
Software Engineering
for

Answer Set Programming

First International Workshop
May 2007, Tempe, Arizona, USA

Marina De Vos
Torsten Schaub (Eds.)

Preface

Over the last ten years, Answer Set Programming (ASP) has grown from a pure theo-
retical knowledge representation and reasoning formalism to a computational approach
with a very strong formal backing. At present, ASP is seen as the computational embod-
iment of non-monotonic reasoning, incorporating techniques of databases, knowledge
representation, logic and constraint programming. ASP has become an appealing tool
for knowledge representation and reasoning and thanks to the increasing efficiency of
the implementations of ASP solvers, the field has now started to tackle the first indus-
trially relevant applications.

Writing complex programs in any language is not an easy task, with ASP being
no exception. Most of the modern popular programming languages have an abundance
of tools and development methodologies to facilitate and improve the coding process.
Given the differences in language design, execution, and application domains for lan-
guages such as Java and C++, the existing methodologies and tools that are available are
generally not suitable for ASP. Therefore development tools and software engineering
methodologies specifically designed for ASP are required.

The SEA’07 workshop provides an international forum to discuss all software engi-
neering problems the field currently or in the future will experience.

SEA’07 is the first event in hopefully a long series of workshops. It is being held
in Tempe, Arizona, USA as a co-located workshop of LPNMR’07, one of the leading
conferences in the area of logic programming and in particular ASP.

Apart from the regular paper presentations, the workshop will also host the ”ASP
Language Forum”. The aim of this forum is to start a general discussion on the re-
quirements and specification of input, output and intermediate languages for answer set
solvers and grounders.

Within these proceedings are the six papers accepted for publications by our pro-
gramme committee as well as three position papers for the forum.

The programme committee and organisers wish to thank all the authors who sub-
mitted papers, the forum members, all participants and everyone who contributed to the
success of the workshop. We hope to see you all again at the meeting.

May 2007 Marina De Vos
Torsten Schaub

Organisers
SEA’07

VI

Organisation

Executive Committee

Workshop Chairs: Marina De Vos (University of Bath, UK)
Torsten Schaub (University of Potsdam, Germany)

Programme Committee

Martin Brain (University of Bath, UK)
Wolfgang Faber (University of Calabria, Italy)
Enrico Pontelli (New Mexico State University, USA)
Ken Satoh (National Institute of Informatics, Japan)
Tran Cao Son (New Mexico State University, USA)
Tommi Syrjanen (Helsinki University of Technology, Finland)
Richard Watson (Texas Tech University, USA)
Stefan Woltran (Technical University of Vienna, Austria)
Yan Zhang (University of Western Sydney, Australia)

Additional Referees

Francesco Calimeri

VIII

Table of Contents

I ASP Language Forum

Comments on Modeling Languages for Answer-Set Programming 3
Mirosław Truszczyński (University of Kentucky,USA

Intermediate Languages of ASP Solvers and Tools . 12
Tomi Janhunen (Helsinki University of Technology)

What should an ASP Solver output? . 26
Martin Brain (University of Bath), Wolfgang Faber (University of Calabria),
Marco Maratea (University of Genova), Axel Polleres (National University
of Ireland), Torsten Schaub (University of Potsdam), Roman Schindlauer
(University of Calabria,Technische Universität Wien)

II Research Papers

Modules and Signature Declarations for A-Prolog: Progress Report 41
Marcello Balduccini (Texas Tech University)

Visual Querying and Application Programming Interface for an ASP-based
Ontology Language . 56
Lorenzo Galucci (University of Calabria), Francesco Ricca (University of
Calabria)

“That is Illogical Captain!” – The Debugging Support Tool spock for
Answer-Set Programs: System Description . 71
Martin Brain (University of Bath), Martin Gebser (Universität Potsdam), Jörg
Pührer (Technische Universität Wien), Torsten Schaub (Universität Potsdam),
Hans Tompits (Technische Universität Wien), Stefan Woltran (Technische
Universität Wien)

An integrated graphic tool for developing and testing DLV programs 86
S. Perri (Università della Calabria), F. Ricca (Università della Calabria), G.
Terracina (Università della Calabria), D. Cianni (Università della Calabria),
P. Veltri (Università della Calabria)

APE: An AnsProlog* Environment . 101
Adrian Sureshkumar (University of Bath), Marina De Vos (University of
Bath), Martin Brain (University of Bath), John Fitch (University of Bath)

X

Planning for Biochemical Pathways: A Case Study of Answer Set Planning in
Large Planning Problem Instances . 116
Tran Cao Son (New Mexico State University), Enrico Pontelli (New Mexico
State University)

Author Index . 131

Part I

ASP Language Forum

Comments on Modeling Languages for Answer-Set
Programming

Mirosław Truszczyński

Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA, mirek@cs.uky.edu

Abstract. Strong emphasis on intuitive and direct modeling of application do-
mains is one of the distinguishing features and major strengths of the answer-
set programming paradigm. It leads naturally to several key questions. Is there
a need for standardizing such languages? What functionality should these lan-
guages support? Are there any general design requirements for them? This note
attempts to propose some answers.

1 Introduction

Answer-set programming (ASP) is a paradigm for declarative programming. Speak-
ing informally, in ASP a problem is modeled as a theory in some language of logic.
This representation is designed so that once expanded with an encoding of particular
instance of the problem, it results in a theory whose models correspond to solutions to
the problem for this instance [13, 14].

Thus, the main automated reasoning task in support of the ASP paradigm is com-
puting models of theories. A typical approach is to ground a theory representing a
problem and its particular instance or, in other words, to compile the “program” and the
“data” into a low-level representation. The result of this step is a propositional theory
that has the same models as the original one. They are computed in the last step of the
process by programs called solvers.

This overview of the ASP process shows that when solving a problem one deals
with a theory in several different formats. First, there is a format determined by the
modeling language. Second, there is a format of the grounded (propositional) version
of this theory. Finally, there is “solver” format, a version of the ground theory in a
format accepted by solvers. A central issue to the design and development of software
tools in support of ASP is that of standards for theory formats at every stage of the
process.

My goal in this note is to address the matter of standards for ASP modeling lan-
guages. I argue that no specific standards are necessary. Instead I present several “desider-
ata” that should be taken into account when designing ASP modeling languages.

2 What is Answer-Set Programming?

In most general terms, ASP is a paradigm for modeling and solving search problems.
In order to talk about ASP and issues related to software tools for ASP, it will be con-

4 Mirosław Truszczyński

venient to introduce first a formal setting, in which search problems can be defined and
studied.

2.1 Search problems

In formal definitions of search problems, one typically assumes a fixed infinite count-
able set U , referred to throughout the note as the universe. A signature is a nonempty
set σ of relation symbols r, each with a positive integer arity kr. An instance of a sig-
nature σ is a pair I = 〈D,R〉, where D ⊆ U is a finite set called the domain of I ,
dom(I) in symbols, and

R = {rI : r ∈ σ and rI ⊆ Dkr is a relation of arity r}.

Throughout the note, Instσ will stand for the set of all instances of σ.
For two disjoint signatures σi and σs, a search problem over (σi, σs) is a recursive

set Π ⊆ Instσi×Instσs such that for every (I, S) ∈ Π , dom(I) = dom(S). Elements
of Instσi are instances of Π . If I ∈ Instσi then every S ∈ Instσs such that (I, S) ∈ Π
is a solution to Π for I .

