeled Normal Programs

In order to perform answer-set computation for labeled o, DLV or Snodel s
(the latter in combination with its groundepar se) must be found in the command
search path of the used system.

Internally,spock transforms the parsed input progrdiminto a solver-compatible
representation before forwarding it to the externally edibnswer-set solver. The re-
sulting set of answer setslS(I7), is then parsed and stored for further processing.
When using flag- 0’, spock outputsAS (7). Command line arguments for exter-
nally called systems can be forwarded using the flag varg’, ‘-1 par g’, and
‘- smar g’ (see also Appendix A). Fig. 1 illustrates the typical dataflof answer-set
computation wittrspock.

Example 5.Consider inputfile i | €5, containing our example prografh;,,, :

rl: jim:- uhura.
r2 : jim:- not chekov.
r3 : uhura :- chekov, not scotty.



78 Martin Brain et al.

Command Line
Arguments

Input Program

spock

Internal

Program

.
Program Translation

—+=| Parser )
Representation

Standard Input

\
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1
1
|

Fig. 2. Data flow of program translations.

r4 : chekov :- not bones.
r5: bones :- jim
ré : scotty :- not uhura.

The answer sets for this program can be computed Wlingby the command:
java -jar spock.jar -x -o fileb.

Flag *- x’ calls DLV externally on the input program aned’ triggers the output of
its answer sets. Note that the call yields the output of theesponding answer sets in
lexicographic order:

{bones, jim scotty}
{chekov, scotty}.

The same result can be achieved ussngdel s andl par se in a similar manner:

java -jar spock.jar -xsm-o fileb. O

4.4 Kernel Translation

The kernel translatiofix [I7] over A™ of a logic programiT over.A can be obtained by
the call

java -jar spock.jar -k FILEl FILE2 ...,

where the filesF| LEL, FI LE2, ..., contain a representation &f. As visualised in
Fig. 2,spock first creates an internal representation for the input Enogsefore com-
puting and returning its translation.

Example 6.For filef i | e5 from Example 5, when executing the command
java -jar spock.jar -k fileb,

spock returns the translated prograf[I1;,.]:



The Debugging Support Toslpock for Answer-Set Programs 79

jim:- ap(rl), not ko(rl).

ap(rl1) :- ok(rl), uhura.

bl (r1) :- ok(rl), not uhura.
ok(rl) :- not -ok(r1l).

jim:- ap(r2), not ko(r2).

ap(r2) :- ok(r2), not chekov.

bl (r2) :- ok(r2), not not chekov.
ok(r2) :- not -ok(r2).

uhura :- ap(r3), not ko(r3).
ap(r3) :- ok(r3), chekov, not scotty.
bl (r3) :- ok(r3), not chekov.

bl (r3) :- ok(r3), not not scotty.
ok(r3) :- not -ok(r3).

chekov :- ap(r4), not ko(r4).
ap(r4) :- ok(r4), not bones.

bl (r4) :- ok(r4), not not bones.
ok(r4) :- not -ok(r4).

bones :- ap(r5), not ko(rb).
ap(r5) :- ok(r5), jim

bl (r5) :- ok(r5), not jim

ok(r5) :- not -ok(rb).

scotty :- ap(r6), not ko(re).
ap(r6) :- ok(r6), not uhura.

bl (r6) :- ok(r6), not not uhura.
ok(r6) :- not -ok(r6).

:- falsu

When solving this program, we obtain the answer $gt@nd X5 (cf. Example 1). ¢

4.5 Translations for Extrapolating Answer Sets

Translations for the extrapolation of non-existing anseeis of a prograni/ can be
invoked analogously to the kernel transformation. Howgwere, the consideration may
be restricted to the generation of extrapolation tagging snbset of . This way, the
developer can focus the search for errors on a subprograerddta flow is still the one
depicted in Fig. 2.

The flags * expo’, ‘- exco’, and *- ex| o’ activate the extrapolation translations
Tp, 1c, and 7|, respectively. Instead of using all three flags simultasBosetting
‘- ex’ produces the union of these program translations. In ciaegstrict the genera-
tion of an extrapolation tagging to a subprograniffthe names of the considered rules
must be explicitly stated in a comma-separated list folimMhe - exr ul es’ flag.
Since programs translated Via, 7c, and7, involve Snodel s-specific choice rules,
we need to set the sni flag to activateSnodel s syntax. Otherwisespock will
produce disjunctive rules, simulating the respective choiles.

Example 7.Consider inputfilgi | e7:



80 Martin Brain et al.

rl: jim:- not chekov.
r2: bones :- not jim
r3: chekov :- not bones.

Since Bones would definitely attend if Jim did, the programseemed to err when
specifyingr 2. By calling

java -jar spock.jar -ex -exrules=rl,r2 -smfile7,

we get the extrapolation tagging of the subprogram congisif the rules labeled1
andr 2, where we expect an error:

ko(r1).

{jim :- ap(rl).

ab_p(rl) :- ap(rl), not jim
ko(r2).

{bones} :- ap(r2).

ab_p(r2) :- ap(r2), not bones.
{bones} :- bl(r2).

ab_c(bones) :- bl(r2), bones.

{chekov}.

ab_c(chekov) :- chekov.

{jinm :- bl(rl).

ab_c(jim :- bl(rl), jim

{ab_I| (bones)} :- not ab_c(bones).
bones :- ab_I (bones).

{ab_| (chekov)} :- not ab_c(chekov).
chekov :- ab_I (chekov).

{ab_I (jim} :- not ab_c(jim.
jim:- ab_I(jim.

Since the extrapolation taggings make only sense in cotipmwith the kernel
tagging, we usually also use thek’ flag to output both translations at once. In order
to compute the answer sets of the obtained program, it caiped from the output of
spock into another instantiation of it:

java -jar spock.jar -k -ex -exrules=rl,r2 -smfile7 |
java -jar spock.jar -xsm-o.
The output of this operation yields nine answer sets; amoagtare the following:
Ay = {ab.(bones), ab.(chekov), ab.(jim), bl(n,, ), bl(n., ), bl(n;,),
bones, chekov, jim} U S,
Ag = {ab.(bones), ab;(jim), ap(n,, ), bl(n.,), bl(n.;), bones, jim} U S,
As = {ab.(bones), ap(n, ), bl(n,,), bl(n., ), bones, jim} U S,

where
S = {ko(n;, ), ko(nr,),0k(n;, ), ok(n,, ), ok(n.,)}.



The Debugging Support Toslpock for Answer-Set Programs 81

The conclusions drawn from these answer sets depend on fisédeced interpreta-
tion. For example, the abnormality tags i provide an explanation whybones,
chekov, jim} is not an answer set, because all rules havinges, chekov, or jim in
their heads are blocked.

Interpretationsd, and A3 provide information whyl = {bones, jim} is not an
answer set. Note thats is a superset ofl3 and contains the additional abnormality
tagab; (jim). This is a consequence of the definition of translafipriand the choice
rule used therein). The existenceAf makes the information i, obsolete, since the
occurrence of atonim in I is not (positively) depending on itself.

In this debugging situatiords delivers the most relevant information for the pro-
grammer since, firstly, he or she expects Bones and Jim torbpatible party guests,
and, secondlyAs contains only one abnormality tagh.(bones), focusing the source
of error to the question why Bones is not coming. From tha ptogrammer can iden-
tify the erroneousrule2 of fi | e7. O

In order to reduce the amount of debugging information imagtated program, one
can make use of standard ASP optimisation techniques, suninanise statementis
Snodel s or weak constraintsn DLV. The idea is to take only answer sets with a
minimum number of abnormality tags into consideration.

By using the flags-‘mi nab’, ‘- mi nabp’, ‘- m nabc’, or ‘- mi nabl ’, spock
produces weak constraints for minimising all abnormalitgs, all program-oriented
abnormality tags, all completion-oriented abnormaliysteor all loop-oriented abnor-
mality tags, respectively.

Example 8.Let us reconsider the prograf;,,, from the introduction and recall that
Sulu wanted to know why there is no chance for Uhura and Jirttéo@the same party.
For this purpose, we add the two constraints

«— not uhura and <« not jim

to I1;,, in order to investigate only scenarios including Uhura d@ndak guests. Note
that this restriction could also be achieved by usingabgignedstatement of the de-
bugging language presented in our companion work [2], wisighartly implemented in
spock but not further discussed here. The modified program isdtoréle f i | e8:

rl : jim:- uhura.

r2 : jim:- not chekov.

r3 : uhura :- chekov, not scotty.
r4 : chekov :- not bones.

r5: bones :- jim

ré : scotty :- not uhura.

cl : :- not uhura.

c2 : :- not jim

The following call returns extrapolation answer sets withiasimum number of abnor-
mality tags:



82 Martin Brain et al.

java -jar spock.jar -k -ex
-exrules=rl1,r2,r3,r4,r51r6 -mnab file8 |
java -jar spock.jar -x -as.

Note that we do not use thesni flag since weak constraints for minimisation require
the use ofDLV as external solver. In the present case, choice rules andatad by
head disjunctions, introducing new auxiliary atoms. Theyfdtered out automatically,
in the second invocation afpock, giving the following answer sets as output:

{ab_c(chekov), ap(rl), ap(r3), ap(r5), bl(cl),
bl (c2), bl(r2), bl(r4), bl(r6), bones, chekov, jim
ko(rl1), ko(r2), ko(r3), ko(r4), ko(r5), ko(re),
ok(cl1), ok(c2), ok(r1), ok(r2), ok(r3), ok(r4),
ok(r5), ok(r6), uhura}

{ab_c(uhura), ap(rl), ap(r2), ap(r5), bl(cl), bl(c2),
bl (r3), bl(r4), bl(r6), bones, jim ko(rl), ko(r2),
ko(r3), ko(r4), ko(r5), ko(r6), ok(cl), ok(c2),
ok(r1), ok(r2), ok(r3), ok(r4), ok(r5), ok(re),
uhur a}

{ab_p(r5), ap(rl), ap(r3), ap(r4), ap(r5), bl(cl),

bl (c2), bl(r2), bl(r6), chekov, jim ko(rl), ko(r2),
ko(r3), ko(r4), ko(r5), ko(r6), ok(cl), ok(c2),
ok(rl), ok(r2), ok(r3), ok(r4), ok(r5), ok(re6),
uhur a}

The atomab_c( chekov) in the first answer set, corresponding to interpretation
{bones, chekov, jim, uhura}, identifieschekov as not being supported by any applica-
ble rule. The only rule with headhekov, r4, would requirebones not to be in the in-
terpretation in order to be applicable. Analogoualy, c( uhur a) signals thathura
lacks support when considering interpretat{@anes, jim, uhura}.

The tagab_p(r5) in the third answer set indicates the applicability of thkeru
labeledr 5 with respect to interpretatiofichekov, jim, uhura} and hence Bones’ in-
compatible party participation. Clearly, there is no siolutfor this problem instance
that is satisfactory for everybody, given that Jim and Utahauld jointly come and
that the respective social preferences are all respectadevér, the last answer set
indicates an obvious solution for Sulu’s diplomatic conifliéz. not inviting Bones. ¢

All three answer sets in Example 8 give us a potential hanaliedsolving our
problem, each of them involving a minimum number of abnoitieasl However, they
are not of the same quality in terms of a real-life solution,. I@solving problems in the
context of ASP still depends in large part on knowledge abbmitomain.

5 Discussion and Related Work

In this paper, we gave an overview absyock, a prototype implementation of a de-
bugging support tool for answer-set programs. The impléatemethodology is based



The Debugging Support Toslpock for Answer-Set Programs 83

on theoretical results presented in a companion paper [Rlelies on a tagging tech-
nique similar to one used for compiling ordered logic progsanto standard ones [3].

With spock, programs to debug are translated into other programspaviswer
sets that offer debugging-relevant information about thigimal programs. After an
initial kernel transformation, we get insight into the apgbility of rules with respect
to individual answer sets. In a further stegpock outputs translations for extrapo-
lating putative, yet non-existing answer sets. In this @pgibn scenario, the system
allows to identify explanations why interpretations aré aoswer sets. Hergpock
distinguishes between abnormalities due to missing orespams, or atoms whose
presence in the interpretation is self-caused. In ordezgtrict the amount of informa-
tion returned to the programmer, standard ASP optimisaéohniques can be used to
focus on interpretations with a minimal number of abnortiesdi Future work includes
the integration of further aspects of the translation appincas well as the design of a
graphical user interface to ease the applicability of tHfeint featurespock pro-
vides.

Implementations of related techniques inclsahelebug [9], a prototype debugger
focusing on odd-cycle-free inconsistent programs. Fogramms without odd cycles,
inconsistency can always be linked to conflicting integdonstraints. The system is
designed to find minimal sets of constraints, restoring istescy when removed from
the program. In most real-world applications, odd cycleskargs, so, on the one hand,
sndebug technically catches many of the common programming erfanghe other
hand, actual error recovery is often related to normal ridieee constraints, used for
restricting the solution space, are more likely to be seivalhf correct.

Brain and De Vos [10] present the syst¢éDEAS (Interactive_2velopment and
Evaluation Tool for_Aswer-Set 8mantics), implementing two query algorithms, an-
swering the questions why a sgtis in some answer set and why a sefS is not in
any answer set. Both algorithms are procedural and sinuldineé ones used in ASP
solvers, suggesting that an approach using a program4@redformation would be
more practical.

Pontelli and Son [11] developed a preliminary implementafior their adoption
of so-calledjustifications[12—14] to the problem of debugging answer-set programs.
The system is embedded AP — PROLOG [15] and returns visual output in form of
justifications, which are graphs explaining why an atom ianranswer set.

Appendix A Selected Argument Options ofspock

-- If a filename is givenspock does not read from standard input, un-
less this flag is set.

-p Outputs the given program with rule labels.
-C Outputs the given program without rule labels.
- X RunsDLV on the given program.

-Xsm RunsSnodel s on the given program.

-n=NR Computes maximallyvR many answer sets.



84 Martin Brain et al.

-sm
-0
-as
-k
- ex
- expo

-exco

-exlo

-exrul es=r,s, ...

-m nab

-m nabp
- m nabc
- m nabl

-koal |
-nas

-cig

-ca

-ocCr

-dl varg ARG
-l parg ARG
-smarg ARG

References

Formats various output iBnmodel s syntax, otherwis®LV syntax is
used.

Outputs all computed or read answer sets.

Displays all computed or read answer sets in a GUI frame.
Outputs the kernel taggirik [II] of a given prograni!.

Outputs the extrapolation taggirfg«[/7, A¢(I1)] of a given program
11 (like - expo -exco -exl o; see next).

Outputs the program-oriented extrapolation tagdibfy] of a given
programl!.

Outputs the completion-oriented extrapolation tagdiagl, At(11)]
of a given progranil.

Outputs the loop-oriented extrapolation taggifigA¢(I7)] of a given
program/I.

Restricts extrapolation tagging generation to rules kdbel s, . ..
Outputs weak constraints to minimise abnormality tag® (ke ones
described next).

Outputs weak constraints to minimise program-orientecbehality
tags.

Outputs weak constraints to minimise completion-oriergiedormal-
ity tags.

Outputs weak constraints to minimise loop-oriented abrmdityntags.
Outputs atonko( n,) for every ruler in the given program.
Outputs the number of computed or read answer sets.

Outputs the given program, grounded bwyar se, having each
ground atom replaced by a constant (Constant Intelligeati@ting;
CIG). Using flag- ca, spock provides a table of these constants to-
gether with the corresponding atoms.

Outputs a table of constant aliases from a CIG, together thi¢h
ground atoms they represent. This list can be used in another
cation ofspock using flag- ocr to re-translate the answer sets of a
CIG.

Outputs all computed or read answer sets of a CIG, havingahstant
aliases substituted by the corresponding ground atomsidemh that
a list of constant aliases was read.

Adds an argument for external callsBif V.

Adds an argument for external callslgbar se.

Adds an argument for external calls@fodel s.