Typically, given a search problem Π ∈ Instσi ×Instσo and its instance I ∈ Instσi ,
the objective is to find a solution to Π for I . From the practical point of view, there are
two crucial issues: how to model search problems — one must be able to specify them
in order to solve them, and how to find a solution given a problem specification and an
instance. Answer-set programming is a paradigm that addresses both issues.

2.2 Modeling search problems

Let Lσ be some logic language over σ. For now, I specify neither the set of boolean
connectives of the language nor its set of well-formed formulas. The only assumption
I make is that there is a recursive relation |= that holds between instances in Instσ

and formulas in Lσ . For example, if Lσ is the language of first-order logic (under our
definition of σ — with no constant or function symbols), one could choose for |= the
standard satisfiability relation between a structure and a formula. If Lσ is the language
of logic programs, where formulas are conjunctions of program rules, one might define
I |= ϕ to hold if I is a stable model (an answer set) of ϕ.

If σ′ ⊆ σ are signatures, then K ∈ Instσ expands I ∈ Instσ′ , written as I = K|σ′ ,
if dom(K) = dom(I) and for every r ∈ σ′, rI = rK . Let σi and σs be two disjoint
signatures such that σi ∪ σo ⊆ σ. Every formula ϕ ∈ Lσ gives rise to a search problem

Πϕ = {(K|σi ,K|σs):K ∈ Instσ and K |= ϕ}.

Indeed, dom(K|σi) = dom(K|σs) (each is equal to dom(K)) and, since |= is a recur-
sive relation, Πϕ is a recursive set.

3 A minimal requirement for an ASP language

The discussion so far implies that every logical language, for which there is a recur-
sive satisfiability relation |= between instances and formulas provides a way to specify
search problems. In other words, it can be regarded as an ASP modeling language.

Comments on Modeling Languages for Answer-Set Programming 5

How good a modeling tool an ASP language is depends to a large degree on the
expressive power of the language — the class of search problems that are defined by
formulas in the language in the way described above. One could argue that at the very
least the expressive power of an ASP modeling language should be given by the class
NPMV [18], as this class contains search problems of practical importance. In partic-
ular, all decision problems in the class NP (once they are recast as search problems)
belong to the class NPMV. The class NPMV is also known as the class NP-search, the
term I prefer as it makes a direct reference to search problems.

Of course, to be of practical use, the language also needs to be implemented, that is,
come with a way to specify signatures, instances and formulas in terms of expressions
that can be processed by computers, as well as with tools to compute solutions given a
problem description as a formula and its input specified as an instance to the problem.

These comments suggest the following minimal requirement for ASP modeling lan-
guages.

An ASP modeling language is a language of logic with a recursive satisfiability
relation |= between signature instances (structures) and formulas, and with the
expressive power equal at least to that of the class NP-search. The language
comes with an implementation — software that allows one to code problem
and instance specifications and, given the encodings, compute solutions (or
determine that none exists).

I do not think there is a need for any standardization of ASP modeling languages
beyond this basic requirement. However, there are several considerations that should
be taken into account when developing and evaluating ASP systems. Before discussing
them, I introduce two examples of ASP modeling languages.

4 Two examples

The most studied and widely used ASP modeling language is the language of logic
programming with the stable-model semantics [11, 13, 14]. In this formalism, problems
are modeled as logic program. For example, the graph 3-colorability problem can be
specified by the following program Pcol :

b(X) :- vtx(X), not r(X), not g(X).
r(X) :- vtx(X), not b(X), not g(X).
g(X) :- vtx(X), not r(X), not b(X).
:- edge(X,Y), b(X), b(Y).
:- edge(X,Y), r(X), r(Y).
:- edge(X,Y), g(X), g(Y).

This program is presented in a format that is accepted by implementations of logic
programming as an ASP system such as lparse/smodels [15, 19] and dlv [8, 12]. Each
line lists a program rule — a single conjunct of the program. Commas in the bodies
of rules stand for the conjunction and not represents the negation (to be exact, the
negation-as-failure). The empty head stands for the contradiction. The program defines
implicitly the signature σ (in this case consisting of relation symbols b, r, g, vtx and

6 Mirosław Truszczyński

edge), as well as the signature σi, which consists of those symbols that do not appear
in the heads of rules (symbols r, b and g),

An instance to the problem is a set of ground atoms of the form vtx (x) and edge(x, y)
defining an input graph. The domain is defined implicitly as the set of all constants used
in the description of the instance.

The program Pcol is indeed an encoding of the graph 3-colorability problem due to
the property that for every input instance I , instances of the signature {b, r, g, vtx , edge}
expanding the input instance and such that they are stable models of Pcol ∪ I determine
solutions to the problem. That is, extensions of the relations corresponding to b, r and
g in a stable model of Pcol ∪ I form a proper 3-coloring of the graph represented by I ,
and every proper 3-coloring has a representation as a stable model of Pcol ∪ I .

Another language that received some attention is based on the logic of propositional
schemata [7]. In this logic, a basic formula is an implication with a conjunction of atoms
in the antecedent and the disjunction of atoms (possibly existentially quantified) in the
consequent. Search problems are represented as conjunctions (lists) of formulas in this
elementary syntax. In particular, the graph 3-colorability problem can be specified as
the conjunction of the following formulas:

vtx(X) -> r(X) | b(X) | g(X).
r(X), b(X) -> .
r(X), g(X) -> .
b(X), b(X) -> .
edge(X,Y), b(X), b(Y) -> .
edge(X,Y), r(X), r(Y) -> .
edge(X,Y), g(X), g(Y) -> .

Also in this case, the program is given in the format accepted by an implementation
of the logic of propositional schemata [7]. In particular, commas in the antecedents rep-
resent the conjunction connective, -> and | stand for the implication and disjunction,
respectively. As before, the empty consequent represents the contradiction.

In the logic of propositional schemata signatures and input instances need to be
defined explicitly. Similarly as for the logic programming representation, instances
expanding an input instance and such that they are models of Tcol correspond to 3-
colorings of the graph represented by the instance.

Both logic programming and the language PS can express the whole class NP-search
and each has been implemented. Thus, they satisfy the basic requirement identified
above. I note that a variant of logic programming, disjunctive logic programming, cap-
tures a wider class of problems — the class ΣP

2 -search (wider, assuming the polynomial
hierarchy does not collapse) and also has an implementation (for instance, system dlv
[9, 12]).

5 Other requirements for ASP languages

These two examples of ASP modeling languages examples are simple and presented
here without much detail. Nevertheless they bring up several important points.

Comments on Modeling Languages for Answer-Set Programming 7

Definitions. Due to the KR roots of logic programming with the answer-set semantics,
ASP languages based on this formalism can handle effectively the problem of defini-
tions. Let us suppose, that p holds precisely when both q and r hold or when both s and
t hold. In LP languages, this definition can be stated in terms of two clauses:

p :- q, r.
p :- s, t.

In the language of propositional schemata, specifying this simple definition is much
less concise — one needs to express in a CNF representation the formula p ↔ (q1 ∧
q2) ∨ (r1 ∧ r2). It can be done, for instance, as follows:

q, r -> p.
s, t -> p.
p -> q | s.
p -> q | t.
p -> r | s.
p -> r | t.

This is a more complex representation. Moreover, as the number of cases under
which p holds grows, the complexity of the CNF representation may grow exponen-
tially. To control this growth one typically introduces new symbols to the language.

In the case when p has a recursive definition matters get still more interesting. The
definition of an answer-set involves a fixpoint construction and so LP languages sup-
port concise and direct definitions of relations that are closures of other relations. For
instance, the following simple program defines the closure path of a relation arc,

path(X,X) :- arc(X,Y).
path(X,X) :- arc(Y,X).
path(X,Y) :- arc(X,Z), path(Z,Y).

No such simple definitions of the closure of a relation is known in terms of the logic
of propositional schemata, where one needs to introduce several auxiliary predicates in
order to build a representation [7].

The importance of definitions in knowledge representation is broadly recognized.
Recent work on ID-logic [2, 4] demonstrates convincingly that providing means to
model definitions is central to effective knowledge representation. These arguments
extend to ASP and give rise to the following requirement.

An ASP modeling language should offer means for concise and direct repre-
sentations of definitions and inductive definitions.

With respect to this postulate, LP languages score well and the language PS scores
poorly. Extending the language PS and, more generally, other languages based on first-
order logic, with inductive definitions [4, 6, 3] addresses the shortcoming. I claim that
this “definition-based” approach to ASP has substantial promise and deserves attention.
On the one hand, it explicitly subsumes the language PS , on the other hand, it allows
for straightforward and direct encodings of logic programs.

8 Mirosław Truszczyński

Basic syntax. There are two major considerations one needs to have in mind when
deciding on the basic syntax of ASP languages. First, operators supported by the lan-
guage should reflect typical structure of problem statements given in natural language.
This is a “modeling” consideration. The second consideration is “computational”. The
syntax of an ASP language must be attuned to available tools for processing programs
and, most importantly, computing solutions. Currently, these tools are based on DPLL-
type backtracking search. In some cases they actually are SAT-solvers implementing
the DPLL procedure. The effectiveness of DPLL-type backtracking search depends to
a large degree on the effective unit propagation. The simpler the syntax of rules, the
stronger propagation methods one can apply, leading to better performance of solvers.
These considerations suggest the following postulate:

The basic syntax of ASP languages should be rooted in the notion of a clause
— a conjunction of literals implying a disjunction of atoms.

All LP languages and the language PS support formulas that are conjunctions of
clauses. The restriction to clauses does not pose any major problems for LP languages.
However, for the language PS, the restriction to clauses may make modeling even non-
recursive definitions difficult. One could alleviate the problem to some degree by allow-
ing additional connectives to the language, specifically, the “if and only if ” connective.
This approach does not address the problem in general (in particular, the problem of
inductive definitions). Thus, extensions of the language PS with Horn rules or logic
programs, as discussed above, may be a better solution.

On the other hand, the language PS is directly aligned with the syntax accepted by
SAT-solvers. Due to dramatic advances of SAT-solver technology, it is a major advan-
tage. Whenever specification of a search problem do not require modeling the closure
operation, the language PS might be the right modeling tool.

A formalism that takes full advantage of the syntax of clauses as defined above
is that of disjunctive logic programming. Disjunctive program rules are implications,
where the antecedent is a conjunction of atoms and negation-as-failure literals, the con-
sequent is a disjunctions of atoms. The two formalisms discussed above either do not
allow negation in the antecedent or disjunctions in the consequent. With the semantics
of answer sets, the disjunctive logic programming is an effective knowledge representa-
tion formalism and the basis for the dlv [9, 12], one of the most advanced ASP systems.
Two important features of this formalism are explicit means to model indefinite infor-
mation (through disjunctions) and its expressive power given by the class ΣP

2 -search.
Support for externally evaluated relations and functions. Most ASP languages sup-
port built-in integer arithmetic operations and integer arithmetic comparison relations.
They also support the equality relation over the domain of problem instances. These
modeling features of ASP languages turned out to be crucial for concise encodings of
problems of practical interest.

The benefits of built-in functions and relations can be expanded to custom-built
relations and functions coded in programming languages external to an ASP language.
In this way programmers are able to delegate simple computational tasks that are hard
to capture in a declarative fashion to much more effective procedural languages. Such
functionality is, for example, available in the lparse/smodels system. This discussion
brings up the following requirement.

Comments on Modeling Languages for Answer-Set Programming 9

An ASP modeling language should have support for external evaluation of
relations and functions.

Aggregates. Aggregates in the form of cardinality and weight atoms were introduced to
ASP by lparse/smodels system. Experiments demonstrated that constraints specifying
search problems often involve aggregates. Expanding the syntax of an ASP language
with aggregates often allows us to design representations of search problems that are
direct, intuitive and concise. Importantly, it turns out that computational tools devel-
oped for programs without aggregates can be generalized to the case with aggregates.
Moreover, due to significant decrease in the size of the representation and some new
propagation methods, the overall performance improves substantially. I feel that pro-
viding the functionality of aggregate operations is one of the most crucial requirements
for ASP:

An ASP modeling language must provide support for aggregate operations.

At present all ASP modeling languages provide some level of support for aggre-
gates. However, there are significant differences in the syntax and, on the side of LP
languages, some differences in the semantics of aggregates [19, 1, 10, 16, 17]. As for
approaches stemming from the language PS and ID-logic, support for cardinality and
weight atoms is provided by the implementation of the logic PS+ [5]. There are no
semantic difficulties though, as long as aggregates do not appear in the definitions.
Optimization and preferences. Most problems of interest are not plain search prob-
lems, where any solution satisfying constraints will do. In most cases, there are prefer-
ences that users have and optimization criteria that they take into account.

An ASP modeling language must have means to specify user preferences, goal
functions, and optimization criteria.

Some current ASP languages provide support for preferences and optimization.
Most comprehensive approach is implemented by the dlv system. A more narrow ap-
proach, focusing on optimization of linear goal functions is available in lparse/smodels.
Nevertheless, I feel this is an area where the field has not bridged the gap between theo-
retical studies of preferences (there is a vast literature on the subject, much of it devoted
to preferences in logic programming) and practical implementations. Addressing the
problem of preferences in ASP modeling languages is one of the main problems for the
field.
Interoperability with databases. ASP languages can be regarded as query languages
for deductive database systems. In fact, much of the interest in logic programs with
negation came from the database community.

There are several reasons to do it. Let us consider a database of employees. The goal
is to select a team of at most five with particular skills and satisfying some additional
constraints (preventing some pairs of employees from being included together in a team,
ensuring that some skills are adequately represented, etc.). It may be the case that the
selection has to be repeated with some regularity and that the set of employees in the
company changes with time, the changes being reflected in a database. In this scenario,
an ASP modeling language should support accessing the company database, posing

10 Mirosław Truszczyński

a query to extract tables specifying data needed for the team selection and, finally,
modeling the constraints and criteria to be used in the selection. Other applications
might concern data integration, and query processing in case of data inconsistency.
These comments serve as a justification for the following postulate:

An ASP modeling language must provide support for interactions with database
systems.

This postulate was one of the main principles guiding the development of the dlv
system. As a result, the dlv has all the functionality needed for the effective interoper-
ability with database systems.

6 Summary

This note presents a personal look at the problem of designing ASP modeling lan-
guages. I identified one general fundamental requirement related to the fact that the
main goal of ASP modeling languages is to offer ways to express search problems.
I also put forth several other postulates, based on the current state-of-the-art in ASP
systems.