1. Baral, C.: Knowledge Representation, Reasoning andalbsale Problem Solving. Cam-
bridge University Press (2003)

2. Brain, M., Gebser, M., Puhrer, J., Schaub, T., Tompits,Wbltran, S.: Debugging ASP
programs by means of ASP. In Baral, C., Brewka, G., Schlipfeds.: Proceedings of the
9th International Conference on Logic Programming and Nammionic Reasoning (LP-
NMR’07). Springer-Verlag (2007) 31-43

3. Delgrande, J., Schaub, T., Tompits, H.: A framework fompding preferences in logic
programs. Theory and Practice of Logic Programn8(®) (2003) 129-187



10.

11.

12.

13.

14.

15.

The Debugging Support Toslpock for Answer-Set Programs 85

. Simons, P., Niemela, |., Soininen, T.: Extending andlémenting the stable model seman-
tics. Artificial Intelligencel3§1-2) (2002) 181-234

. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logiogpam by SAT solvers.
Artificial Intelligence157(1-2) (2004) 115-137

. Clark, K.: Negation as failure. In Gallaire, H., Minket, &ds.: Logic and Data Bases.
Plenum Press (1978) 293-322

. Free Software Foundation Inc.: GNU General Public Lieenigersion 2, June 1991 (1991)
http://www.gnu.org/copyleft/gpl.html

. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, Berri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACMsEetions on Computational
Logic 7(3) (2006) 499-562

. Syrjanen, T.: Debugging inconsistent answer set prograln Dix, J., Hunter, A., eds.:

Proceedings of the 11th International Workshop on NonnmriotReasoning (NMR’06).

Number IFI-06-04 in Technical Report Series, ClausthaMdrsity of Technology, Institute

for Informatics (2006) 77-83

Brain, M., De Vos, M.: Debugging logic programs under démswer set semantics. In De

Vos, M., Provetti, A., eds.: Proceedings of the 3rd Intdometl Workshop on Answer Set

Programming (ASP’05). CEUR Workshop Proceedings (200%)-182

Pontelli, E., Son, T.: Justifications for logic programmsler answer set semantics. In Etalle,

S., Truszczyhski, M., eds.: Proceedings of the 22nd laté@nal Conference on Logic Pro-

gramming (ICLP’06). Springer-Verlag (2006) 196-210

Roychoudhury, A., Ramakrishnan, C., Ramakrishnan]ustifying proofs using memo ta-

bles. In: Proceedings of the 2nd ACM SIGPLAN Internationah@rence on Principles and

Practice of Declarative Programming (PPDP’00). (2000)-1 39

Pemmasani, G., Guo, H., Dong, Y., Ramakrishnan, C., Rashaan, |.: Online justification

for tabled logic programs. In Kameyama, VY., Stuckey, P.,:&Ri®ceedings of the 7th Inter-

national Symposium on Functional and Logic ProgrammingQdPI5’04). Springer-Verlag

(2004) 24-38

Specht, G.: Generating explanation trees even for inegain deductive database systems.

In: Proceedings of the 5th Workshop on Logic Programmingienments (LPE’93). (1993)

8-13

El-Khatib, O., Pontelli, E., Son, T.: ASP-PROLOG: A stfor reasoning about answer set

programs in Prolog. In Delgrande, J., Schaub, T., eds.:d@dings of the 10th International

Workshop on Nonmonotonic Reasoning (NMR’04). (2004) 153-1



An integrated graphic tool for developing and testing
DLV programs

S. Perri, F. Ricca, G. Terracina, D. Cianni, and P. Veltri

Dipartimento di Matematica, Universita della Calabria086 Rende (CS), Italy
{perri,ricca,terracinaj}@mt.unical.it,
ci anni .dani el a@ahoo.it, veltri_p@ibero.it

Abstract. In the last few years, significant improvements charaaterstate-of-
the-art Answer Set Programming (ASP) systems. It is now aetlepted that
their applicability is becoming more and more suited foll vearld applications
requiring complex reasoning tasks. Among the available &gfems, DLV re-
cently came up with a large variety of language extensionstfends and vari-
ants that significantly widened its range of applicabilitiiis paper presents an
integrated development environment, customized for DLW some of its ex-
tensions, which aims to simplify both the development-tesi-process and the
coupling of this ASP system with DBMSs.

1 Introduction

In the last few years, the development of ASP systems like [ll]\Smodels [2], GnT
[3], and Cmodels [4] has renewed the interest in the area fmonotonic reasoning
and declarative logic programming for solving real worldigems.

Moreover, the recent application of ASP systems in the asé&nowledge Man-
agement, Security, and Information Integration [5, 6], baisfirmed, on the one hand,
the viability of the exploitation of disjunctive logic pregmming in real application
settings. On the other hand, it has evidenced the lack of ttiké easy-to-use graphi-
cal environments, capable of supporting the programmarsinaging large and com-
plex projects (where the interaction with database managésystems storing large
amounts of data is also a crucial point).

On the contrary, imperative and object oriented prograngrtanguages are nowa-
days endowed with a rich set of tools allowing the user totereamplex project infras-
tructures and to work on data residing in external databasgesguite simple way. This
may discourage the usage of the declarative programmiregljgam, even if it could
provide the needed reasoning capabilities and, in priacgauld significantly simplify
the programming and maintenance tasks.

This paper provides a contribution in this setting. In féqiresents a graphical pro-
gramming environment, calledi$UALDLV, which integrates several tools for devel-
oping, testing and executing logic programs (having pdssitteractions with external
databases) in a quite simple way.

The development environment is tailored on DLV [1], an ASBtsgn which has
been recently enriched with several enhancements endbérigeatment of industrially-
relevant applications [5].

The main features of MUALDLYV are:



An integrated graphic tool for developing and testing DL\dgmams 87

— an easy-to-use integrated graphical environment whistedthe programmer dur-
ing all the phases of the implementation of projects basedlov;

— the ability to perform both a static check (i.e., of the syjiand a dynamic check
(i.e., debugging) of the developed programs;

— the ability to help the programmer to avoid syntactic ercansngthe editing phase,
with, e.g., automatic completion features;

— a specific interface which allows the programmer to graplyicanfigure the in-
teraction of DLV with external DBMSs (the system automdljcgenerates the
configuration options enabling this kind of interaction).

It is worth pointing out that, the presented system is a fiegh $owards the imple-
mentation of an integrated development environment amsgntly, it provides just the
core functionalities outlined above. However, it has beesighed in a modular way,
so that further improvements can be easily integrated arstirgy functionalities can
be extended. In the following, we first provide some backgobon the DLV execution
modalities and debugging approach; then we present théogegksystem.

2 DLV execution modalities

In this section we describe DLV, a state-of-the-art ASPeaysf1]. In particular, we
focus on three different modalities to invoke DLV: Standfision [7],DLVC and
DLVPE [8]. The first one is the more common way to call DLV. Basicatlye in-
put program is supplied by means of text files and the outpptdsided on standard
output. The second one adds to the standard version thebpigsd configure basic
interactions with one or more databases through ODBC. tnd#ise, a part of the input
can be imported from a DBMS, and part of the output can be ¢éggdanto a DBMS.
In the last one DLV tightly works with external DBMSs evalungf the programs di-
rectly in mass-memory, where the data resides (with somiliions on the supported
language).

2.1 Standard version

The DLV system is an efficient engine for computing the anseés (one, some, or all)
of its input. The core language of DLV [1] is disjunctive dagunder the answer sets
semantics (also known as stable model semantics [9]), widstbeen enriched with a
number of extensions such as: true negation [10], (strodgwaeak) constraints [11],

aggregate functions [12], and external function calls [13]

A detailed description of the DLV language is out of the scopthis paper. The
interested reader is referred to [1,12, 13]. In order tocdkés syntax, we next present
a very symple example which will be also used throughout teep to clarify the
presented concepts.

Example 1.Assume that a travel agency needs to derive all the destisateachable

by an airline company, either by using its aircrafts or bylekimg code-share agree-
ments. Moreover, the direct flights of each company are dtordacts of the form
flight(1D, FronX, ToY, Conpany),whereasthe code-share agreements between



88 S. Perriet al.

companies are stored in facts of the foroodeshar e( Conpany1, Conpany2, |D);
if a code-share agreement holds betw€empany1 and theCompany? for the flight
1D, it means that the flight D is actually provided by an aircraft @fompany1, but
it can be considered also carried out®ympany2. The DLV program that can derive
all the connections is:
destinations(FromX, ToY, Company) :— flight(ID, FromX,ToY,Company).
destinations(FromX, ToY,Company) :— flight(ID, FromX,ToY, Company?2),
codeshare(Company2, Company, ID).
destinations(FromX, ToY,Company) :— destinations(FromX, T2, Company),
destinations(T2, ToY, Company).
O

In the standard execution modality, the input of DLV is stbie one or more text
files. Those files are first parsed to create the internal datatsres, which are then
stored in main memory where the entire computation is peréat.

The answer sets computation can be split in three stepselfirth step (performed
by the Grounder) the variables present in the input progr@aneéminated, generating
the so-calledground instantiatiorof the program, which is a (usually much smaller)
subset of all syntactically constructible instances of iles of the program having
precisely the same stable models. Then, the nondeterinipat of the computation
is performed on this simplified ground program by the Modeh&ator (MG) module.
The MG searches for candidate answer sets by employing as{Patham procedure
similar to the ones employed in SAT-solvers. Basically, M@ ds the answer set by
tentatively assuming the truth of the literals, and “progtégg” the deterministic con-
sequences of those assumptions by applying suitable mfemiles. If an assumption
(also called choice point) leads to an inconsistency théesygjoes back to modify
exactly those choice points that caused the inconsist@i®y.process continues un-
til a candidate answer set is found or all the possible clsdieere been tried. Finally,
each candidate answer set (which has been found by the M@aligzeed by the Model
Checker (MC), which verifies its stability (w.r.t. the Getid-Lifschitz transformation
[9]). If the stability check succeeds then the system osttheg answer set; otherwise
the MG continues its search by modifying the assumptionslwbaused the stability
check failure.

2.2 pLvio

In this execution modality, the system allows input factbedqpossibly complex) views
on database tables, which are stored in different DBMSsgmaar, it allows (parts of)
the results of the execution to be exported in databasdame$atThe logic program
is evaluated completely in main-memory with the same evalnastrategy employed
in the standard version; this allovid V€ to support completely the DLV language
and all its extensions (like strong and weak constraintgregate functions, external
function calls, etc.), with only minor restrictions (seddve).

Intuitively, DLV T© can be exploited when the user has to perform complex remgoni
tasks but the data is available in database relations, arutpt must be permanently
stored in a database for further elaborations.

In order to perform these tasks, two built-in commands amduced in the DLV
syntax, namely the #import and the #export commands:



An integrated graphic tool for developing and testing DL\dgmams 89

#import(databasename,“username”,“password”,“quergtiname, typeConv).
#export(databasename,“username”,“password”,predsiaphename).

An #import command retrieves data from a table “row by rowbtigh thequery
specified by the user in SQL and creates one atom for eachextlieple. The name
of each imported atom is set pyednameand is considered as a fact of the program.
typeConwspecifies the data conversion rules to be applied for cangattatabase types
into DLV data types.

The #export command generates a new tuple fatdenamefor each new truth
value derived foprednameoby the program evaluation. Both commands require that an
ODBC connection wittdatabasenamleas been previously set up.

Note that if a program contains at least one #export comntaedsystem will be
able to compute only the first answer set.

A description ofbLvV/© and its functionalities can be found in [8]; moreover, the
system, along with a manual and some examples, are avaftabtiownload at the
addressitt p: // www. mat . uni cal .it/terracinal/dl vdb.

Example 2.Consider the scenario introduced in Example 1, and assuatetté in-
formation about direct flights (factd i ght ) are stored in a relatioin i ght _rel (1D,
FronX, ToY, Conpany) ofthe databas#bAi r ports;whereasthe code-share agree-
ments between companies (factaleshar e) are stored in a relatiocodeshar e_r el
(Conpanyl, Conpany2, |D) of another databas#bConmer ci al . Finally, assume
that, for security reasons, travel agencies are not alldavditectly access the databases
dbAi r por t s anddbCommer ci al , and, consequently, it is necessary to store the output
resultin arelatioronposedConpanyRout es belonging to another databatieTr avel -
Agency (accessible by the travel agencies).

To this end we must add the following directives to the DLVgmam of Example 1:

#import(dbAirports,“airportUser”,“airportPasswd” , ERECT * FROM flight.rel”, flight,

type : UIINT, Q_.CONST, QCONST, QCONST).
#import(dbCommercial,“commUser”,“commPasswd” , “SELECFROM codeshareel”,

codeshare, type : @ONST, QCONST, UINT).
#export(dbTravelAgency,“agencyName”,“agencyPasswdstinations, composedCompanyRoutes).

The first two commands maps the predicftéyht to the relatiorf I i ght rel of
dbAi r por t s, and the predicatendeshare to the relatiorcodeshar e_r el of dbCom
mer ci al ; the last one maps the predicatestinations to the relationconposed-
ConpanyRout es of dbTr avel Agency. ]

2.3 DLvDPE

The user needing this execution modality has its data stor¢oossibly distributed)
database tables and wants to carry out some reasoning on liberaver the amount
of such data, or the amount of facts the reasoning generatéd®m, is such that the
evaluation can not be carried out in main-memory. Then, tigway out is to evaluate
the program directly in mass-memory.

Three main peculiarities characterize the system in thésatkon modality (i) its
ability to evaluate logic programs directly and completely databases with a very



90 S. Perriet al.

Auxiliary-Directives ::= Init-section [Table-definition]+ [Query-Section]?
[ Fi nal -section] *
Init-Section ::=USEDB Dat abaseNane: User Narme: Password [ System Li ke] ?.
Tabl e-definition ::=
[USE Tabl eName [( AttrNane [, AttrName]* )]? [AS ( SQ-Statenment )]?
[ FROM Dat abaseNane: User Name: Passwor d] ?
[ MAPTO PredNane [( Sqgl Type [, Sql Typel* )1? ]12.

|
CREATE Tabl eNanme [( AttrNane [, AttrName]+* )]?
[ MAPTO PredNane [( Sql Type [, Sql Type]* )]? 17
[ KEEP_AFTER_EXECUTI ON] ?. ]

Query-Section ::= QUERY Tabl eNane.

Fi nal -section ::=
[ DBOUTPUT Dat abaseNamne: User Name: Passwor d.

|
OUTPUT [ APPEND | OVERWRI TE] ? PredName [AS Al i asName] ?

[ I N Dat abaseNane: User Nanme: Passwor d. ]
System Like ::= LIKE [ POSTGRES | ORACLE | DB2 | SQLSERVER | MYSQL]

Fig. 1. Grammar of the auxiliary directives.

limited usage of main-memory resourcés, its capability to map program predicates
to (possibly complex and distributed) database views,(@ipdhe possibility to easily
specify which data is to be considered as input or as outpuht program. As for
DLV!©, also inbLv PB access to DBMSs is carried out through ODBC.

Currently, DLVPE does not fully support the DLV language. In particular, only
disjunction free stratified programs (possibly with biiis and aggregate functions)
are supported. However, it allows handling significantlgager amounts of data w.r.t.
DLV and DLV € with also important improvements in query answering times.

In order to properly carry out the evaluation, this exeautimdality requires some
explicit specifications for the mappings between input antpet data and program
predicates, as well as proper indications for the tempaoedagions possibly needed for
the mass-memory evaluation. The grammar in which thesetdies must be expressed
is shown in Figure 1.

Intuitively, the user must specify a working database inclitthe system has to
perform the evaluation (thieni t - Sect i on in the grammar). Moreover, he can spec-
ify a set of table definitions, each of which must be mapped ante of the program
predicates. Facts can reside on separate databases oathbg obtained as views on
different tables. Attribute type declaration is neededdfithe program must carry out
arithmetic operations on therdSE and CREATE directives can be exploited to specify
input and output data. Finally, the user can choose to capgittire output of the eval-
uation or parts thereof in a database different from the wgrkne by someUTPUT
directives.