There are several issues that I have not discussed here but that are of importance
to ASP modeling languages. I will now mention two of them. First, there is a prob-
lem of ASP program development tools. As the complexity of applications grows, it
becomes acutely clear that they are necessary. Second, there is a problem of express-
ing the syntax of ASP programs within the framework of the Rule Markup Initia-
tive (cf. http://www.ruleml.org/). The problem has received some some attention (cf.
http://www.kr.tuwien.ac.at/staff/roman/aspruleml/). Nevertheless, it seems to me much
remains to be done, especially that the effort I mentioned has focused only on ASP
languages based on the logic programming formalism.

Acknowledgments

The author acknowledges the support of NSF grant IIS-0325063 and KSEF grant 1036-
RDE-008.

References

1. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and Gerald Pfeifer, Aggregate functions in dis-
junctive logic programming: semantics, complexity, and implementation in DLV, Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-2003), Mor-
gan Kaufmann, 2003, pp. 847–852.

2. M. Denecker, The well-founded semantics is the principle of inductive definition, Logics
in Artificial Intelligence (J. Dix, L. Fariñas del Cerro, and U. Furbach, eds.), vol. 1489,
Springer, 1998, pp. 1–16.

3. M. Denecker and E. Ternovska, A logic for non-monotone inductive definitions, ACM Trans-
actions on Computational Logic (2008), To appear.

Comments on Modeling Languages for Answer-Set Programming 11

4. Marc Denecker, Extending classical logic with inductive definitions., Computational Logic -
CL 2000, Lecture Notes in Computer Science, vol. 1861, Springer, 2000, pp. 703–717.

5. D. East, M. Iakhiaev, A. Mikitiuk, and M. Truszczyński, Tools for modeling and solving
search problems, AI Comunications 19(4) (2006), 301–312.

6. D. East and M. Truszczyński, Datalog with constraints, Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI-2000), AAAI Press, 2000, pp. 163–168.

7. D. East and M. Truszczyński, Predicate-calculus based logics for modeling and solving
search problems, ACM Transactions on Computational Logic 7 (2006), 38–83.

8. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello, A deductive system for non-
monotonic reasoning, Logic programming and nonmonotonic reasoning (Dagstuhl, Ger-
many, 1997), Lecture Notes in Computer Science, vol. 1265, Springer, 1997, pp. 364–375.

9. , A KR system dlv: Progress report, comparisons and benchmarks, Proceeding of
the 6th International Conference on Knowledge Representation and Reasoning (KR-1998),
Morgan Kaufmann, 1998, pp. 406–417.

10. Wolfgang Faber, Nicola Leone, and Gerald Pfeifer, Recursive aggregates in disjunctive logic
programs: Semantics and complexity., Proceedings of the 9th European Conference on Arti-
ficial Intelligence (JELIA 2004), LNAI, vol. 3229, Springer, 2004, pp. 200 – 212.

11. M. Gelfond and V. Lifschitz, The stable semantics for logic programs, Proceedings of the
5th International Conference on Logic Programming, MIT Press, 1988, pp. 1070–1080.

12. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello, The dlv system
for knowledge representation and reasoning, ACM Transactions on Computational Logic
7(3) (2006), 499–562.

13. V.W. Marek and M. Truszczyński, Stable models and an alternative logic programming
paradigm, The Logic Programming Paradigm: a 25-Year Perspective (K.R. Apt, W. Marek,
M. Truszczyński, and D.S. Warren, eds.), Springer, Berlin, 1999, pp. 375–398.

14. I. Niemelä, Logic programming with stable model semantics as a constraint programming
paradigm, Annals of Mathematics and Artificial Intelligence 25 (1999), no. 3-4, 241–273.

15. I. Niemelä, P. Simons, and T. Syrjänen, SLP solver smodels, 1997,
http://www.tcs.hut.fi/Software/smodels/.

16. N. Pelov, Semantics of logic programs with aggregates, PhD Thesis. Department of Com-
puter Science, K.U.Leuven, Leuven, Belgium (2004).

17. N. Pelov, M. Denecker, and M. Bruynooghe, Well-founded and stable semantics of logic
programs with aggregates, Theory and Practice of Logic Programming (2006), Accepted
(available at http://www.cs.kuleuven.ac.be/ dtai/projects/ALP/TPLP/).

18. A. Selman, A taxonomy of complexity classes of functions, Journal of Computer and System
Sciences 48 (1994), no. 2, 357–381.

19. P. Simons, I. Niemelä, and T. Soininen, Extending and implementing the stable model se-
mantics, Artificial Intelligence 138 (2002), 181–234.

Intermediate Languages of ASP Systems and Tools

Tomi Janhunen

Helsinki University of Technology
Department of Computer Science and Engineering

P.O. Box 5400, FI-02015 TKK, Finland
Tomi.Janhunen@tkk.fi

Abstract. In answer set programming (ASP), a search problem is solved by de-
scribing its solutions in the input language of an answer set solver which is then
used to compute solutions to the problem. Usually, the problem is converted to
an intermediate representation before the actual computation of solutions starts.
The current ASP systems employ a number of simplified languages (file formats
or like) for this purpose. In this paper, we review a number of intermediate lan-
guages and analyse their properties. The goal is to identify best features of such
languages to be used as the basis of new designs and thus pave the way for the
standardisation of intermediate languages in ASP.

1 Introduction

Answer set programming (ASP) [1–3] is an approach to knowledge representation and
reasoning in which a search problem is formalised in a logical language so that the
models of the representation, i.e., a logic program, capture solutions to the problem.
Then the models of the program are computed in terms of a dedicated search engine,
hereafter called an answer set solver. A general architecture for an ASP system is de-
picted in Figure 1. A full-fledged ASP system provides a programmer with a rule-based
input language using which problems are encoded. The front-end of the system consists
of a parser for this language and the outcome is an intermediate representation of the
problem in a simplified language directly supported by the search engine. The search
of models, i.e., variable assignments potentially fulfilling additional criteria, is then
performed using the respective answer set solver. The architecture described above is
simplified in the sense that solvers may carry out optional compilation steps—possibly
giving rise to additional intermediate representations of the problem.

The goal of this paper is to analyse such intermediate representations and, in par-
ticular, general requirements for languages on which they are based. Some of these
languages can be merely viewed as machine-readable file formats that are easy to parse
by the respective solver. Other intermediate languages still resemble input languages
in the sense that they come with a concrete human-readable syntax but strict syntactic
restrictions may apply. Drawing the borderline between the two extremes may be diffi-
cult though. In what follows, we briefly review a number of solvers from the ASP and
related domains and point out some intermediate languages of our interest.

– The SMODELS system [4] has its own internal file format—hereafter referred to as
the SMODELS format [5]. The front-end of the system, LPARSE, is responsible for

Intermediate Languages of ASP Systems and Tools 13

Problem
representation

Parser

=⇒
Intermediate

representation
Solver

=⇒
Variable

assignment

Fig. 1. General Architecture for Answer Set Programming

grounding and partially evaluating the input program which is then passed to the
SMODELS engine in the internal format. The user can access this representation but
it is not human-readable because of the numerical representation of rules.

– The Center for Discrete Mathematics and Theoretical Computer Science at Rut-
gers University (DIMACS) has specified two formats for propositional satisfiability
problems [6]. The DIMACS/CNF format is the input language for many satisfia-
bility (SAT) solvers1. In analogy to the SMODELS format, this format enables the
representation of propositional theories in conjunctive normal form (CNF).