Example 3.Consider again the scenario introduced in Examples 1 andd?s@ppose
that, due to a huge size of input data, it is not possible tiop@rthe evaluation in main-
memory. In order to evaluate the program in mass-memory (@BMS), the auxiliary
directives shown in Figure 2 should be used. Here, the fitstib thel ni t - Sect i on
and states that the evaluation must be carried out in a dsgatznedlivdb. The two
USE directives are equivalent to (but more precise than) thepgitncommands of Ex-
ample 2. Finally, the@UTPUT directive is equivalent to the #export command of Exam-
ple 2. |



An integrated graphic tool for developing and testing DL\dgmams 91

USEDB dl vdb: nynane: mypasswd.
USE flight_rel (1D, FromX, ToY, Conpany) FROM dbAirports:airportUser:airportPasswd
MAPTO flight (integer, varchar(255), varchar(255), varchar(255)).
USE codeshare_rel (Conpanyl, Conpany2, |D) FROM dbConmmerci al : commser: comPasswd
MAPTO codeshar e (varchar(255), varchar(255), integer).
CREATE destinations_rel (From To, Conpany)
MAPTO desti nations (varchar(255), varchar(255), varchar(255)) KEEP_AFTER_EXECUTI ON.
QUTPUT destinations AS conposedConpanyRoutes | N

dbTravel Agency: agencyNane: agencyPasswd.

Fig. 2. Auxiliary directives for Example 1.

3 Debugging DLV Programs

Debugging is the process of locating and fixing known erransi¢h are commonly
called “bugs”) on both computer programs and hardware dsvidnfortunately, de-
bugging is difficult to be carried out due to the extremelybhigimber of causes for
a bug. As a consequence, techniques and tools (debugghrisigthe programmer to
deal with this problem must be associated with each progiamlanguage.

However, while debugging an imperative program can be edmwut by monitor-
ing its execution (usually with a step-by-step strategghudiging a program with a
declarative semantics must follow a completely differggr@ach. As an example, the
notion of “unexpected” behaviour is substantially difiereomparing DLV and C++
programs. The absence of an intuitive operational sensamntakes it harder to under-
standwhythe results of a declarative program are not the expectesl one

Intuitively, a bug in a DLV progran® is a difference between what is actually mod-
elled by P and what the programmer was planning to model vidttExamples of bugs
of a DLV program are an unexpected number of answer sets présence/absence of
a literal in a specific answer set.

The reasoning above clearly points out that, in a declaatiegramming setting,
even what must be meant for debugging is not obvious (as alstea out by [14, 15]).
In what follows, we consider that a debugger for DLV mustwalibhe programmer to
understand the “reasons” which “caused” the derivationhef tarious literals in an
answer set or, in absence of it, to have a justification fofaHere.

The DLV debugger we developed in this work uses informatioltected during
the program evaluation, especially in the Model Genergtluase (see Section 2.1).

In more detail, the MG module of DLV, introduced in Sectiod,2exploits a so-
called backjumping (or non-chronological backtrackiregtinique (described in [16]),
based on the ability to detect and to undo, during the backitng phase, the choices di-
rectly causing an inconsistency. This technique constraictata structure, calldRea-
son Table which stores for each literal the choices implying its pres/absence in
the current (partial) answer set. The Reason Table is taild Updated) during the
search, according to the reason calculus technique pegsan{16]. The information
stored in the Reason Table is directly used in the debuggodgiity to justify the pres-
ence/absence of a literal in an answer set (or the unsatiijial the program). Due
to space limitations we cannot describe here the whole psamiereasons computation;
rather, we try to give an intuition with an example.

Example 4.Let P be the following program

a Vv b. c - a. d:- b



92 S. Perriet al.

At a certain point of the MG computation, is chosen as true and its truth value is
propagated trough the program rules, deriving truth valaesther atoms. Obviously,
in this case¢ andnot b are derived as true. Thus, intuitively, we set in the Reasdel
a as reason foe. But, what about the reason @? We say that is a choice and that its
reason is itself. a
When DLV starts in debug mode, the main computation stope@s as an answer
set has been found, or when it is detected that no answer sdiecéound, and the
system waits for some user command. The available commagdgtey, why unstable
nextmode] print_mode] print_instantiation andquit. The first one can be used to know
the choices implying a literal (it can be read as “why is L in current model?”); the
second command can be used to investigate why a programetsfiable. In this case,
the system reports the reason causing the last inconsgjsteacd during the search.
The remaining commands can be used to ask the system fontpfikianother answer
set, printing the current answer set, printing the grousthintiation, and stopping the
system. CurrenthpLV PZ does not support debugging, because it exploits a completel
different (mass-memory based) evaluation strategy. TReex@mple shows the usage
of commandsvhy, andwhy_unstable

Example 5.Consider again the prografof Example 4. In order to know why literal
appears in one of the answer setg®ofve can use the commamdhy (c) This command
will return a indicating thatc is in the current model because of the choice.of

Now, let add toP the following two strong constraints

:- c, not d. ;- d, not c.

Clearly, the program has no answer set. In fact, if we che@setrue the first constraint
is violated (i.ea caused the inconsistency, and this can be easily obtainkedkiyng in
the reason table); similarly, if we choosthe second constraint is violated (ibecaused
the inconsistency). Assuming that the last choice actuadige during the computation
is b then the commandhy unstablereturnsb. O

4 System Description

4.1 Functionalities

The functionalities implemented inISUALDLV borrow several ideas from the wide
variety of well known integrated tools available for dey@lgy programs with impera-
tive languages (such as C++ and Java). The interesting &tioovis the adaptation of
such ideas to the declarative world, providing a wide seeafures to assist the user in
developing, configuring and testing DLyrojects

The main functionalities provided graphically bySUALDLYV are:

— Project definition It allows to gather in a single logical unit several DLV pram
files, auxiliary directives and configuration options.

— Automatic completionThe editing of DLV programs and auxiliary directives is
simplified by this functionality which suggests the user lovcomplete the por-
tions of programs he is writing.



An integrated graphic tool for developing and testing DL\dgmams 93

oveuniony =lalx]

Fle Edt Project Predicate Database Window

CRFCE

demoRiports.dl | domoAirports.yp.

Console | Warnings |

Fig. 3. The general structure of the system interface.

— Dynamic syntax checking his functionality checks the syntactical correctness of
the program during its development, warning the user in oaserors.

— Configuration of the interactions with the databasksllows the user to easily,
and graphically, specify which input data resides in exdedatabases, and which
parts of the program output must be permanently stored irtadbeae.

— Configuration of the executioft allows to select the execution options for DLV.

— Presentation of resultsThe output of the program (either its answer sets, or the
database table contents) can be visualized within the sawii@ement.

— Debugging This functionality allows the user to interact with DLV inder to
understand why a program does not produce the expectedtoutpu

In the following, we describe in more detail system’s fuandlities, using some
screen-shots of the system to show how it works.

Interface overview

The general structure of the system interface is illustréte=igure 3. The central
area is the main editing area, where DLV programs and auxitlirectives can be
typed. The left part of the interface is dedicated to the lalzda management; in par-
ticular, as it will be more clear in the following, the list dfe databases included in
the project, as well as some database management featarlesated in this portion
of the interface. The right part is dedicated to providing summary of the concepts
(atoms and predicates) defined in the currently open DLV arog and can be used
as a support for editing. The bottom part contains two paaldsving the system to
provide messages to the user, namehganingpanel, collecting all warning messages,
and aconsolepanel showing the output of the programs. Finally, in theargyart of
the interface, classical menus and toolbars allow the wsaccess all the features of
the system.

Project definition
Declarative programming allows specifying in a natural waynplex problems; it
is true. However, when the application scenario is compbgegveral sub-problems or



94 S. Perriet al.

Createnew Projeck .. x|

Insert the name of a new project
Name |demoAirports
Insert the path of the new project

Path |C \Documents and Settingsite| |4 Browse

Choose type of Project

() Standard DLY ) DLV with Import / Export

@) DLV with instantiation on database

D oK

Fig. 4. The creation of a new project.

it requires the application of different reasoning modtiesuser can be easily involved
with several program components, which should be develapddested separately, but
which logically belong to the same project.

Moreover, the various kinds of DLV execution modality déised in Section 2 may
require different kinds of interaction of the user with th&iGe.g., the standard DLV
version does not require information about external da@bavhich, on the contrary,
is necessary fapLv 7 andbLv©) and different kinds of invocation parameter.

In order to face these issues, our system introduces themotproject i.e. a col-
lection of DLV programs, auxiliary directives, databasemections and configuration
options defining, as a whole, a complete project.

Figure 4 shows the interface allowing the definition of a newjgrt. A project is
characterized by aame all its data is put in a folder having this name. Finally, the
user has to specify the project type, which determines th¥ Bxtecution modality to
exploit, and the kinds of interaction expected between ffee and the system. In Figure
4 the user is choosing to creat®av P project with namelenoAi r ports.

Automatic completion

Following the success of other systems for imperative @nogning (like Visual
C++, Eclipse, etc.) our system provides a functionalityt Swegggests the user how to
complete the portions of programs he is writing, just duthmytyping.

Itis worth pointing out that imperative languages have ledplicit data typing and
fixed language constructs; this allows a quite straightémdnrdefinition of lists of legal
keywords or of user-defined variables to be used in the autoe@mpletion facilities.

On the contrary, declarative languages in general, and DiLairticular, do not
comprise such features and, consequently, it is less aewvdeait the automatic com-
pletion functionality must suggest to the user. In our gystine automatic completion
works on what has been “declared” by the programmer up tdithat in other words, it
works on the list of atoms previously specified in the progrBigure 5a illustrates this
functionality; each time a rule is typed, it is parsed andatwems it contains are added
to the list of atoms defined by the user. Then, when the useriim@a new rule, the
system shows a pop-up window where an atom is highlightdd riefix corresponds
to what the user is typing. Note that this functionality sfgantly simplifies the devel-
opment of complex programs constituted by several rulesagmais. As an example,
consider the program of Example 1 and assume that the ustio@withe support of



An integrated graphic tool for developing and testing DL\dgmams 95

o e A
Database Window i

E ’jﬁ IE @ :| demofirports.dl | demoAirports.typ |_
e | EE Nusepe —

I’ demodirports.dl | demoAirports.typ 7 @ dbAirports

destinations(From, ToY, Comp) - flight(ld, From, ToY, Comp)
destinagight(d,FromX,ToY,Comp) 2
destinations(FromX,ToY,Comp) ? @9 dbCommercial

‘ flight_rel

codeshare_rel

(a) Program completion (b) Auxiliary directives completio
Fig. 5. The automatic completion feature.

the automatic completion) typegst i nat i on instead ofdest i nat i ons; there is no
way for an automatic checker to understand whether the osmtion was to define a
new conceptlest i nati on or if he just mistyped the predicate namest i nat i ons.
Helping to prevent these kinds of erratsringthe programming phase, may allow the
user to save a lot of time in the testing phase!

The same functionality is provided by the system also fordifnition of the aux-
iliary directives, necessary f@iLv PZ projects. In this case, the automatic completion
is more context sensitive, because the auxiliary diresi@re characterized by a precise
grammar (see Figures 1 and 5b).

Dynamic syntax checking

When the user types a rule, it is parsed by the parsing moddeéts syntactical
correctness is verified. If an error is identified, a messaghsplayed in the warning
panel. Note that these warning messages do not block thénteeaction; this is im-
portant in order to let the system accommodate also to fugkiensions of the DLV
language currently not expected by the parser.

Presently, only the correctness of the syntax is checkedewer, we plan to extend
this feature to carry out more refined checking tasks. As amge, one of the most
frequent errors in developing datalog rules is the mistypiha variable name involved
in a join; in this case, the rule is syntactically correct ibaontains a semantic error. If
the system would warn the user about the presence of vasisd®me atom not joined
with any other atom of the rule, the user could easily checkthér this situation is
wanted or it is the result of a mistyped variable name.

Interaction with external databases

As pointed out in the previous sectioblV/® andDLVPE extend the capabili-
ties of DLV allowing various kinds of interactions with extel databases via ODBC.
Our system provides various functionalities aiming to difgphe correct configuration
of DLV andDLVPE. In more detail, it provides both functionalities for acsies),
querying and manipulating data residing in external datedaand functionalities for
graphically compiling the auxiliary directives.

Figure 6 illustrates some of the capabilities for accesamgjquerying data residing
in external databases. Each database is accessed via OBEasequently, in order
to access it, the database name, the user and password fasttba supplied. For
each opened database, the list of tables and their struatarshown. Moreover, the



96 S. Perriet al.

L ivsualoty =lEix
File Edit Project Predicate Database Window
GCRAFEE]
4 1 | i o
UE‘JQ E \’_f‘:j‘ M | demodirports.tyn ‘ﬂluhlJEI X ‘ DEEI \"‘% Ei
R S

Tov o
1 hilan [Woskour (Russia Ao | Gonstraint] Rule
ome [hilan italia

ilan [Rome ialia Prodieates: (TN
ome ntacid italia

aris vflan France
ome [Fais iFrance TTAFK]
= miCToY
& Company [oestinations(72,Tov Col

IE
v (@ abcommercial i

Comp,i|~

flight(d. From.ToY,C3)
ight(d From)(ToV,Corr

deshare_rel

ormpany!
ompany2
L Flightie

[T

<[ [+

‘Consale | Wamings |

Fig. 6. Interaction with external databases.

user can visualize the content of the various tables (in ther€g, the content of table
f1ight_rel is shown). Finally, other editing operations can be cardat] such as
the execution of SQL statements (including CREATE or ALTE&ements) and table
deletion. In other words, the system provides a restriddatlgommon) set of database
management features.

Concerning the support in compiling auxiliary directivesen ifDLV P2 provides
several simplifications in their specification (see the naduon the system’s web site),
writing them by hand could by quite hard for a non speciaksr this reason, our
system provides both the automatic completion facility andautomatic generation
feature for such directives. Figures 5b and 7 graphicalysboth of them.

In particular, Figure 5b illustrates an example of automedimpletion for theJSEDB
directive; here, the grammar specifies that afterUBEDB keyword the database con-
nection parameters must be specified. Then, the system staggech information,
based on the databases currently open in the project.

Figure 7 illustrates the form to automatically createSE directive. It can be acti-
vated with a right-click on the table that must be “used” gauinin the program; the
system automatically retrieves from the database all thoerimation necessary to gener-
ate the directive. Moreover, it provides the user with a j@&\of it, in order to let him
check the correctnesSREATE directives can be generated analogously; in this case, the
user must select one of the predicates listed in the rightgbdéine main interface.

Configuration of project execution

The execution of a DLV program can be often a tricky task fooa specialist; in
fact, the wide range of extensions developed for DLV in ttet tan years produced a
wide set of options that can be specified within the commamel IDur system deals
with this situation providing the comprehensive set of DLjptions in a user-friendly



An integrated graphic tool for developing and testing DL\dgmams 97

:‘( demodirports.di | demofirports.typ |

| ueEDE dlbzoostores postgres LIKE POSTORES

_Create U x|
¢ [ dbairpers x
prediame
¢ [@ wwcommercia ld-->» varchar
o codeshare_re FromX-->> varchar

ToY--»>» varchar

Company.->> warchar

AS SQL-Satement:

USE flight_rel ('l From:", Tov","Company”)
FROM dbairports  postares : postgres
MAPTO flight_rel (varcharyarcharvarchar varchar).

Fig. 7. Automatic generation of auxiliary directives.

zl
[ Settings | General Option | Front-End Option

[ Limit integers [_]ORdr [ Mo hody reordering.

] Nurmber of Model [JORdr- || [] Advanced body reordering
[ Predicates Fitter Cos [] Simple body reordering
[ Fitter [oen [] Atso read input from stdin
[] Costbound [] oGp-

[]o6s

Deterministic || [ Input Rewriting.
= S . (] Employ Heuristics in the Model Generator

Silent Disable input rewriting

= = " " ["] Disable Heuristics in the Model Generator
[instantiation | []Disable Optimizations ) .