– A number of ASP systems compile logic programs into propositional theories us-
ing Clark’s completion procedure [7]. However, additional constraints called loop
formulas are incrementally introduced to capture answer sets in general. This is
the strategy behind the ASSAT [8] and CMODELS [9] systems which understand a
subset of the SMODELS format as their input language. The DIMACS/CNF format
is used as an intermediate representation for the completion and loop formulas.
The author [10] has developed a single-shot transformation for the same purpose.
The respective implementation, i.e., the LP2SAT system, supports a subset of the
SMODELS format and produces a DIMACS/CNF representation of the program.

– There are mainly two systems developed for disjunctive logic programming: DLV
[11] and GNT [12]. As reported by Koch et al. [13], the former system exploits
SAT technology in checking the minimality of stable models. This implies that the
DIMACS/CNF is used at least indirectly by DLV but the user has no access to the
representation. On the other hand, the GNT system consists of two cooperating
instances of the SMODELS engine. When GNT is used, disjunctive programs are
instantiated using LPARSE and hence an extension of the SMODELS format is used.
More recently, the CMODELS system was also extended for proper disjunctive rules.

– Boolean circuits (BCs) provide a viable alternative to propositional formulas as
they are able to share structure in a very natural way. The BCSAT system [14] im-
plements a check for BC satisfiability and it is based on a file format of its own [15].
The original BCSAT engine solved BCs in this format directly but now an optimised
translation into DIMACS/CNF is provided to exploit the rapid improvement of SAT
solvers. Therefore we view the BCSAT format as an intermediate language.

– Yet another format has been proposed for pseudo-Boolean solvers which deal with
linear constraints and objective functions rather than plain Boolean constraints. We
include the respective input format of PB06 evaluation [16] in our analysis.

In addition to the development of languages and solvers, the ASP community has
put forward systematic benchmarking in order to keep track what is the current state of

1 Many SAT solvers can be accessed through http://www.satlive.org/.

14 Tomi Janhunen

Syntactic expression Internal representation
(1) a← b1, . . . ,bp,∼c1, . . . ,∼cn. 1xy#axy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(2) a← l {b1, . . . ,bp,∼c1, . . . ,∼cn}. 2xy#axy(p + n)xynxylxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(3) {a1, . . . ,ah} ← b1, . . . ,bp,∼c1, . . . ,∼cn. 3xyhxy#a1xy . . . xy#ahxy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(4) a← l ≤ [b1 = w1, . . . ,bp = wp,

∼c1 = wp+1, . . . ,∼cn = wp+n].
5xy#axylxy(p + n)xynxy
#c1xy . . . xy#cnxy#b1xy . . . xy#bpxy
wp+1xy . . . xywp+nxyw1xy . . . xywp←↩

(5) minimize[b1 = w1, . . . ,bp = wp,
∼c1 = wp+1, . . . ,∼cn = wp+n].

6xy0xy(p + n)xynxy
#c1xy . . . xy#cnxy#b1xy . . . xy#bmxy
wp+1xy . . . xywp+nxyw1xy . . . xywp←↩

(6) a1, . . . ,an 0←↩#a1xya1←↩ . . .←↩#anxyan←↩0←↩

(7) compute{b1, . . . ,bp,∼c1, . . . ,∼cn}. B+←↩#b1←↩ . . .←↩#bp←↩0←↩
B-←↩#c1←↩ . . .←↩#cn←↩0←↩

(8) Trailer when c models are to be computed c←↩

Table 1. The internal file format of the SMODELS system

the art in ASP. The Dagstuhl initiative [17] led to the development of a dedicated bench-
marking system called ASPARAGUS2. Already the first competition showed the need of
commonly agreed representations for benchmark problems. As the first step in this di-
rection, a core language was drafted by the steering committee of the ASP competition
at LPNMR’04 [18]. A variant of the core format, the ground core format (GCORE), has
been recently proposed by Namasivayam et al. [19]. It is natural to address the GCORE
format in this context due to its potential role in future competitions.

The rest of this paper is organised according to the following plan. In Section 2, we
describe some of the formats introduced above in more detail. These pieces of infor-
mation serve as the basis for the analysis and discussion that follows in Section 3. The
interoperability of KR systems and the role of intermediate languages in this respect is
addressed in Section 4. Recommendations presented in Section 5 conclude this paper.

2 Examples of Intermediate Languages

This section provides an introduction to a number of intermediate languages. Some of
them are merely internal file formats exploited by ASP systems in practise whereas
others are of more general syntax and nature—some distinctions in this respects will
be made in Section 3. Meanwhile we will describe the details of five intermediate lan-
guages, i.e., the SMODELS format, the DIMACS/CNF format, the ground CORE format,
the PB06 format, and the BCSAT format. Some extensions to these formats will be dis-
cussed, too. Two special symbols, literally “xy” for (white) space and “←↩” for newline,
appear in the format descriptions for the sake of concise representation.

2 The system is installed under http://asparagus.cs.uni-potsdam.de/.

Intermediate Languages of ASP Systems and Tools 15

Syntactic expression Internal representation
(1) Header for n atoms and c clauses pxycnfxynxyc←↩

(2) Comments cxycomment←↩

(3) b1∨ . . .∨bp ∨ ¬c1∨ . . .∨¬cn. #b1xy . . . xy#bpxy
−#c1xy . . . xy−#cnxy0←↩

Table 2. The DIMACS/CNF format

As suggested by the list above, we begin by describing the SMODELS format that
provides an intermediate format for delivering a logic program from the front-end
LPARSE to the actual SMODELS engine [4] which implements the search for models.
A description of the format is included in the Appendix B of [5] but we present an
abridgment in Table 1. A basic assumption is that each ground atom a is assigned a
unique number denoted by #a. The representation of a program starts with a listing of
its basic rules (1), constraint rules (2), choice rules (3), weight rules (4), and minimize
statements (5) using the respective representations given in Table 1. Each line starts
with a fixed code that identifies the type of the rule in question.3 For instance, a basic
rule a ← b,∼c is represented by a single line “1 1 2 1 3 2←↩”—assuming atom
numbers #a = 1, #b = 2, and #c = 3. The next part (6) provides the symbol table for
the program, i.e., a mapping from atom numbers back to symbols. Programs may in-
volve invisible atoms without a symbolic name. Moreover, compute statements (7) may
be issued in order to constrain models to be computed by the solver. A summary of this
information, i.e., atoms assumed to be true and false, are listed in separate sections each
atom on a line of its own. The representation ends with the number of stable models to
be computed (8). All models should be computed if this count is nil.

Compared to the SMODELS format, the DIMACS/CNF format [6] has a much sim-
pler structure as specified in Table 2. The representation of a propositional theory in
CNF begins with a header line (1) which nicely enables the solver to allocate appropri-
ate data structures for n atoms and c clauses before reading them in. Any number of
comments (2) can be included; also before the header and the representation of clauses
(3). Actually, clauses are delimited by 0s so that grouping to separate lines is not neces-
sary although advisable. Unfortunately, some SAT solvers do not support empty clauses,
i.e., p = n = 0 in (3), which is disappointing in view of logical completeness. The sim-
plicity of the format, however, suggests the DIMACS/CNF format as a machine code
for knowledge representation. This view is present in the design of systems like ASSAT,
CMODELS, and LP2SAT that transform programs represented in the SMODELS format
into a DIMACS/CNF representation. The result of the transformation is usually more
complex/spacious than the original representation which goes back to fact that the ex-
pressiveness of rules under stable models strictly exceeds that of clauses [10].