[] Enable partial model checking “forwards™
[ wait [] Disable Model Checker -

[_] Disable partial model checking “forwards™
[ statistic

v 0k

Fig. 8. Options for the execution of DLV programs.

fashion, as shown in Figure 8. The user can choose graphthalheeded options and
the system automatically generates the correspondingopast command line. The

system is also open to further extensions of DLV allowinguker to input personalized
execution options. This configuration phase can be carriédrce and for all the runs
of the current project.

After this, when the user wants to run his project, the systesposes him the list of
program files currently active, and the user can choose thosgthat must be included
in the current run. Moreover, an expert user can personizeommand line proposed
by the system, if he think it is necessary.

Presentation of results

During the execution of DLV (respdLV!©, DLV PB) the output is redirected to the
consolepanel, located in the lower part of the interface (see Fig)ra such a way
that the user can check the program output from the sameosmént. Moreover, the
output redirected to database table®iv® or DLVPE can be analyzed as illustrated
in Figure 6.



98 S. Perriet al.

sToP DLV build BENAJan 2 2007 gee 3.4.2 (mingw-special) -

RESTART

WHY 2), b(3), b(4), b(&), b(B), b(7), b(8), b(8), b(10), (), (1), ¢(2)
NEXT MODEL
PRINT MODEL
= x|

PRINT INSTANTIATION ‘ .
Enter a ground literal:

a1)

Ifthe program has no medel the content of
the field above is ignored

OK CANCEL

<finstantiation>

< »

Fig. 9. The Debugger graphical interface.

Debugging of a Program

The debugging of a program is, in general, a crucial taskéndigvelopment of an
application. In MsuAaLDLYV it can be carried out through a graphic interface (seefég
9); this is promptly displayed when the user asks to run DL\détugging mode. In
this case, VSUALDLYV transparently adds to the invocation parameters thetfud)”
option. Figure 9 shows the first model found by DLV for the peaog:

a(xX) v b(X) :- #int(X). c(X):-a(X), X<3. #nmaxint(10).
and the answer of the debugger to the user request “pritritigtion”.

All the debugging commands available for the user can beaet with the menus
on the left side of the interface, as shown in Figure 9; thes@aatomatically translated
and forwarded to DLV in the proper format (as XML tags).

Note that, the debugger interface is a non-modal windowhabthe programmer
can contemporarily look at the input program during a deingygession (without the
need to stop the debugger). However, the debugger mustlbamehed after any mod-
ification to the input program is applied.

4.2 Architecture

The architecture of the system is shown in Figure 10. The BcapUser Interface
(GUI) allows the user to access all the system’s functidieali These are implemented
by five main modules.

The Parser, is responsible of translating DLV programs and auxiliamectives,
taken both from the user interface and by pre-existing fitesuitable internal data
structures. These are currently used for the automatic egimp and the dynamic syn-
tax checking features, but can be the basis also for morestefimctionalities (e.g., a
graphical representation of the dependencies betweemngmogredicates, etc.).

The Editor module implements classical file editing operations andiiges the
automatic completion feature.

The DB Connection Handlemanages all the interactions of the system with the
external databases, such as ODBC connections, table temiewing, database query-



An integrated graphic tool for developing and testing DL\dgmams 99

Editor DB Connection| Configuration DLV
‘ Parser _" < Handler Handler > Executor
r ' -I DLV '.
Versions
DLV Auxiliary External
Files Directives DBMSs

Fig. 10. The general architecture of the system.

ing and manipulation, etc. Moreover, it interacts with thdl®r the generation of the
auxiliary directives.

TheConfiguration Handlers responsible of storing and managing all configuration
information of the current project. In particular, it takeso account both the project
typology and the options specified by the user through trerfate, to compose the
correct command line needed to invoke DLV (respy ', bLv P5B),

The DLV Executorinvokes the proper versions of DLV (including the debugging
version) and redirects the corresponding output (posséfgrmatted) to the GUI.

Note that, the proposed tool might be extended in order tpatther flavors of
ASP, e.g, the Smodels language. This can be done by addihgspetialized parser
and executor modulés

5 Conclusions

In this paper we have presented a graphic integrated emagot) called YSUALDLYV,
for the development of DLV applications. Our system repnésa first step toward the
implementation of an integrated and complete suite of tfmyla DLV developer. It in-
tegrates many interesting features which help the progrmsiduring the development
phases: editing, configuration, interaction with exteDRMS, debugging, and deploy-
ment. We are currently working on several improvements@gtkisting functionalities
(e.g. enabling drag-and-drop facilities for the generatid DLVPE directives, etc.),
and we are planning the introduction of additional captiedj such as a graphical rep-
resentation of program dependencies and a tree view of aissige

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, Berri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACMIT@R) (2006) 499-562

2. Niemela, I., Simons, P., Syrjanen, T.: Smodels: A Sysfier Answer Set Programming. In:
NMR’2000 (2000)

1 n the interface, we can deal with that by adding a new kindrofget, let say Smodels project.



100

10.

11.

12.

13.

14.

15.

16.

S. Perriet al.

. Janhunen, T., Niemela, I.: Gnt - a solver for disjunctagic programs. In: Proceedings of

the Seventh International Conference on Logic ProgrammimtgNonmonotonic Reasoning
(LPNMR-7). LNCS 2923

. Lierler, Y.: Cmodels for Tight Disjunctive Logic Programin: W(C)LP 19th Workshop on

(Constraint) Logic Programming, Ulm, Germany. Ulmer Imfatik-Berichte, Universitat
Ulm, Germany (2005) 163—-166

. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, WhkFM., Greco, G., lanni, G., Kalka,

E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, MStaniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incompleteldnconsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Confeeeno Management of Data
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (200859917

. Massacci, F.: Computer Aided Security Requirements ri&eging with ASP Non-

monotonic Reasoning, ASP and Constraints, Seminar N 03@gstuhl Seminar on Non-
monotonic Reasoning, Answer Set Programming and Contrgif05)

. Faber, W., Pfeifer, GDLV homepage (since 1996} t p: / / www. dl vsyst em coni .
. Terracina, G., Leone, N., Lio, V., Panetta, C.: Addingogfit data management to logic

programming systems. In: Proc. of 16th International Sysiya on Methodologies for
Intelligent Systems (ISMIS 2006), Bari, Italy, Lecture Wsin Artificial Intelligence (4203),
(2006) 524-533

. Gelfond, M., Lifschitz, V.: The Stable Model Semantics ffmgic Programming. In: Logic

Programming: Proceedings Fifth Intl Conference and SympasCambridge, Mass., MIT
Press (1988) 1070-1080

Buccafurri, F., Leone, N., Rullo, P.: Stable Models ameirt Computation for Logic Pro-
gramming with Inheritance and True Negation. 2#1) (1996) 5-43

Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjine Datalog by Constraints. IEEE
TKDE 12(5) (2000)

Calimeri, F., Faber, W., Leone, N., Perri, S.: Declastind Computational Properties of
Logic Programs with Aggregates. In: Nineteenth Internaldoint Conference on Atrtificial
Intelligence (IJCAI-05). (2005) 406-411

Calimeri, F., lanni, G.: External sources of computafior Answer Set Solvers. In: LP-
NMR’05. LNCS 3662

Brain, M., Vos, M.D.: Debugging Logic Programs under #meswer Set Semantics. In:
Proceedings ASPO5 - Answer Set Programming: Advances inrytend Implementation,
Bath, UK (2005)

El-Khatib, O., Pontelli, E., Son, T.C.: Justificatiordastebugging of answer set programs
in ASP. In: Proceedings of the Sixth International WorkstlwwpAutomated Debugging,
California, USA, ACM (2005)

Ricca, F., Faber, W., Leone, N.: A Backjumping TechnifsueDisjunctive Logic Program-
ming. Al Communicationd9(2) (2006) 155-172



APE: An AnsProlog* Environment

Adrian Sureshkumar, Marina De Vos, Martin Brain, and John Fitch

Department of Computer Science
University of Bath
Bath, BA2 7AY, UK
{mdv, mjb, jpff}@cs.bath.ac.uk

Abstract. It has been recognised that better programming tools are required to
support the logic programming paradigm of Answer Set Programming (ASP), es-
pecially when larger scale applications need to be developed. In order to meet this
demand, the aspects of programming in ASP that require better support need to
be investigated, and suitable tools to support them identified and implemented. In
this paper we detail an exploratory development approach to implementing an In-
tegrated Development Environment (IDE) for ASP, the AnsProlog* Programming
Environment (APE). APE is implemented as a plug-in for the Eclipse platform.
Given that an IDE is itself composed of a set of programming tools, this approach
is used to identify a set of tool requirements for ASP, together with suggestions
for improvements to existing tools and programming practices.

1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm with a seman-
tics known as the answer set semantics [4]. It is declarative in that the programmer
specifies what needs to be achieved, rather than how it should it be achieved. It there-
fore lends itself naturally to applications in the domain of artificial intelligence, such as
plan generation and reasoning in agents.

ASP programs, which are written in the language of AnsProlog*, are composed of
a set of facts together with a set of rules from which other facts can be derived. A set
of consistent facts that can be derived from a program using the rules is known as an
answer set of the program. The possible answer sets for an AnsProlog* input program
are computed with a program called a solver. Current solvers include SMODELS[23, 27],
DLV[9, 10], CLASP [13] and CMODELS [19].

A report by the Working group on Answer Set Programming (WASP) [26] acknow]-
edges that better tools are required to support programming in this paradigm [22]. How-
ever in order to identify the aspects that require better support, and consequently de-
velop the appropriate tools to support them, a better understanding of the programming
process is needed.

The widespread use of programming tools in other paradigms is an indication of
their value to the programmer. It is therefore important to investigate whether these tools
could be applied to the domain of ASP and whether they would have the same impact
as in other domains, in addition to identifying new tools to solve problems specific to
ASP and improving programming practices.



102 A. Sureshkumar et al.

[17] and [11] describe the situation in the 1980’s, in which little progress had been
made with respect to programming environments for logic programming. Indeed they
observe that the environments of the time were restricted to imperative and functional
languages. This is clearly no longer the case, given that a quick Internet search for
Prolog IDE generates many pages of results for development tools. The same is true for
other declarative approaches like SAT and CLP.

However, performing a similar search for ASP does not return any relevant results.
In fact, at the time of writing the top search result on Google for the query “Answer
Set Programming” Integrated Development Environment was the undergraduate project
proposal that resulted in this paper, demonstrating that this is indeed one of the areas
of tools for ASP that is underdeveloped. Thus it can be said that we find ourselves in a
similar situation today with ASP, as [17, 11] did in the 1980’s with logic programming
in general.

The fact that several environments exist for the Prolog language indicate that the
development of IDEs for logic programming languages can be achieved and warrants
an investigation into whether this would also be possible for ASP.

2 Requirement Elicitation

In order to develop a set of requirements for the system, the people who have a vested
interest in the successful development of the system needed to be identified - these
are known as the stake-holders [25]. The primary stake-holders for the IDE, are ASP
programmers and other members of the ASP community, as they stand to benefit from
the improved tool support that the IDE could provide.

In order to gather the fundamental requirements for the IDE and a list of potential
features, a questionnaire was developed and distributed by e-mail to members of the
ASP community.

The questionnaire was designed to be short and consisted mainly of closed questions
in order to minimise the time required by the participant to complete it, although a
few open questions were included to allow further elaboration if required. From the
48 questionnaires, only 17 were returned although some of them were group responses
instead of individual responses.

The experience of the participants in ASP development ranged from 1 to 10 years
experience, with 4 years experience on average. Only 4 participants of the 16 that re-
sponded to the question had less than 3 years experience. This suggests that the par-
ticipants have sufficient knowledge about the process of developing in ASP to provide
valuable feedback on how this could be better supported. However it is also possible that
through their years of using the current ASP development tools, the participants may be
less aware of areas that need better support, as they have learned to work around them.

Supported Solvers: The first question on the questionnaire aimed to determine which
tools were used by the participants.

The results of the questionnaire showed DLV and LPARSE/SMODELS to be the ASP
tools most widely used by the participants, although this was not surprising given
that they are arguably the most well known solver implementations. Although it had



APE: An AnsProlog* Environment 103

a slightly lower response than the DLV solver, it was chosen to develop the IDE around
the SMODELS solver and LPARSE front-end. Given that it is an open source product
under the GNU General Public Licence (GPL) [12], whereas only binary builds are
available for DLV, the possibility of code reuse was available. Beside the tools that had
been suggested to the respondents, the questionnaire also identified five other tools that
had not previously been considered:
CMODELS - “an answer set solver that uses SAT solvers as search engines” [19, 18].
DLV-EX - An implementation for the DLV system of “Answer Set Programming with
External Predicates (ASP-EX), a framework aimed at enabling ASP to deal with
external sources of computation” [6,7].
CR-MODELS - The inference engine for CR-Prolog, “an extension of A-Prolog by con-
sistency restoring rules with preferences” 3, 16].
ASSAT - A system that computes “answer sets of a logic program by using SAT solvers”
[21,20].
ASET-SOLVER - A solver for ASET-Prolog, “an extension of A-Prolog that adds to the
language sets of terms and functions from these terms to natural numbers” [15, 14].
Given the range of tools used by members of the community, it would clearly not be
viable to attempt to provide support for every one of these, at least in the initial version.
Equally, it would clearly be impractical for users of these tools to develop a program
from within the IDE, but solve it, say, from the command line. Consequently, this could
limit the user base of the system. Given this, it was clear that the IDE would need to
provide some sort of extension mechanism (e.g. plug-ins) or the ability to run external
commands from within the IDE. This would allow others to integrate other tools into
the environment if required. Indeed it was commented that “it would be nice to have a
plugin system that will enable it to be extended to other AnsProlog inference systems”
and to have “the possibility to choose which solver one wants to use”.

Target Platform: The second question in the questionnaire aimed to identify the oper-
ating systems used by the community for ASP development.

The most widely used operating system for ASP development by participants of
the survey was clearly Linux. Thus this was chosen as the target platform for the sys-
tem. However as other platforms were in use, and indeed some participants used these
exclusively (e.g. Windows), a platform independent solution is clearly desirable.

The target platform for the IDE is also constrained by the supported platforms of
any tools to be integrated. However, given that LPARSE and SMODELS are available
in source form, and builds of DLV are available for Linux, Free-BSD, MacOS X and
Windows this should not have a great impact on the IDE. If other tools were to be
integrated that only supported specific platforms, the availability of a version for the
desired platform could be arranged with the tool developer.

Potential Features: In order to determine some potential features for the IDE, a local
brainstorming session was conducted.

Syntax highlighting could help the programmer to more easily distinguish between
different elements of the program code. For example, by highlighting all keywords in
a given colour it would immediately become apparent to the programmer if they at-



104 A. Sureshkumar et al.

tempted to use a keyword as a constant name. This error may otherwise not have been
discovered until the program was run through the solver or grounder.

Providing the automatic completion of predicates (or terms) that had already been
defined in the program would reduce the time taken to input the program. It would also
help to reduce errors in the code caused by mistyping a name, not only by reducing the
amount of typing that occurs, but equally through the lack of an expected completion
indicating to the programmer that a mistake had been made.

Although the name of a predicate should be descriptive, it may not always be pos-
sible to achieve this without making the name long and cumbersome to type. Therefore
it would be convenient to be able to associate a textual description with each predicate
giving a more accurate definition of its meaning. However as there is currently no syn-
tax to support this in DLV or LPARSE, this would have to be encoded within comments.
If this feature was shown to be a success the inclusion of a special syntax for this could
be requested from the solver developers.

Version control tools, such as the Concurrent Versions System (CVS), are often
used when developing software to maintain a history of revisions of source files and
facilitate several developers working together on a project. Integrating such tools into
the IDE would facilitate their use within ASP development and eliminate the need to
switch to an external program to interact with them.

The ability to divide a program into multiple files is important as it allows a core
set of rules to be used in more than one program. For example, a set of rules encoding a
problem could be defined in one file and sets of facts representing inputs to the problem
in several other files. Given that input from multiple files is supported by the same
grounder, this should also be supported by an IDE.

An ASP program can be represented in terms of a dependency graph [4], which
shows how the truth value of a predicate depends on the truth or falsity of other pred-
icates. Providing a graph representation of programs as part of the IDE would convey
this information easily, rather than having to manually extract it from the source code.

It can be difficult to find the source of errors in programs, and as discussed by [5]
this is compounded by the fact that it is difficult to determine whether an ASP program
is behaving correctly. Whereas a procedural program may crash or throw an exception
when an error is encountered, this is not the case for an ASP program. It would therefore
be useful to include some form of debugging tools in the IDE to support this process.

Constantly switching between different tools can limit the productivity of the pro-
grammer. This frequently occurs when programming, for example switching between
the editor to write a program, and to the command line in order to run it. Therefore,
integrating the running of the LPARSE and SMODELS tools and the editor into the same
environment would remove this need.

Validation: An important aspect of the requirements engineering process is to verify
that the requirements that have been gathered for a system “actually define the system
that the customer wants” [28]. In order to understand how the features proposed at Bath
would be viewed by the wider community, an informal review of the requirements was
performed by presenting the list of potential features on the questionnaire. Participants
were asked to rate their desire for a particular feature on a unipolar scale, with 0 being
least useful and 10 being the most useful.



APE: An AnsProlog* Environment 105

0 1 2 3 4 5 6 7 8 9 10
Replacement of a rule by its l:l:l
grounding
o s ‘ I
programs !
Automatic file conversion < @

between Iparse and div

Modularity of programs over X I:I:l
multiple files

Integrated version control tools }—{ | } {

Debugging tools X x

Ability to associate a textual

| [
description with each predicate ' [ ‘

Automatic completion of ‘
predicates

Syntax/predicate highlighting | } |

Integration of editor and div | } ‘ ‘

Integration of editor and

| [
Iparse/smodels x ! |

Fig. 1. Score of Suggested IDE Features

The results of this questionnaire have been presented as a box-and-whisker plot
(Figure 1), in order to show the spread in the responses for each feature. The plot shows
the upper and lower scores for each response (whiskers), together with the median score
and interquartile range (box). Any outliers have been indicated with a cross.

From the list of features proposed on the questionnaire, it was clear that debugging
tools were the most desired by the respondents, given that the majority gave this a score
between 9 and 10. This would therefore be a core component of an IDE for ASP. At
present a number of groups are working on debugging techniques for ASP [5, 31, 24].
Given the early stages of this research, it was not deemed viable to specifically consider
debugging as part of this initial IDE. However we look forward to integrate or support
their work in the future.

Another popular choice was the automatic conversion between files in the LPARSE
and DLV formats. However, as the version of the IDE produced will only support the
LPARSE language, this feature will not be implemented.

Although there was a large spread in the responses for integrating an editor with the
solver, it was generally desired as most responses rated it at 5 and above. Moreover,
this is an essential component of an IDE as the programmer needs to be able to edit the
program and then run it through the solver. The replacement of a rule by its grounding,
graph representation of programs and modularity of programs over multiple files, also
appeared to be popular with the respondents as the interquartile range for each fell
between a score of 5 and 8.



106 A. Sureshkumar et al.

Furthermore, the remaining features all received a median score of at least 5 demon-
strating some support for them, even if there was a wide spread in the scores that they
were given. As none of the features in the list was shown to be very unpopular, in the
way that debugging tools were shown to be very popular, it would appear that they
are all judged to be of some potential by the respondents and should therefore all be
explored further.

Suggested Features: As discussed by [25], it is important to include as large a number
of representatives from each stakeholder group as possible in the data gathering process,
in order to avoid getting a narrow view of the requirements. Therefore in order to inte-
grate the views of the wider community into the list of potential features, respondents
to the questionnaire were asked to suggest any other features that could be included.
We now consider these features.

One request was made to incorporate the statical analysis of program tightness into
the IDE. This syntactic condition on a program is also known as positive order consis-
tency [2]. If a program can be shown to be tight, then for that program the answer set
semantics are equivalent to another semantics known as the completion semantics. In
this case a satisfiability solver can be used to determine the answer sets of a program,
rather than an answer set solver such as SMODELS. Including this analysis as part of the
IDE could be used for indicating whether this type of solver could be used on a given
program.

It was also requested to provide support for make files. Given that a program could
potentially be split over several files, some of which may have already been grounded,
a build script could be used to automate the process of grounding any files that had
changed since last being grounded and then running the program through a solver. The
IDE would therefore need to provide support for this functionality.

In addition to this was the request to support scripts to filter the input to and out-
put from the solvers. Providing support for scripts to perform this would permit the
transformation of data from some source into a program that would be accepted by the
solver, and accordingly the output from the solver to be transformed into a more useable
form.

Another key feature that was suggested by one participant was automatic syntax
checking. Highlighting syntax errors in the editor as they are typed, would make the
error immediately evident to the programmer and prompt them to make a correction.
This would eliminate the overhead of running the program through the solver before
the error would be discovered, and potentially doing this multiple times to locate and
correct all of the errors.

Given the range of solvers used for ASP, it was suggested that the IDE should allow
the user to choose which solver they want to use when running the program. However
as we have restricted the initial version of the system to supporting the LPARSE and
SMODELS tools, this feature will not be considered. Related to this was the ability to
provide benchmarks for the different solvers in the system, such as the time taken to run
the solver. This feature would allow the user to compare different solvers and potentially
choose the one most suited to their specific program.



APE: An AnsProlog* Environment 107

The value of generating the dependency graph for a program has already been con-
sidered, however this was reiterated with requests to display the components of these
graphs (such as the atoms) and the dependencies between them.

Features Supported by Version I of APE This initial requirements gathering phase has
helped to identify some of the non-functional requirements of the system, such as the
platform on which it must operate and the tools that it must support, together with a
list of potential features. For the initial release of an IDE, we decided on the following
options:

— Support for LPARSE and SMODELS tools
Multi-platform support
Syntax highlighting
Automatic syntax checking
Integrated version control tools
Multiple file support
Display of program dependency graph
Integration of editor and LPARSE
Integrated build script support
The selection is wide enough so that the IDE can be evaluated in a significant man-
ner, yet restricted enough for users to make comments and suggestions. Given that
LPARSE is used as a grounder for many other solvers than SMODELS, the IDE can also
be used for the development for these solvers. With a minor change this solver can also
be called directly from the IDE.

3 Eclipse

To develop our IDE, we have opted for the Eclipse platform. Some of the people we
questioned are already familiar with the platform, it already provides a number of pro-
gramming tools and it can be easily extended in incremental steps.

The Eclipse platform, described as “an IDE for anything, and for nothing in par-
ticular” [8], is surrounded by an industry buzz according to [34]. The author identifies
several reasons for this success including being free, given that equivalent IDEs can cost
more than $1,000, and supporting multiple platforms including Windows, MacOS, So-
laris and Linux (Red Hat & SuSE). The platform provides a lot of generic functionality
and “is built on a mechanism for discovering, integrating, and running modules called
plug-ins” [8]. Moreover, the licence terms allow third-party developers to charge for
any extensions that they produce [34], which clearly provides an incentive for develop-
ers of commercial and open-source tools to use this platform. It is however criticised by
some for having an excess of features, which could be overwhelming for inexperienced
users.

Plug-ins typically consist of Java code contained in a JAR (Java Archive) file, to-
gether with resources and a manifest file [8]. The development of plug-ins is facilitated
by the provision of an IDE in Eclipse - the Plug-in Development Environment (PDE).
The manifest file is an XML file which defines a set of extension points, which other
plug-ins may extend, together with its extensions - how it is extending the extension



108 A. Sureshkumar et al.

point defined by another plug-in. This could clearly be an advantage in an IDE for
ASP, by allowing developers to integrate their own solvers into the framework pro-
vided. The best known plug-in for Eclipse is probably the Java Development Tooling
(JDT) included in the main distribution together with the platform and PDE - although
the platform is also available separately. [34] observes that this is probably why Eclipse
is viewed by many as simply a Java IDE, rather than a framework to host IDEs and
other tools.

4 APE Version 1.0

In this section we have a closer look at how these features are incorporated in our IDE.
By opting for Eclipse as our base model, we automatically obtain that our system is
platform independent, provided that the we do not use any platform specific package
to implement the various tools. Furthermore, the use of Eclipse gave us access to in-
tegrated version control tools and integrated build script support. Given its modular
approach it provides the necessary support for integrating additional solvers into the
IDE.

4.1 System Overview

The final system consists of 6 plug-ins: the core (doing the background work), the
general user interface, one to run SMODELS and one for LPARSE, the user interface for
both programs and one to generate dependency graphs.

Figures 2, 3 and 4 give three different screen shots of the final system. They demon-
strate that IDE has four parts (if not closed). The left shows the working directory. The
middle is the actual editor with all open files in the workbench and one file active. The
right shows different views of the active program like the syntactic outline or the de-
pendency graph. The bottom part shows either the console with the answer sets of the
program if SMODELS is called or the errors/warnings the system has detected in the
active program. Note that the layout can be customised by the Eclipse user if this is not
what is wanted.

The system is licensed under the GNU GPL [12] and available at http://krr.
cs.bath.ac.uk/index.php/APE. More information about APE can be found in
[29] and on the above webpage.

4.2 Syntax Highlighting

In order to have syntax highlighting, or colouring as it called in Eclipse, that was suit-
able for ASP, it was not sufficient to extend one of the already available syntax colouring
tools. Unfortunately, the highlighting of tokens such as constants and functions could
not be achieved without additional parsing of the source file.

To solve this problem, we adapted the parser and scanner from LPARSE to work
with Java and reused this in the IDE. Using the same specification also ensures that the
IDE’s parser accepts the same programs as the LPARSE tool itself.



APE: An AnsProlog* Environment 109

& AnsProlog? - Sheep.Ip - Eclipse Platform

Fie Edt Source Navigste Project Run Window Help
r 0-|wa-
T O B cdortlp [ [ sheepdp 2\ (B ogisticsly | [Bplantle |78 T

5 4 < #domain sheep(Sheep).

4 shs
sheep (shaun) .
white (shaun] .

is a vhite sheep

black(sally) .

% John wants a black sheep
wants(john, Sheep] :- black(Sheep) .

Problems | El Console 57 » rg-=a

A console is ot avallabl,

Fig. 2. IDE in outline mode

The scanner used in the LPARSE tool performed the analysis of a single program
combined from all the input files specified on the command line. However for a file
open in the LPARSE editor, it is not known with which other files it would be used or
whether it would even be used with any other files. Therefore when programs are split
over multiple files, some way of defining how these files are aggregated to form a single
program would be necessary to perform an analysis of the entire program. We decided
to leave this for future work and limit ourselves to only analysing the file which was
currently open in the editor.

Thus parsing of the LPARSE source files is not only necessary for the more detailed
syntax highlighting, but for any other tools that need to perform an analysis of the
program. This includes highlighting of errors and warnings in the editor, computation
of dependency graphs, auto-completion and analysis of program tightness. Given this is
needed, we have opted for a data integration approach in which the source code is only
parsed once and stored in a shared data structure that could be used by several tools.

The parser generates a data structure very similar to the one displayed in the outline
view of Figure 2 which can then be used for assigning different colours to the various
components.

Whenever a change is made to the source file, the entire document is re-parsed and
a data structure is generated. However this one data structure is shared amongst all the
features of the IDE such as syntax colouring and checking and graphs — in order that
the file does not have to be re parsed for each feature. An improvement would be to do
this incrementally.

The user can change the colour assignment of each of the individual components of
the program using the ASPSyntaxColouring Dialog, as shown in Figure 5.

4.3 Automatic Syntax Checking

A syntax error occurs “when the string of input tokens is not a sentence in the language”
[1]. In order that as many syntax errors as possible can be reported to the programmer



110 A. Sureshkumar et al.

| @ansprolog*  [Resource

Giop R " = 0| Soommimoan & =5

% A11 persons are from Hars or venus
i ¢ martian(P), vemetian(P) ) 1 :- person(P).

= Lparse Examples
=& puzzle
[EX

% A11 persoms are mal female
1 female(P], male(P) } 1 i- person(F.

% L1l persons either lie or tell the truth depending

B
e}
£}
@
£}

. N ian(P), female(P).
2 piantlp lies(P) - pe wale ()
5 planzlp truthful () - p

(71, wale(p).
3 sheepp crutheul () -

n(P), female(P).

% b person may mot tell the truch and lie at the Sam
- person(P), lies(P), truthful(P).

[smodels] smodels
2.26. Reading...done -

ansver: 2
Stable Nodel: lies(b) wartian(b) female(b) wartian(a) walefa) truthful(a] person(b] personia)

Nurber of choice points: 1 a

Fig. 3. IDE in dependency graph mode
in a single pass through the program, the parser should be able to recover from the
discovery of an error and continue to discover other potential errors [33].

An LPARSE program consists of rules, statements and declarations each separated
by a full stop (. )[30]. Therefore after encountering an error the parser can skip over the
tokens until this token is encountered. Indeed this is the method of recovery used in the
original parser, and has been maintained for the IDE.

In Eclipse, marker objects can be used to attach annotations to workspace resources,
with these annotations being stored in the workspace meta-data rather than by modify-
ing the existing file. The Eclipse text editor automatically highlights errors and warnings
in a file, if problem markers representing them are attached to the resource. These are
also displayed in the Eclipse problems view.Figure 4 on page 111. When the source
file is modified, the problem markers are replaced with a new set generated from the
information in the shared data structure.

The original grammar for LPARSE contained code in the action for the constant dec-
laration rule to warn the user if the constant that they were declaring had already been
defined or used as a symbolic constant. It also contained rules for common mistakes
made when entering constant declarations: using a variable name rather than identifier
for the constant or missing the assignment operator. This provided a more specific error
message than the general ‘parse error’ message would have, aiding the programmer to
locate the problem more quickly. The action for these rules was therefore implemented
to create a new problem object with the same message as provided in the original C
code. This could be extended by investigating other common errors made when writing
LPARSE programs, adding rules to support them, and returning a problem object with a
more specific error message.

4.4 Integration of Editor, LPARSE and SMODELS

To eliminate the user overhead of switching between the editor and command-line to
run a program, we have provided a plug-in to enable launching LPARSE and SMODELS



APE: An AnsProlog* Environment 111

€ ASP - Sheep.lp - Eclipse Platform [ (=E5]
File Edt Navigate Project Run Window Help

(S 0-iw &~ | & ase | [ Resource
5. Mavigator 57 = 5[4 cdlortlp [ *plant.lp =

5 % 7 | #domain sheep(Sheen) . o

= [ Lparse Examples
(& puzde % Shaun is a white sheep

B proect ©cheep [shaun.
[ colorLip white (shaun) .
3 color2.p
[ graph1.lp % 3ally is a black sheep
[ logistics.lp sheep (sally) .
[ plant.ip black(sally}
[ planz.lp
[ shespip % John wants a black sheep

@wants [john, Sheep] :- black (Sheep).

v

[2i Problems 3 ™ Console *» <=8
2 errors, 0 warnings, 0 infos
Description Resource In Falder Location
D syrkax emor Sheep.p Lparse Examples line 4
synkax error Sheep.p  Lparse Examples Ine 12

wricable Insert 9:13

Fig. 4. Program with syntactical errors

from within the IDE. The respective dialog boxes allows the user to set all the flags and
parameters that are available to the programs. Figure 6 shows a screen shot of a LPARSE
dialog box where the user can opt for different run-time settings.

The output provided by SMODELS contains a lot of information which is not always
required, or can be difficult to interpret easily. So being able to pass the output to another
program or script for formatting can be welcome. Also, it might be important to save
the answer sets of certain programs. To allow for this, we have added an extra tab to
the SMODELS launch dialog that allows the SMODELS output to be piped to a different
program. It will be the output of this other program that will be displayed in the console
part of the IDE.