The current extensions that have been proposed to the SMODELS format are listed in
Table 3. The first rule type (1) with an ordered disjunction in the head [20] is used only
internally by LPARSE, i.e., rules of this kind never appear in its output. The integration of
proper disjunctive rules (2) to the CMODELS system led to the introduction of the code

3 Code 4 is practically unused although the SMODELS engine still supports it.

16 Tomi Janhunen

Syntactic expression Internal representation
(1) a1× . . .×ah ← b1, . . . ,bp,∼c1, . . . ,∼cn. 7xyhxy#a1xy . . . xy#ahxy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(2) a1| . . . |ah ← b1, . . . ,bp,∼c1, . . . ,∼cn. 8xyhxy#a1xy . . . xy#ahxy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(3) b1∨ . . .∨bp ∨ ¬c1∨ . . .∨¬cn. 9xy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩

Table 3. Some extensions to the SMODELS format

8 for such rules. As a result, the new versions of LPARSE are incompatible with the
GNT system [12] which abuses choice rules, represented under code 3, as substitutes
for disjunctive ones. The plan is to remove this discrepancy in the future versions of
GNT. Note that CMODELS is able to handle programs that contain both choice rules
and disjunctive rules. The third extension (3) has arisen in the context of translating
logic programs into clauses. The idea is to enrich the SMODELS format by incorporating
DIMACS/CNF as its subformat. Then tools like LP2SAT can handle rules and clauses
on equal basis and form mixed representations of such expressions if appropriate. The
status of the extensions listed in Table 3 is still unofficial and their existence in the
future is highly dependent on the developers of the tools involved. For now, there is no
official body that would control the evolution of the SMODELS format.

The CORE format [18], as decided by the steering committee of the ASP system
contest, aims to define a common syntax for disjunctive rules of the form (2) in Ta-
ble 3.4 To this end, the format specifies (i) what kind of identifiers are used for constant,
variable, and predicate symbols, (ii) the syntax of atomic formulas, (iii) symbols for
logical connectives, and finally (iv) the syntax of rules. As an extensive example, the
reader may consider a disjunctive rule

4 Note that basic/normal rules (1) from Table 1 form a special case of such rules.

Syntactic expression Internal representation
(1) a← b1, . . . ,bp,∼c1, . . . ,∼cn. v#axy:-xyv#b1,xy . . .,xyv#bp,xy

not v#c1,xy . . .,xynot v#cn.←↩
(2) l{a1, . . . ,ah}u← b1, . . . ,bp,

∼c1, . . . ,∼cn.
lxy{xyv#a1, . . .,v#ah}xyuxy:-xy
v#b1,xy . . .,xyv#bp,xy
not v#c1,xy . . .,xynot v#cn.←↩

(3) a← l{b1, . . . ,bp,∼c1, . . . ,∼cn}u. v#axy:-xylxy{xyv#b1,xy . . .,xyv#bp,xy
not v#c1,xy . . .,xynot v#cnxy}xyu.←↩

(4) a← l ≤
[b1 = w1, . . . ,bp = wp,
∼c1 = wp+1, . . . ,∼cn = wp+n]
≤ u.

v#axy:-xylxy{xy
v#b1=w1,xy . . .,xyv#bp=wp,xy
not v#c1=wp+1,xy . . .,xynot v#cn=wp+nxy
}xyu.←↩

Table 4. Examples of the GCORE format

Intermediate Languages of ASP Systems and Tools 17

Syntactic expression Internal representation
(1) Header for v variables and c constraints *xy#variable=xyv xy#constraint=xyc←↩

(2) Comments *xycomment←↩

(3) Objective function a1v1+ . . . +anvn min:xya1xyx#v1xy . . . xyanxyx#vn ;←↩

(4) a1v1+ . . . +anvn = b a1xyx#v1xy . . . xyanxyx#vnxy=xyb;←↩
(5) a1v1+ . . . +anvn ≥ b a1xyx#v1xy . . . xyanxyx#vnxy>=xyb;←↩

Table 5. The pseudo-Boolean format used at PB06 competition

open(X,Y); closed(X,Y) :- abscissa(X), ordinate(Y).

expressed in the CORE syntax. It may be questionable to view this format as an inter-
mediate language in the first place because it is merely a specification of a common
input language for a number of ASP solvers: A practicality when organising an ASP
solver contest. However, the GCORE format [19] is somewhat closer to the SMODELS
format in the sense that all rules are assumed to be ground. As an indication of this,
atom names are substituted by standard names of the form vn where n is a number. Ta-
ble 4 collects the representations of rules involved in the SMODELS format (recall Table
1) expressed using the GCORE format. Generally speaking, the GCORE format admits
a more liberal use of cardinality and weight constraints, recall the bodies of rules (3)
and (4) in Table 4, respectively, used in the heads and bodies of rules such as

1 {v1, v2} 2 :- 1 {v3, v4}, {v5, v6} 2.

In this sense, the format is more general than the SMODELS format, has features of the
input language of LPARSE but only ground rules are supported. In view of the original
CORE format, however, no representation is reserved for proper disjunctive rules.

The last two formats taken into consideration originate from other paradigms than
ASP. Pseudo-Boolean solving generalises satisfiability checking in terms of traditional
linear constraints and an objective function subject to minimisation. Problems of this
kind are represented in a format described in Table 5. The headers (1) and comments
(2) are analogous to the DIMACS/CNF format. Boolean variables are represented as
in the GCORE format but canonical names start with “x” rather than “v”. The first
non-comment line may include an objective function (3) to be minimised. The pseudo-
Boolean constraints, i.e., equalities (4) and inequalities (5), follow. These constructs
resemble weight constraints used in ASP and an objective function can be expressed
using a minimisation statement (5) from Table 1. It is good to point out that the PB06
format can be viewed as a generalisation of the DIMACS/CNF format because a tradi-
tional Boolean clause b1∨ . . .∨bp ∨ ¬c1∨ . . .∨¬cn can be captured with an inequality
b1+ . . .+bp−c1 . . .−cn ≥ 1− n where bi’s and cj’s take either 0 or 1 as their values.

Boolean circuits provide yet another representation for Boolean functions. The input
language of the BCSAT system provides a flexible representation of Boolean circuits in
terms of gate definitions of the form g:=f where g is the name of the gate and f is a
Boolean formula associated with g. The syntax of formulas is summarised in Table 6.
Together, a set of gate definitions should form a non-circular definition of the Boolean
circuit under consideration. Besides variables, Boolean constants, and standard Boolean

18 Tomi Janhunen

variable | T | F
F1 == F2 | EQUIV(F1, . . .,Fn)
F1 => F2 | IMPLY(F1 , F2)
F1 | F2 | OR(F1, . . .,Fn)
F1 & F2 | AND(F1, . . .,Fn)
˜ F1 | NOT(F1)
F1 ˆ F2 | ODD(F1, . . .,Fn)
EVEN(F1, . . .,Fn)
ITE(F1 , F2 , F3)
[l , u] (F1, . . .,Fn)
(F1)

Table 6. Syntax of formulas used in the BCSAT format

connectives there are primitives for parity checking, the if-then-else connective adopted
from binary decision diagrams (BDDs), and cardinality constraints. These extensions
nicely increase the expressiveness of basic Boolean circuits in view of applications.
Gate definitions may be accompanied by gate assignments of the forms “ASSIGN g;”
or “ASSIGN ˜g;” which set a specific gate g to true (T) or false (F), respectively, in
analogy to compute statements in the SMODELS format. Finally, we mention that a file
in the BCSAT format is supposed to start with a header line “BC1.0←↩”.