4.5 Dependency Graphs

The questionnaire demonstrated strong support for the display of dependency graphs,
and so this feature was chosen to be implemented given the availability of the source
file model.

[4] defines the dependency graph of a program to consist of:

— aset of vertices, such that each vertex corresponds to a predicate name.

— a set of edges, such that the edge from F; to P; is in the set if and only if there
exists a rule in the program that has F; in the head and P; in the body. The edge is
labelled with a + if P; appears as a positive literal, with a - if it appears as a negative
literal, or indeed with + and - if rules exist such that both cases are present.

The dependency graph functionality was defined in a separate plug-in (section 3).
This allows other ASP tools to reuse the functionality.

In order to display the dependency graph in Eclipse a suitable library to support
graph drawing had to be chosen. The criteria for this package were that it had to be
platform independent and use the Eclipse graphical packages (Eclipse’s SWT) rather
than Swing. In the end we decided to use the Draw2D plug-in from the Eclipse Graph-
ical Editing Framework (GEF) feature. support for drawing classes for modelling and



112 A. Sureshkumar et al.

& Preferences ‘:‘@Jﬁ‘

type filter bext  w Syntax Coloring L=
General

= ASP Colors Far syntay highlighting
Element:

Comment: Colaor:

Default Text E

End of statement dak (.} [(Bold
Run/Cebug Implication ;-3

Keyword [Citalic

Keyword used in & declaration [ strikethrough

Keyword used in a statement

Humber [[Junderfine

‘ariable

Restare Defaults Apply

Fig. 5. ASPSyntaxColouring Dialog

To display the graph within the IDE, the DependencyGraphView was imple-
mented, which given an AnsPrologProgram data model would build a dependency
graph model using the Draw2D graph classes and display this in its GraphViewer
(Figure 3 on page 110). The LPARSE editor was also updated to make sure that the
dependency graph was updated every time the active source file was changed.

4.6 Extra Features

During several intermediate validation and observation sessions, it was pointed out to us
that it would have been nice to have the facility to have block comments and the short-
cuts similar to the subjects favourite browsers, which was Emacs in this particular case.
The latter was easy to accommodate as Eclipse has a set of built-in short-cut schemes,
one of which is Emacs. The former did not take much effort either as a similar action
had already been implemented as part of the JDT, which we were able to use as an
example. The action was named ‘Toggle Comment’ in order to be consistent with the
JDT, and was implemented to behave in the same way. The option was also added to the
menu and a short-cut key was associated to it. It was again set to be the same as used in
the JDT: Ctrl + / under the default configuration and Ctr1l + 7 under the Emacs
configuration. However the use of Ctrl + % for the default configuration may have
been more natural for the user, given that % is the single line comment character for
LPARSE, rather than the // used in Java. In the end it was decided to keep the Eclipse
default, in order not to confuse users who also use Eclipse for different languages. of
both plug-ins



APE: An AnsProlog* Environment 113

Create, manage, and run configurations —

Configurations: Name: [ Ground logistics

(51 Tnput Fies | 09 Constants 9= Lparse Arquments | 1 Common |

I Use smadels 1.x auput format [-1]

¥ Domin predicates to be emited [-d] [facts -

I Debug lparse data structures [-D]

B ogitcsln I~ Disable internal functons [4]

5 New_configuration ™ Number of modes [-n] =
B sheep ¥ Enable requiar modelextension 41 2 |
[~ Print output as text [-t]

™ Print version information [v]

™ Defaut weicht of erals [4] =
[~ Warnings [-W]

¥ Output symbol kable [--atom-file] [ c:\blah]

I Report inconsistent answer sets [-allow-inconsistent-answiers]
I use disjunctive logic semantics [-dip]

I Remove quotes from strings [-drop-quates]

I Enable partial model extension [-partal]

I Separate weight defiritions[-—separate-weight-definiions]

I Enable classical negation [--true-negation]

Mesgr Delate Apply Revert

Fig. 6. LPARSE command-line options dialog box

5 Conclusions and Future Work

As far as we are aware, very little research has been taken place on software engineering
for answer set programming. Apart from a graphical user interface for the SMODELS
solver [32], perhaps the Emacs mode for LPARSE/SMODELS is the only one publicly
available. The Emacs mode provides Emacs users with indentation, syntax highlighting
and running LPARSE and SMODELS via commands [30].

Apart from providing an initial IDE for ASP, this paper provided the first set of
requirements for ASP development tools. In a way the presented IDE is only the tip of
the iceberg compared to programming tools available for traditional languages.

The questionnaire only reached a small proportion of the ASP field. In the future,
a wider range of users needs to be considered for the evaluations of the system. This
wider view would have allowed a better definition of the requirements of the IDE to
be produced, by considering the needs of a more varied user base and any conflicts of
interest between their different needs.

At present, the IDE has only been tested within the department. To evaluate it in a
more scientific manner, it needs to be tested by a wider group including experienced
ASP programmers and novices. Such an evaluation should bring to light the require-
ments from different user groups. Furthermore, observing people using the tool will
also give more insight into programming techniques.

During the requirements analysis, another tool that was identified to be of potential
use when programming in ASP was that of automatically indenting the code to facilitate
maintaining a consistent, easy to read layout throughout the program. However, the
layout that the tool should adhere to would first need to be defined. Therefore it is
proposed that a study into coding styles for ASP should be undertaken in order to define



114 A. Sureshkumar et al.

a common set of coding standards to improve the readability and maintainability of
code.

In addition to the new ASP tools that were identified in the requirements elicitation
process, an improvement to an existing tool was also identified. One requirement of the
IDE that was raised throughout the elicitation process was for a tool to perform block
commenting. This was due to the syntax of the LPARSE solver only supporting single
line comments rendering the commenting of large blocks of code a tedious process.
Although developing this tool supports the programmer, it is resolving the problem in
the wrong place. It would be better to add Multi-line comments to the LPARSE syntax,
in order that all ASP programmers could benefit from faster commenting, regardless of
whether they use the IDE or not.

Although APE is only the first version of an IDE for answer set programming, we
are sure it already provides a number of tools that make it easier to write programs
in the language. Initial trials support this belief. In the future we will be extending
and improving the current set of available features. The first feature on the list is to
incorporate debugging tools in the IDE.

References

1. A. W. Appel and M. Ginsburg. Modern Compiler Implementation in C. Press Syndicate of
the University of Cambridge, 2004.

2. Y. Babovich, E. Erdem, and V. Lifschitz. Fages’ theorem and answer set programming. In
C. Baral and M. Truszczynski, editors, Proceedings of the 8th International Workshop on
Non-Monotonic Reasoning, NMR’2000, 2000.

3. M. Balduccini. CR-MODELS homepage. http://krlab.cs.ttu.edu/~marcy/
crmodels/.

4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, UK, 2003.

5. M. Brain and M. De Vos. Debugging logic programs under the answer set semantics. In
M. De Vos and A. Provetti, editors, Answer Set Programming: Advances in Theory and
Implementation, pages 142 — 152. Research Press International, 2005.

6. F. Calimeri and G. Ianni. External sources of computation for answer set solvers. Lecture
Notes in Computer Science, 3662:105-118, 2005.

7. FE. Calimeri, G. Ianni, and S. Cozza. http://www.mat.unical.it/ianni/wiki/
dlvex.

8. Eclipse. Eclipse platform technical overview. 2003.

9. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR system d1v: Progress
report, comparisons and benchmarks. In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors,
KR’98: Principles of Knowledge Representation and Reasoning, pages 406—417. Morgan
Kaufmann, San Francisco, California, 1998.

10. W. Faber and G. Pfeifer. DLV homepage. http://www.dbai.tuwien.ac.at/proj/
dlv/.

11. N. Francez, S. Goldenberg, R. Y. Pinter, M. Tiomkin, and S. Tsur. An environment for logic
programming. In Proceedings of the ACM SIGPLAN 85 symposium on Language issues in
programming environments, pages 179—190, New York, NY, USA, 1985. ACM Press.

12. Free Software Foundation. Gnu general public license version 2, 1992.



13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24,

25.

26.
27.

28.

29.

30.
31.

32.

33.

34.

APE: An AnsProlog* Environment 115

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving. In
M. Veloso, editor, Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 386-392. AAAI Press/The MIT Press, 2007. Available at
http://www.ijcai.org/papersO7/contents.php.

M. Heidt and V. S. Mellarkod. ASET homepage. http://www.cs.ttu.edu/
~mellarko/aset.html.

M. L. Heidt. Developing an inference engine for aset-prolog. Master’s thesis, University of
Texas at El Paso, December 2001.

L. Kolvekal. Developing an inference engine for cr-prolog with preferences. Master’s thesis,
Texas Tech University, December 2004.

H. J. Komorowski and S. Omori. A model and an implementation of a logic programming
environment. In Proceedings of the ACM SIGPLAN 85 symposium on Language issues in
programming environments, pages 191-198, New York, NY, USA, 1985. ACM Press.

Y. Lierler. CMODELS homepage. http://www.cs.utexas.edu/~tag/cmodels/.
Y. Lierler and M. Maratea. Cmodels-2: Sat-based answer set solver enhanced to non-tight
programs. Lecture Notes in Computer Science, 2923:346-350, 2004.

F. Lin and Y. Zhao. ASSAT homepage. http://assat.cs.ust.hk/.

F. Lin and Y. Zhao. Assat: computing answer sets of a logic program by sat solvers. Artificial
Intelligence, 157(1-2):115-137, 2004.

1. Niemeld, editor. WASP WP3 Report: Language Extensions and Software Engineering for
ASP. 2005.

I. Niemeld and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of the
4th International Conference on Logic Programing and Nonmonotonic Reasoning, volume
1265 of LNAI, pages 420-429, Berlin, July 28-31 1997. Springer.

E. Pontelli and T. C. Son. ustifications for logic programs under answer set semantics. In
S. Etalle and M. Truszczynski, editors, ICLP, volume 4079 of Lecture Notes in Computer
Science, pages 196-210. Springer, 2006.

J. Preece, Y. Rogers, and H. Sharp. Interaction Design. John Wiley & Sons, Inc., New York,
NY, USA, 2002.

A. Provetti. Wasp homepage. http://wasp.unime.it/.

P. Simons. SMODELS homepage. http://www.tcs.hut.fi/Software/
smodels/.

I. Sommerville. Software Engineering. Addison-Wesley Publishers Ltd., Harlow, England,
6th edition, 2001.

A. Sureshkumar. Ansprolog* programming environment (ape): Investigating software tools
for answer set programming through the implementation of an integrated development en-
vironment. B.Sc. Dissertation, Department of Computer Science, University of Bath, June
2006.

T. Syrjanen. Lparse 1.0 User’s Manual.

T. Syrjéanen. Debugging inconsistent answer set programs. In J. Dix and A. Hunter, editors,
Proceedings of the 11th Workshop on Nonmonotonic Reasoning (NMR), number Ifl-06-04 in
Ifl Technical Report Series, 2006. Available from http://cig.in.tu-clausthal.
de/NMRO6/.

H. Takahashi. A GUI for Smodels. http://www.baral.us/bookone/
ansprolog/, October 2004.

R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley Publishing Co. Inc., Wok-
ingham, England, 1995.

A. Wolfe. Toolkit: Eclipse: A platform becomes an open-source woodstock. Queue, 1(8):14—
16, 2003.



Planning for Biochemical Pathways: A Case Study of
Answer Set Planning in Large Planning Problem
Instances

Tran Cao Son and Enrico Pontelli

Department of Computer Science
New Mexico State University
tson, epontel | @s. nmsu. edu

Abstract. The paper describes an experiment of answer set planningdhdm-
ical pathway planning. The focus is on large planning pnwbiestances. It is
shown that well-known planning techniques, such as plangmaph analysis,
landmarks recognition, and planning using landmarks aeéulgn answer set
planning and can be easily incorporated in an answer setiplgusystem.

1 Introduction

Over the past decade, answer set planning [6, 17, 26] hasnteeaoviable planning
approach. It has been successfully applied in conformamiyhg [7, 25], conditional
planning with sensing actions and incomplete informat8][planning with domain-
specific knowledge [22], or dealing with user’s preferen@3. It has also been ap-
plied successfully in several real-world problems [1, 2hsver set planning builds on
the idea of using answer set programming [20, 19] to supperfprocess of reason-
ing about actions. The success of answer set planning restsafactors. The first
one is the availability of efficient answer set solvers, sastmodel s [21], dI v [8],
cnodel s [16], andASSAT [18]. The second factor is the combination of the simplic-
ity and expressiveness of logic programming, which allowsrgle representation and
reasoning about action and change.

Despite its success and its elegance, and despite the dewahd of excellent in-
ference engines for answer set programming, answer setiptais not capable of
handling large problem instances. In our experiments, anset planners perform well
in problem instances that admit short solutions, while it@mters difficulties in in-
stances with long solutions—e.g., typically, when the taragf the minimal solution is
more than 20, the computation time grows beyond acceptabdts. One of the main
reasons behind this problem is that answer set planninguasers did not concen-
trate on the development of special purpose planners. Rattgefocus has been on
the development of methodologies for using answer set progning in planning. It
is expected that large problem instances will be solvablenbye efficient answer set
solvers. While this is certainly true, it raises the questbwhether the currently avail-
able technologies have more to offer.

Another reason leading to the fact that answer set planrd@ngat cope with large
planning instances lies in the way solutions are computeshgwer set programming.



Planning for Biochemical Pathway in ASP 117

Most inference engines rely on a two-phase computationinguhe first phase, the
program is grounded, and possibly simplified. Thear se is a typical program used
for this phase. The actual solution (expressed by a cadleaif answer sets) will be
computed by one of the answer set solvers in the second phiaisscomputing style
does not allow for a direct application of well-known plangiechniques to answer set
planning (e.g., the use of the planning graph to simplifydbmain, the use of heuristic
in deciding which actions should be chosen, etc.) as manlyeset techniques require
the ability to affect the way the computation search develemference engines for
answer set programming typically do not expose the seaadeps to the programmer.
Furthermore, answer set planning puts a huge burden on thander,l par se, as
the size of the grounded program for large problem instaiscefien too large to be
produced or too large to be acquired by the answer set solver.

The limitation of the grounder has an important consequendfe representation
of planning domains and instances, which sometimes rexjaioareful analysis of the
domain and instances. For instance, if we wish to define aoragfX,Y’) where X
andY are variables with domaib,, andD,, respectively, a typical representation would
lead to a clause of the form

action(p(X,Y)) :(— dx(X),dy(Y).

Depending on the instanc®( andD,), | par se will simplify this clause and gener-
ate the correct set of actions—described by ground factBefdrmaction(p(x, y)).
From the knowledge representation perspective, this taiody a good practice, since
it allows a simple specification of the problem instancesy(dects need to be speci-
fied). This representation can, however, quickly increasenumber of rules that the
grounder has to deal with, as

(a) the number of parameters increases; and/or

(b) the size of the domain of the parameters increases.
As we will see later, this representation does increaseazbe$the grounding programs
significantly.

In this work, we investigate the use of well-known planniaghniques in the con-
text of answer set planning. The planning techniques désmlim this paper involve a
simplification of a planning problem based @achability analysig13] andlandmark
recognition, and the use of landmarks in planning [14].

We choose th8iochemical Pathwagomain, one of the planning domains used in
the recent International Planning Competition [12] as asgple for our case study.
The main reason behind this selection is the conceptuallisitypf the domain, and
the need to deal with large instances. The following is aregptcfrom the domain
description available at [12]:

This domain is inspired by the field of molecular biology, apécifically bio-
chemical pathways. “A pathway is a sequence of chemicali@ain a bi-

ological organism. Such pathways specify mechanisms #pdéia how cells
carry out their major functions by means of molecules andtieas that pro-
duce regular changes. Many diseases can be explained bgtgl@igathways,
and new treatments often involve finding drugs that cortezsé defects” [27].



118 Tran Cao Son and Enrico Pontelli

We can model parts of the functioning of a pathway as a plappimblem by
simply representing chemical reactions as actions. TheHamical pathway
domain of the competition is based on the pathway of the Mdimm@&ell
Cycle Control as it described in [15] and modeled in [3].

There are different kinds of basic actions correspondirtheadifferent kinds of reac-
tions that appear in the pathway. For example, one of theragticalledassociateis
encoded in PDDL as follows

(:action associate
cparaneters (?x1 ?x2 - nolecule ?x3 - conpl ex)
:precondition (and (association-reaction ?x1 ?x2 ?x3)
(avail abl e ?x1) (avail able ?x2))
;effect (and (not (available ?x1))
(not (available ?x2)) (available ?x3)))

Fig. 1. Actionassoci at e

In the above specificatiorgx1, ?x2, and ?x3 denote variables; the condition
(avai |l abl e ?x) states thaPx is available;( associ ati on-reacti on ?x1
?x2 ?x3) says that there is an association reaction betWeeihand?x?2 to create
?x3. This action creates the complex molec®ie3, by associating the two molecules
?x1 and?x2. This action is executable only if the two molecul®sl and?x2 are
available and it is known that the two molecuResl and?x2 can combine in a reaction
to produce?x 3.

A planning instance, in this domain, is given by a set of adé molecules and the
information encoding the knowledge about the possibilityreating new molecules by
association, syntheses, and other types of interactions.

This paper discusses different ways to introduce curremtrphg techniques, taken
from advanced planning systems, in answer ser planningp@per also presents some
preliminary experimental results; these provide encangaindication that answer set
planning can be used to tackle large planning instancest&ketlse presentation with
the basics of answer set planning, and a brief descriptioth@fASP — PROLOG
system. We then discuss the problems faced by answer setgpsain the biochemical
pathway domains, discuss a preliminary implementatioh@fdanning graph analysis
and landmark recognition techniques, and their use in ansgiglanning.

2 Preliminaries

2.1 Answer Set Planning

We will use a variation of the high-level action descriptlanguageA of [11] to repre-
sent action theories. We assume the presence of two firgjejrdisets of names called
actionsandfluents A fluent literalis either a fluenyf or its negation-f. We will also
say thatf and—f are complement of each other. For a fluent litérahl denotes its

1 A complete description of the domain is included in [24].



Planning for Biochemical Pathway in ASP 119

complement. A fluent formula is a propositional formula domsted from fluent liter-
als. For a set of fluent literals —y = {1l | | € v}. For a set of fluent litera}, [ holds
in v if [ € ~. In such a language, an action domainis a set of propositions of the
following form:

a causes f if ¢ (1)
a executable 2)

wheref andy’s are fluent literal and fluent formula, respectively, aniglan action. The
axiom (1) represents eonditional effecof a, while axiom (2) states an executability
condition ofa.

A set of fluent literals is consistent if it does not contaimt@omplementary fluent
literals. A state (0fD) is a maximal and consistent set of fluent literals. An actios
executable in a stateif there exists an executability condition (2) such titat s. The
effects of an actiom in a states is denoted by(a, s) and is given by

e(a,s) ={f|acausesfif ¢ € D,y C s}.

Given a state and an actiom executable irs, the state resulting from the execution of
a in s, denoted byRes(a, s), is defined by

Res(a,s) = sUe(a,s) \ -e(a,s).

Leta = [a1;...;a,] be a sequence of actions; we will denote witfi] the sequence
of actionsa[i] = [a1;...;a;], where, by conventiory[0] denotes the empty sequence.
The Res function can be easily extended to describe the effectsedaence of actions.
Given a domain descriptioP, a states and a sequence = [a1;...;a,] Of actions,
the final state aftew is executed iy, ¢(«, s), is defined as follows:
S ifn=0
D(a,s) =4 L if s = L ora, is not executable i’

Res(an,P(a[n — 1], s)) otherwise

For an action sequeneeand a state, if &(«, s) # L then we say that is executable
in s. « is executable in a set of stat8sf it is executable in every statec S.

A planning problenis specified by a tripléD, s, A), whereD is an action domain,
so is a state describing the initial state of the world, ah a fluent formula (ogoal),
representing the goal state sequence of actions = [ay;. . .; a.,] is aplan for A if
D(a, s0) # L andA holds in®@(«, sg).

Given a planning probleniD, s¢, A), answer set planning solves it by translat-
ing it into a logic programiI(D, sy, A), whose answer sets correspond to plans for
A. The signature of1(D, sg, A) includes terms corresponding to fluent literals and
actions of D, as well as non-negative integers used to represent tirps.Si¢e often
write II(D, n) to denote the restriction dff (D, so, A) to time steps betweehandn
(i.e., plans of length at mosf). Atoms of I1 (D, sg, A) are formed using the following
(sorted) predicate symbols:

2 For simplicity of our discussion, we will assume thais a set of fluent literals. Encoding the
goal can be done as in [22].



120 Tran Cao Son and Enrico Pontelli

— fluent(F)is true if F'is a fluent;

— literal(L) is true if L is a fluent literal;

— contrary(L, L") is true if L is the complement of literal’;
— h(L,T) is true if the fluent literalL holds at time steff’;

— occ(A,T) is true if the actionA occurs at time step’;

— poss(A,T) is true if the actiomd is executable at time step.

In our representation, lettefS, F', L, and A (possibly indexed) (resg, f, [, anda)
are used to represent variables (resp. constants) of sndsftuent, fluent literal, and
action correspondingly. For a set of fluent literaJsve define:

h(v,T) ={r(l,T) [l €~} not h(y,T)={not h(I,T) [l €v} —y={~l[le~}

The set of rules ofT is divided into the following five subsets:
o Dynamic causal lawsfor each statement of the form (1) i, the rule?

h(f, T+1) — occ(a,T), h(¢, T) 3

belongs toll (D, sg, A). This rule states that if the actianoccurs at time stef’
and the preconditioft holds at that time step thehholds afterward.

e Executability conditionsfor each statement of the form (2) iR, I1(D, sg, A)
contains the following rule:

poss(a,T) — h(y,T) 4
— occ(a,T),not poss(a,T) (5)

This rules state that is executable at the time stépiff there exists one of the
executability conditions of the form (2) such thatolds at time steff’.
e Initial state: I7(D, so, A) contains the rule

h(So, 0) —
e Action generationl (D, sg, A) contains the rule
1{occ(A,T) : action(A)} 1 «—

which states that, at every time step, exactly one actiort oucsir.
e Goal: II(D, sy, A) contains the constraint

—not h(A,n)
e Inertia: I1(D, sg, A) contains the following rule for the inertial law:
ML,T) « h(L,T —1),not h(-L,T), T >0 (6)

This rule says that a literdl holds at time stef” if it holds at the previous time
step and its negation does not hold’at

% In practice, the atomi (v, T') has to be replaced by a conjunction of atoms for each litaral i

.



Planning for Biochemical Pathway in ASP 121

e Auxiliary rules: I1(D, sy, A) also contains the following rules:

literal(F) «— fluent(F) (7)
literal(—F) « fluent(F) (8)
contrary(F,—F) «— fluent(F) 9
contrary(—F, F) « fluent(F) (20)

The first constraint stops two complementary fluent litefedsn holding at the
same time. The last four rules are used to define fluent léenadl complementary
literals.
The next theorem states that the progrBitD, sg, A) correctly solves the planning
problem(D, sy, A) (see, e.g., [22,29]).

Theorem 1. Given a planning problemiD, sg, A),
o for each planay,...,a, for A, the programiI(D,n) U {occ(a;,i — 1) | i =
1,...,n} is consistent;
o if Aisananswersetd/ (D, n)thenas,...,a, is aplan forA whereocc(a;,i—
1)e Afori=1,...,n.

2.2 ASP — PROLOG

In order to support our development activities, we needradésork with the following
characteristics:
e It provides access to an inference engine for answer setgroging—to allow
answer set planning;
e |t provides access to a general purpose, declarative progiag framework, which
allows arbitrary forms of reasoning and transformationro&ation theory.
For this project, we selected a recently developed framieeaitedASP — PROLOG [10].
ASP — PROLOG is a fully modular system, which allows the integration ofdntes
written in Prolog with modules written in theM®DELS flavor of answer set program-
ming. EachASP — PROLOG program is a composition of modules. It allows pro-
grammers to compose modules expressed using differentslaftogic programming,
including Prolog, Constraint Logic Programming, and amnsset programming. Each
program is composed of a main module—at this time restritidze a Prolog or CLP
module and encoded in CIAO Protbg-and a collection of modules organized accord-
ing to an acyclic graph structure (e.g., see Fig. 2).

Each Prolog module is allowed to import predicates definedtirer modules,
through an import declaration, and to export predicatesiddfivithin the module (all
solutions to the given predicates are exported). Simila@dgh ASP module is allowed
to import and export predicates.

Importing from a Prolog modulse: will effectively achieve the effect of enriching
the local module with the least Herbrand modehoprojected over its exported predi-
cates. Importing from an ASP module will allow to either merh skeptical reasoning—
e.g.,in

“http://ww clip.dia.fi.upm es/Software/ G ao



122 Tran Cao Son and Enrico Pontelli

Answer
Goals Substitutions

Main
Prolog Module

asnwer

imported sets
predicates
constraints solutions
rules/facts

Prolog CLP ASP
Module Module Module

Fig. 2. Program Organization iASP — PROLOG
;- inport(aspnodul el, 'aspnodulel.lp’).

;- ... aspnodul el: p(5)

aspnodul el: p(5) willsucceed onlyifp(5) holdsin each answer seta$produl el—
or to access each individual answer set—e.g., in

;- inport(aspnodul el, 'asprodulel.lp’).

:- ... aspnodul el: nodel (Q, Q p(5)

the conjunctioraspnodul el: nodel (Q, Q p(5) will succeed ifp(5) holdsin
at least one answer seta$pnodul el.

Prolog modules are also allowed to perform meta-operationsther modules—
e.g., they can usel ause to read the clauses of a module, and they carasser t
andr et r act to add or remove rules.

In the context of this project, answer set programming mesiare employed to
encode the answer set planners, while the Prolog modulesadsto perform analysis
of action theories and to drive the planning process (ergplement heuristics). Prolog
is particularly advantageous, thanks to its ability to lyasianipulate the syntax of
action theories and its flexible search and backtrackinghamgsms.

3 Describing Biochemical Pathway in Answer Set Planning

The problem of finding a biochemical pathway can be represkss a planning prob-

lem. The propertiegevel, simple, and complex (representing, correspondingly, the
substrate level of a molecule, a simple molecule, and a cexnpblecule) can be spec-
ified as domain predicates, and the two rules

molecule(X) «— simple(X)
molecule(X) — complex(X)

encode the fact that every molecule is either simple or cermflhere are five actions:



Planning for Biochemical Pathway in ASP 123

o choose(X, L1, Ls)—the action requires thaX is a simple molecule and, is a
higher substrate level thdn; the effects of this action are that the simple molecule
is chosen and.; indicates the substrate level considered.

o initialize(X )—creates the simple molecuk if it has been chosen;

o associate( X7, Xa, X3)—this is an action if the association reaction betwégn
X5, and X3 exists; the effect of this action is to create the molectiaf the two
moleculesX; and X, are available;

o associate_with_catalyze(X1, Xo, X5)—Ccreates the molecul¥s if the two molecules
X, and X, are available and a catalyzed association reaction betWeeX 5, and
X3 exists;

o synthesize(X1, Xo)—creates the molecul®, from the moleculeX; if it is avail-
able and there is a synthesis reaction betwEemand Xs.

A planning problem in this domain is characterized by théofeing parameters:

— The number of simple molecules;

— The number of complex molecules;

— The number of substrate levels;

— The number of association reaction combinations;

— The number of catalyzed association reaction combingtaoms
— The number of synthesis reaction combinations.

The number of actions in this domain grows very fast. The teble describes some of
the biochemical planning problems, used in the recent figcompetitio, in terms
of the parameters listed above. The last two columns ineliteg number of potentially
useful actions and the length of a known plan in each problem.

Problem # Simple|# Complex# Numberl# Asso|# Cata|# Syn|# Actiong Plan
MoleculesMolecule§ Subs |[Combi{Combi/Comb lengtl

1 16 9 4 7 5 0 75 5

2 12 26 4 14 0 14 75 10

3 19 24 4 21 5 10 111 14

4 22 46 4 33 2 22 145 14

5 22 66 7 53 0 25 254 26

10 39 117 14 99 9 102 795 84

15 45 143 18 120 12 149 1135 ?

Table 1. Biochemical Pathways as Planning — Problem and Parameters

3.1 Using Answer Set Planning: Some Problems

The first problem we have to deal with when using answer seinjilg to tackle this
planning domain is the size of the ground instances. Besliseset of laws describing
the actions’ effects and executability conditions, thed§attion generation rules is very
large. The current parsépar se is effective only for problems with short solutions.
This led us to search for ways to reduce the size of the grawstdrices.

5Seehttp://zeus.ing.unibs.it/ipc-5/



124 Tran Cao Son and Enrico Pontelli

One of the commonly used technigues in planning is to exathmplanning graph
[4]. Intuitively, a planning graph is a structure consigtiof alternative sets of fluents
and actionsFy, Ao, ..., F,, A,, . ... F; is the set of fluents that can be reached by every
possible action sequences whose length is less than or egijand A4; is the set of
possible actions that can be executed afsations. The planning graph has been useful
in analyzing planning problems and extracting heuris&¢sGiven a planning problem,

a planning graph can be easily computed in Prolog, usingatf@ing rules®

forward_cl osure(0, Fluents, Actions) :-
findall (G (fluent(Q, initially(Q), Fluents),
findall (A (action(A), executable(A[])), Actions).
forward_cl osure(Time, Fluents, Actions) :-
Tinmel is Tinme-1,
forward_cl osure(Ti mel, PrevFl uents, PrevActions),
col I ect _appl i cabl e( PrevFl uent s, NewActi ons),
col | ect _consequence( NewAct i ons, NewFl uent s),
uni on( PrevFl uents, NewFl uents, Fluents),
uni on( PrevActi on, NewAct i ons, Acti ons).

wherecol | ect _appl i cabl e determines the actions whose (positive) executability
conditions are met byr evFl uent s, andcol | ect _consequences collects all
the positive consequence of the actiondNewAct i ons. The collection of actions
and consequences can be easily realized using approprééaces of théi ndal |
predicate—e.g., for the consequences:

col | ect _consequences([],[]).
col I ect _consequences([ Action| Rest], Fluents) : -
findall (Res, (causes(Action, Resl, ),
nenber (Res, Resl),
\ +(Res=neg(_)
), Listl),
col | ect _consequences(Rest, List2),
append(Listl,List2, Fluents).

A planning graph can provide us with the set of actions thatlma possibly executed
given the initial state of the world, and the set of fluentd ttem be possibly changed
their value fromfalse to true. This information allows us t¢1l) remove actions that
can never be execute(R) remove fluents that never change value, &idsimplify
the remaining actions. The above can be repeated until eaign can be possibly
executed and every fluent might change its value frirtse to true. The planning
graph can also be used in a backward fashion, to eliminaitenadhat are irrelevant to
the goal. This can be done using the following Prolog rules:

back_cl osure(O0, Fl uents, Actions) :-
findall (G goal (G, Fluents), Actions=[].
back_cl osure(Time, Fluents, Actions) :-

8 Simplified to enhance readability.



Planning for Biochemical Pathway in ASP 125

Tinmel is Time-1, back_cl osure(Ti mel, RFl uents, RActions),
findall (A, (action(A), causes(A, Cons),
i ntersect (Cons, RFl uents)), NewActi ons),
findall (F1, (menber (A NewActions),
execut abl e( A Cons), nenber (F1, Cons),
fluent(F1)), Setl),
findall (F2, (nmenber (A, NewActions), causes(A, Cons),
menber (F2, Cons), fluent (F2)), Set?2),
uni on( RAct i ons, NewAct i ons, Actions),
uni on( RFl uents, Setl, Set2, Fluents).

The result of the execution of this module are described biera.