3 Analysis and Discussion

The purpose of this section is to present an analysis of five intermediate languages intro-
duced in Section 2: the DIMACS/CNF, SMODELS, GCORE, PB06, and BCSAT formats.
In the sequel, a number of properties of these languages will be pointed out and followed
by a discussion on their prevalence among the quintet under consideration. A summary
of these results is collected in Table 7. However, certain properties shared/lacked by all
formats are not mentioned for space reasons but subsequently discussed in Section 3.1.
The labels of the following items refer to the columns of Table 7.

1. FF: The language has been designed as a pure (machine-readable) file format.
This is clearly true for DIMACS/CNF and SMODELS formats. As an indication
of this, it is straightforward to implement a parser for these formats—a simple
automaton will do the job. The ease of parsing is also a goal of the PB06 format
although it insists on a support for arbitrarily long integers. A further aspect of
the these low-level file formats is that they are no longer valid input for the parser
depicted in the general architecture (recall Figure 1), i.e., they do not correspond to
a syntactic fragment of the input language. Indeed, the GCORE format is based on a
simplified LPARSE syntax in which ground atoms are additionally represented using
standard names v1, v2, . . . and so on. This means in principle that programs in the
GCORE format can be recycled through the parser but this may not be feasible for
the sake of efficiency. For instance, a simplified parser called GLPARSE is exploited
by the ASPARAGUS system in order not to affect benchmarking times of solvers by

Intermediate Languages of ASP Systems and Tools 19

Format FF VI CL SN EX
DIMACS/CNF × × ×
SMODELS × × ×
GCORE × ×
PB06 × × ×
BCSAT × × × ×

Table 7. Properties of Certain Intermediate Languages Summarised

the time spent on parsing. It is also worth mentioning LPLIST5 which transforms
problem representations in the SMODELS format, or alternatively DIMACS/CNF,
back to a symbolic representation that can be parsed again. Among the formats
subject to analysis herein, the BCSAT format is in its own category as it is based on
a recursive syntax and thus requires more sophisticated methods for parsing. In any
case, the BCSAT format needs not be a fragment of the input language of the overall
system in analogy to DIMACS/CNF and the SMODELS format.

2. VI: The format includes version information that enables revisions in the future.
This feature boils down to having a header to carry such information in the format.
This is the case for DIMACS/CNF and the BCSAT format although only the latter
has a proper version number incorporated. The other three formats do not have
headers which makes it difficult to detect format versions reliably. For instance,
the extensions of the SMODELS format described in Table 3 cannot be perceived
if no rules under codes 7–8 are present. The integrity of headers is naturally a
prerequisite for reliable detection. Moreover, it does not appear as a good idea to
express version information in comment lines in an ad-hoc manner.

3. CL: The use of comment lines is allowed.
All formats under consideration except the SMODELS format have this property.

4. SN: The language carries symbolic names for (propositional) variables.
This property is significant from the user’s point of view, i.e., it enables the respec-
tive solver to print variable assignments in a human-understandable way in the last
phase of answer set computation (recall Figure 1). The users of SAT solvers have
to live with the lack of this property in DIMACS/CNF and digest lists of integers or
binary vectors in a way or another. Fortunately, the mainstream ASP solvers have
carried symbolic information from the very beginning. To this end, the SMODELS
format includes a symbol table as specified by (6) in Table 1. On the other hand, the
BCSAT format uses symbolic names of variables as lexical elements thus avoiding
loss of information in this respect. The lack of support for symbolic names can be
alleviated to some extent by incorporating such information within comment lines.
But this is only a partial solution because the format itself does not specify the
representation of symbolic names which may therefore diverge.

5. EX: The language is easily extendible with new syntactic expressions.
The poor extendibility of DIMACS/CNF goes back to the type information “cnf”
given in the header. Thus it is unnatural to introduce new expressions unless several

5 At least for now, LPLIST is distributed with CIRC2DLP at http://www.tcs.hut.fi/
Software/circ2dlp/.

20 Tomi Janhunen

representations are concatenated one after another. The flexibility of the SMODELS
format has already been demonstrated in Table 3 where new codes for rules are
introduced. The encoding of objective functions under the PB06 format (recall Ta-
ble 5) suggests a strategy for extensions using labels for types. The remaining two
formats are easy to extend by new syntax due to flexibility of their grammars.

Interestingly, none of the formats under consideration has all of properties sum-
marised in Table 7. The BCSAT format appears to be closest to having them all. On the
other hand, the coverage of syntactic primitives was not introduced as a criterion for the
analysis because the languages have been designed for slightly different purposes.

3.1 Further Properties

In what follows, we will address further properties of intermediate languages: (i) pros
and cons of binary file formats, (ii) modularity aspects of intermediate languages, and
(iii) the possibility of embedding metadata in intermediate representations.

All the formats addressed above are based on a textual (ASCII) representation either
using numbers or character strings as lexical tokens. Thus none of them is comparable
to binary file formats produced by compilers of conventional programming languages.
This is perhaps advantageous because, on one hand, binary representations are more
tedious to implement in a machine independent way. On the other hand, textual for-
mats provide a less compact representation but can be improved using compression
techniques if space complexity becomes a concern.

The study of module systems and modularity in general are receiving growing atten-
tion in ASP [21–23]. Inspired by modular notions of program equivalence, the author
has implemented a link editor LPCAT6 for programs in SMODELS format—enabling the
construction of larger programs by linking smaller ones together. This is analogous to
the use of object modules and libraries in conventional programming systems. For tools
like LPCAT symbolic information plays a crucial role and thus formats that support sym-
bolic names are best off in view of implementing a module system. For instance, the
SMODELS format does not have a built-in support for modules, i.e., it has been designed
in order to represent a single program consisting of a set of rules. However, due to sepa-
rators used in the SMODELS format, libraries could be formed by simple concatenation
of files. Yet another strategy is to use file archive tools for storing program modules,
e.g., PKZIP provides random access to compressed modules in contrast to the use of
TAR and GZIP. The other format with symbolic names, i.e., the BCSAT format, does
neither have a module system. At least in principle, circuit definitions can be joined
together as long as the acyclicity of definitions is not endangered by such operations.
The headers of circuit descriptions make only a minor obstacle for concatenation.

There are two fundamental pieces of information associated with a symbol: its name
and the unique number assigned to it. Invisible symbols, as addressed in [10], can be
identified with their numbers. The role of symbols and symbol tables can be developed
further in the intermediate languages of ASP systems. Building a proper support for

6 This tool is used in our translation-based implementation of prioritised circumscription, the
PRIO2CIRC system, available at http://www.tcs.hut.fi/Software/circ2dlp/.

Intermediate Languages of ASP Systems and Tools 21

lparse program.lp | smodels
lparse program.lp | lp2atomic | lp2sat | minisat

Table 8. Shell pipelines for computing stable models using SMODELS, LP2SAT, and MINISAT

modular program construction requires the distinction of symbol types in addition to
names. For instance, certain symbols act as the input interface for a module whereas
some other symbols mediate its output to other modules in a program. Further exten-
sions become necessary if the support for external function calls is integrated. In the
wildest scenarios, we should be ready to associate arbitrary metadata with symbols.
Such features are not present in the formats listed in Table 7.