Probleny Forward Forward + Backward Plan Found
# Fluent$# Actiong# Fluents # Actions|by snodel s
1 61 75 45 37 Yes
2 67 75 55 34 Yes
3 95 111 76 51 Yes
4 115 145 93 63 Yes
5 142 254 120 163 No
10 250 795 211 638 No
15 297 1135 252 953 No
Table 2. Simplifications due to forward and backward planning grampdiysis

It should be noted that the application of this method allavs domain represen-
tation which is less susceptible to the specification ofextiand fluents. For example,
we examine the PDDL representation of the domain and defeeesthoci at e action
by the rule

action(associate(X Y,2)):-
mol ecul e(X), nol ecul e(Y), conplex(2),
associ ation_reaction(XY, 2). (*)

In doing so,associ ati on_reaction(X Y, Z) becomes a static property of the
domain. This is slightly different than the encoding of [1#jere the representation

action(associate(X Y,2)):-
nol ecul e( X), nol ecul e(Y), compl ex(Z2). (**)

is used. In this casassoci ati on_reacti on(X, Y, Z) is viewed as a fluent. The
second representation (**) will be better than the first ofjeif(the information on
whether or notassoci ati onreacti on(X, Y, Z) holds is not a static relation.
This encoding, will, however, increase the size of the gdmghprogram tremendously
comparing to the first encoding as the numbermetoci at e( X, Y, Z) actions is
now the product of the square of the number of molecules aadhttimber of com-
plex molecules. As an example, consider the first instanteeproblem (Table 1). In
this instance, there are 25 molecules, 9 complex molecales7 possible association
reactions among the molecules. Thus, the second encodihgielil 25*25*9=5625
possibleassoci at e actions while the first encoding records only 7 possibleoasti



126 Tran Cao Son and Enrico Pontelli

Planning graph analysis allows us to remove the actionstiigtit be defined but
are not possible in the domain. We experimented with bothessmtations and found
that the number of actions that are retained for the plan coatipn step is the same.
For this reason, there is little change in the number of astletween the two tables if
only f or war d analysis is used as we used the first encoding in our expetimen

3.2 Landmarks Recognition

The size of the ground program does matter in the sense tthegt groundel par se
cannot finish its work, our quest of computing a plan usingrensset programming
cannot even begin. The second problem that answer set ptaneeds to face is the
size of the search space. To this end, we investigate antittenique, calledrdered
landmarks that has been developed in [14] and is currently implentemtevarious
planners, such as FF [13]. Let us recall some of the defirgtion

Definition 1. Given a planning problerf? = (D, s, A), a fluent literal!l is called a
landmarkof P iff for every solutione = [ay;...;ax] of P, there exists an integer,
1 <4 <k, such that € &(a]i], so).

Intuitively, a landmark represents a “necessary” precondition that needs to I=figdti
before (or at the same time) the goal can be achieved.

Example 1.Let D = {a causes f if h bcausesf if h,—f ccausesh} Itis easy to
see that is a landmark of the probleqD, {—f, -h}, {f}).

Definition 2. Given a planning probler®® = (D, so, A) and two fluent literalg and
. There is anecessary orddyetween and!’, denoted by —,, I/, iff I’ ¢ so and for
every action sequenee= [a;...;ax), If I’ € &(«, so) thenl € &(a[n — 1], so).

The ordering betweehand!’ states that is necessary for achieviri§ In Example 1,
there is a necessary order betweéesnd 1.

Definition 3. LetP = (D, s, A) be a planning problem and !’ two fluent literals.

1. Let Sy, ;) be the set of states such that there exists an action sequence=
[ai;...;ax], s = P(a, 80), ' € eax, s), andl & P(afi], so) for 0 < i < k.

2. 1" is in the aftermath of / if, for all statess € S(; -y, and all solutionsa: =
[a1;...;ai] of the planning problemiD, s, A), there arel < i < j < k such that
l € &(ali], s) andl’ € d(alj], s).

3. There is areasonable orddsetweeri and!’, denoted by —,. I, if I’ is in the
aftermath of and

Vs € S -y VYa=[ay,...,ax] : 1 € (o, 8) — Fi:ay causes—l' if ¢ € D.

Intuitively, S(; -y is the set of states in whidhis just added to the state ahtias not
been achieved yet. The aftermath relation states that fenyesolution starting from
S(z.ﬁz'w I’ must be achieved simultaneously withr at some later point.—,. I’ states
that for everys € S, ), every action sequence achievindeletes’ at some point.
This implies that a planner can try to achieve a stdtéefore try to achieve the goal



Planning for Biochemical Pathway in ASP 127

The main problem in utilizing this knowledge is that the cartgtion of the af-
termath ordering or reasonable ordering among landmarRSRACE-complete. As
such, in systems employing this technique, only an appration of this ordering is
computed and used in the search process. The key ideas taghiare:

o Compute a graph (callddGG), consisting of the landmark candidates with an ap-
proximated greedy necessary order between them;

o Remove fromLGGthe candidates that cannot be proved to be landmarks; and

o Use the landmarks as intermediate goals in the search fdutoso

The search starts with the goal as the disjunction of all teafes ofLGG. As soon as
one disjunct is satisfied, theGG is updated, by removing the node corresponding to
the achieved landmark and the links to and from this node séhef leaf nodes is then
recomputed (as a disjunction) and set as the new goal. Thegi@ontinues until all
landmarks have been achieved.

3.3 Implementation

The Prolog preprocessor described earlier has been extémdepport the. GG com-
putation. The graph is described by a list of nodes and aflesiges. The main predicate
for the LGG computation is:

hof f mann( Fl uent s, Acti ons, Nodes, Edges) :-
comput e_goal _st at e( Goal s, Fl uent s),
conpute_initial _state(lnit),
candi date(Goal s,[],[], Nodes1, Edges1, Fl uents, Acti ons),
findall ([neg(X), X,
(menber (neg( X), Nodes1), nenber (X, Nodesl)), CEdges),
append( CEdges, Edges1, Edges?2),
verify_ | andmar ks(Nodes1, Edges?2, Fl uents, I nit, Acti ons, Goal s,
Nodes, Edges) .

The core of the computation is performed by the predicatadi dat e, which
navigates the dependence graph, composed of executabitititions and effects of ac-
tions, to locate elements that represent potential lanklsn@heveri f y_| andmar ks
procedure is simply used to verify that the elements cakbat theLGG graph are in-
deed reachable w.r.t. the given initial state of the actioty.

This recursive predicaeandi dat e is defined as follows:

candidate([],NNE,NE, _, ).
candi date([ Al B], N, E, Fi nal Nodes, Fi nal Edges, Fl uents, Actions) : -
level (A 0),!,
candi dat e( B, N, E, Fi nal Nodes, Fi nal Edges, Fl uents, Acti ons).
candi date([ Al B], N, E, Fi nal Nodes, Fi nal Edges, Fl uents, Actions) : -

| evel (A L2),
findal |l (X, (nenber (X, Actions), causes(X, List,_),
menber (A, List),level (X, L1),L1 == L2-1
), Actions),

" The definition as been simplified for readability.



128 Tran Cao Son and Enrico Pontelli

findall (Y, appears_al ways(Y, Acti ons), Cback),

findal | (Y1, appears_forward(Y1, Acti ons), Cforward),

append( Cback, B, B21), append(B21, Cf or war d, NewB) ,

findall ([Z Al, (menber (Z, Cback), | evel (Z, 2Z), ZZ>0) , Newkdges1) ,

findal I ([ N1, N2], (rmenber (N1, Cback), | evel (N1, ZZ1), ZZ1>0,
menber (N2, Cf orward) ), Newkdges3),

append( E, NewEdges1, NewEdges?2),

append( NewEdges3, NewEdges2, Edgesl),

candi dat e( NewB, [ A| N, Edges1, Fi nal Nodes, Fi nal Edges, Fl uents, Acti ons).

The candidate procedure iterates until the set of itemstefést (initialized to the
set of goals) becomes empty. Candidate nodes are addeddettliehey have a level
greater than O (i.e., they are not part of the initial state) they either

— appear in the preconditions of all the actions that in ong pteduce anothdrGG
node (predicatappear s _al ways), or

— appear in the consequence of all the actions that in one stejupe anothelt GG
node (predicatappear s _f or war d).

This is intuitively illustrated in figure 3. The edges areatesl in the obvious manner to
link fluents connected by the selected actions.

Level i-1 Level i

causes

cau ol der

‘ node

Action

Acti on

Action

causes

Fig. 3. Intuition behind thd-GG construction

4 Experimentation

We implemented the planning graph andltii& computation in Prolog. The simplified
planning problem is then fed in®@nodel s. In all, we were able to solve problems
from the set of problems given at the planning contest, dtsesomparable with most of
the planning systems competing in the IPC’2006 (see [12j¢.first four instances can
be solved using a single call smpdel s (as shown in Table 2). For tHg" instance,



Planning for Biochemical Pathway in ASP 129

we useASP — PROLQOG in the following way. We have a Prolog module that performs
the following activities:
o It takes(a) an answer set program representing the instance with traameder
| engt h, and(b) a disjunctive goal consisting of the leaf nodes of the landtma
graph, and callsnodel s to find a plan for the disjunctive goal; the value of the
parametel engt h is iteratively changed from to 2, to 3, etc., until an answer set
is returned (as described in [9].
o Itanalyzes the answer set, creates the new initial stat¢he@ntew goal (by remov-
ing achieved goals from the landmark graph), and repeafirghstep.
We observed that the system does not require backtrackirigeoohoice of satisfied
landmark. Analyzing the problem and the landmark graph,aued that the landmark
graph does indeed provide an ordering that can be achievebyoone. Whether this is
always the case (even for this domain) is an important quegiiat is currently under
investigation.

5 Conclusions

In this paper, we described our preliminary investigatibinaw to bring state-of-the-art
techniques developed by the planning community to the redlamswer set planning.
Our preliminary results shows that the adoption of logicgrasnming technologies
does not prevent the use of simplification techniques (sackachability analysis and
landmarks identification), and these techniques can beduated in an elegant and
declarative manner. In particular, the use of logic progréng (specifically, Prolog)
significantly simplifies the problem of implementing diféet forms of analysis of the
action theories.

We demonstrated our approach on a challenging planningriost dealing with a
problem from systems biology and obtained from the mostmdogernational Planning
Competition.

References

1. M. Balduccini and M. Gelfond. Diagnostic Reasoning witiPRolog. Theory and Practice
of Logic Programming3(4,5):425-461, 2003.

2. M. Balduccini, M. Gelfond, and M. Nogueira. Answer Set 8aPesign of Knowledge
SystemsAnnals of Mathematics and Atrtificial Intelligenc2006.

3. BIOCHAMP. http://contraintes.inria.fr/Bl OCHAM EXAMPLES/ cel | _
cycl e/ cell cycle. bc.

4. A. Blum and M. Furst. Fast planning through planning graphlysis. InProceedings of
the 14th International Joint Conference on Artificial Inigénce pages 1636—-1642. Morgan
Kaufmann Publishers, San Francisco, CA, 95.

5. D. Bryce, S. Kambhampati, and D. Smith. Planning Graphridécs for Belief Space
Search.Journal of Artificial Intelligence ResearcB6:35-99, 2006.

6. Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding plagrpnoblems in non-monotonic
logic programs. IrProceedings of European conference on Plannpages 169-181, 1997.

7. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres.ofyic Programming Approach to
Knowledge State Planning, II: The DI/System.Atrtificial Intelligence 144(1-2):157-211,
2003.



130

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

Tran Cao Son and Enrico Pontelli

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcellbe KR Systerd| v: Progress
Report, Comparisons, and Benchmarkdnbernational Conference on Principles of Knowl-
edge Representation and Reasonipages 406—417, 1998.

. O. Elkhatib, E. Pontelli, and T. C. SoASP — PROLOG : A System for Reasoning about

Answer Set Programs in Prolog. PADL-04, 148-162, 2004.

O. Elkhatib, E. Pontelli, T.C. Son. A Tool for Knowledgad® Integration and Querying.
AAAI Spring SymposiumAAI/MIT Press, 2006.

M. Gelfond and V. Lifschitz. Representing actions andngje by logic programsJournal
of Logic Programming17(2,3,4):301-323, 1993.

A. Gerevini, Y. Dimopoulos, P. Haslum, and A. Saetti.isternational planning competition
— deterministic partht t p: // zeus. i ng. uni bs.it/ipc-5/.

J. Hoffmann and B. Nebel. The FF Planning System: Fast®eration Through Heuristic
Search.Journal of Artificial Intelligence Research4:253-302, 2001.

J. Hoffmann, J. Porteous, and L. Sebastia. Ordered larksnn planning.J. Artif. Intell.
Res. (JAIR)22:215-278, 2004.

K. Kohn. Molecular interaction map of the mammalian ogitle control and dna repair
systemsMol Biol Cell, 10(8), 1999.

Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answetr Solver Enhanced to Non-
tight Programs. In Vladimir Lifschitz and llkka Niemelaglitors, Proceedings of the 7th
International Conference on Logic Programming and NonMoni Reasoning Conference
(LPNMR’04) volume 2923, pages 346-350. Springer Verlag, LNCS 2923.20

V. Lifschitz. Answer set programming and plan generatiartificial Intelligence 138(1—
2):39-54, 2002.

F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of A LoBiogram By SAT Solvers.
In AAAI, pages 112-117, 2002.

V.W. Marek and M. Truszczyhski. Stable Models as an rAli6ve Logic Programming
Paradigm.The Logic Programming Paradign$pringer Verlag, 1999.

I. Niemela. Logic Programming with Stable Model Sernews a Constraint Programming
Paradigm AMAI, 25(3-4):241-273, 1999.

P. Simons, N. Niemela, and T. Soininen. Extending anpldmenting the Stable Model
SemanticsArtificial Intelligence 138(1-2):181-234, 2002.

T.C. Son, C. Baral, N. Tran, and S. Mcllraith. Domain-elegent knowledge in answer set
planning. ACM Trans. Comput. Logj&(4):613-657, 2006.

T.C. Son and E. Pontelli. Planning with Preferencesgusagic ProgrammingTheory and
Practice of Logic Programming3:559-607, 2006.

T.C. Son and E. Pontelli. Planning for Biochemical Patysv A Case Study of Answer
Set Planning in Large Planning Problem Instances. TechRigaort. NMSU-CS-2007-004.
2007.

T.C. Son, P.H. Tu, M. Gelfond, and R. Morales. An Approaiion of Action Theories of
AL and its Application to Conformant Planning. Rioceedings of the the 7th International
Conference on Logic Programming and NonMonotonic Reasppiages 172—-184, 2005.
V.S. Subrahmanian and C. Zaniolo. Relating stable nscatedl Al planning domains. In
Proceedings of the International Conference on Logic Pangming pages 233-247, 1995.
P. Thagard. Pathways to biomedical discovBtyilosophy of Scien¢&0, 2003.

P.H. Tu, T. C. Son, and C. Baral. Reasoning and PlannitigSensing Actions, Incomplete
Information, and Static Causal Laws using Logic Prograngmiifheory and Practice of
Logic Programming7:1-74, 2006.

H. Turner. Representing actions in logic programs arfdutietheories. Journal of Logic
Programming 31(1-3):245-298, May 1997.



Balduccini, Marcello, 41
Brain, Martin, 26, 71, 101

Cianni, D., 86
De Vos, Marina, 101

Faber, Wolfgang, 26
Fitch, John, 101

Gallucci Lorenzo, 56
Gebser, Martin, 71

Janhunen, Tomi, 12
Maratea, Marco, 26

Piihrer, Jorg, 71
Perri, S., 86

Author Index

Polleres, Axel, 26
Pontelli, Enrico, 116

Ricca, E., 86
Ricca, Francesco, 56

Schaub, Torsten, 26, 71
Schindlauer, Roman, 26
Sureshkumar, Adrian, 101

Terracina, G., 86
Tompits, Hans, 71

Tran Cao, Son, 116
Truszczynski, Mirostaw, 3

Veltri, P., 86

Woltran, Stefan, 71