4 On the Interoperability of ASP Tools

The development of feasible intermediate languages for ASP solvers can substantially
enhance their interoperability and usability with other related tools. So far, our expe-
riences have restricted to the use and development of tools based on the SMODELS
format and its extensions as well as DIMACS/CNF. As an example, let us consider the
use of LPARSE and SMODELS according to the general ASP architecture in Figure 1.
The first line in Table 8 shows an exemplary command line for running LPARSE and
SMODELS using a shell pipe “|” in between. When executed, the program in the input
file “program.lp” is read in and grounded by LPARSE. Then the ground program is
forwarded in the SMODELS format through the pipe for the computation of one stable
model by SMODELS; further models could be requested using command line options.

The second command line in Table 8 presents a pipeline for the same task but using
a translator from the SMODELS format to DIMACS/CNF [10] and the MINISAT solver
[24]. The first translator, viz. LP2SAT, removes positive body literals from the pro-
gram which remains in the SMODELS format. In the next step, another translator called
LP2SAT forms the Clark’s completion for the program and outputs a DIMACS/CNF rep-
resentation for it. Finally, MINISAT is used to search a model for the completion. The
use of DIMACS/CNF complicates the task of extracting a stable model from the model
of the completion because symbolic information is lost in the last phase—decreasing
the interoperability of tools involved. However, in order to circumvent this problem in
practise, we include a symbol table in the comment lines of the DIMACS/CNF repre-
sentation and replace MINISAT with a shell script that extracts names of atoms from
comments, stores them in a temporary file, runs MINISAT, extracts a model from its
output, and maps atom numbers in the model back to their symbolic names. By this
procedure we obtain a degree of usability similar to that of SMODELS. These observa-
tions suggests a need for an interface specification for ASP/SAT solvers themselves.

In addition to enhanced interoperability, intermediate languages that are commonly
agreed upon can facilitate the development of new ASP tools. For instance the rapid ad-
vancement of SAT solvers is partly due to a shared format that enables straightforward
exchange of benchmarks among the developers. Similar development is going on in the
area of ASP. For instance, ASSAT and CMODELS are new solvers that have been de-

22 Tomi Janhunen

veloped around the SMODELS format. Quite recently, the combination of LPARSE and
SMODELS as illustrated in Table 8 is getting a challenger from that of GRINGO7 and
CLASP [25]. Again, an intermediate format plays a role in this development by separat-
ing the phase of parsing and grounding from that of solving and computing models.

In view of the interoperability of systems and tools, it is also worth raising two “po-
litical” aspects for discussion. First of all, we have several examples from the software
industry where file formats are used as vehicles in marketing policy, i.e., to prevent non-
customers from using a particular tool; or to force customers to purchase a new version
of the tool for compatibility reasons. To avoid such side-effects in the ASP community,
the development of intermediate formats should become a joint standardisation effort
the community. The work around the ASP system competition has taken first steps in
this direction [18] but this work is still at preliminary stage. In our group, we have taken
initiatives in this respect in the development of tools like DLPEQ [26] and CIRC2DLP
[27] for disjunctive logic programming. They have been designed to support both GNT
[12] and DLV [11] as their back-end solvers as to benefit the users of both systems. The
second issue is that new versions of intermediate languages tend to emerge from the
initiatives of individual system developers—with little coordination. The same applies
to revisions to existing formats which are prone to divergence if there is no control. For
instance, the assignment of codes 7–9 in Table 3 is a compromise proposed herein in
order to satisfy the needs of a number of tools. A lesson to learn is that, in the long run,
the ASP community should have an official body to regulate intermediate languages
and to coordinate any proposed extensions to them.

5 Conclusion

In this paper, we have presented the details of five existing intermediate languages re-
lated to ASP, brought attention to some of their properties through a systematic analysis,
and raised the enhanced interoperability of ASP tools as one of the main goals in the
development of new formats. On the basis of the analysis presented in Section 3, my
recommendations for any future proposals of intermediate languages are as follows:

1. The format should be easy to extend and for this reason it should also include
version information, e.g., for backward compatibility.

2. The format should carry symbolic information; preferably in the form of a symbol
table. The entries of the table should have optional fields for type information and
metadata, e.g., in view of future extensions.

3. The format should include support for comment lines or a separate section for
comments—enabling the integration of documentation in natural language.

4. The format should be based on a textual or numeric representation of the expres-
sions involved in the intermediate language. In comparison with a binary represen-
tation, savings in space can still be achieved using explicit compression methods.

5. The format should have a proper module architecture which facilitates modular
program development and enables the construction of module libraries.

7 Available at http://www.cs.uni-potsdam.de/~sthiele/gringo/.

Intermediate Languages of ASP Systems and Tools 23

The five items above cover most of the aspects raised in the analysis carried out
in Section 3. However, one aspect of the format remains open in view of Table 7, i.e.,
whether to have a numeric low-level file format or one with a more general syntax
and symbols as lexical elements. This is somewhat a matter of taste and hence no firm
recommendation is spelled out in this respect. It could be even a good idea to have both
given translators between the two variants.8 Nevertheless, the SMODELS and GCORE
formats are closest candidates in this respect but as indicated by the recommendations
above not totally satisfactory as such—which leaves us with a call for new designs.

It is likely that there are other technical requirements that have not been addressed
in this paper and which could serve as a basis for further recommendations. Such factors
may also arise in the sequel when ASP evolves as a paradigm. For instance, the support
for non-ground representations may become a necessity in the future. There are also
other aspects in the development of intermediate formats. Any serious format should be
(i) properly published, (ii) provided with basic input/output routines in a number of pro-
gramming languages, and (iii) equipped with tools, like LPCAT and LPLIST mentioned
above, to handle representations in the format. A great deal of organisational work is
also required if real standard formats are to be developed for the ASP community.

There are also other formats and intermediate languages that can be taken into con-
sideration for the sake of contrast and comparison. In this respect, one candidate is
the specification of an on-line library of benchmarks for satisfiability modulo theories
(SMT-LIB) [28]. However, we excluded the analysis of the SMT-LIB format from the
current paper due to its inherent complexity: The format is based on a many-sorted
version of first-order logic with equality. In any case, the SMT-LIB format provides
an interesting generalisation of propositional theories with external theories and it may
provide useful insight how to incorporate external functions and predicates into inter-
mediate languages designed for ASP. In particular, the representation of aggregates,
such as cardinality and weight constraints introduced above, is of our central interest.

At the moment, the DIMACS/CNF format can be viewed as the de facto standard for
representing satisfiability problems for SAT solvers. An interesting question is whether
some new intermediate language will reach at least similar status in the ASP com-
munity. Hopefully, the five recommendations listed above pave the way in the design
of a good candidate for such a language. To this end, it is high time to make serious
proposals because expected benefits are manifold. For instance, it is likely that the in-
teroperability of ASP tools is enhanced and the development of ASP solvers is boosted
by extensive benchmarking enabled by a standard format. Moreover, a modular format
may turn out highly useful in controlling the complexity of grounding which is viewed
as a bottleneck of current ASP systems.

Acknowledgements

This work was partially supported by the Academy of Finland under project #211025
titled “Advanced Constraint Programming Techniques for Large Structured Problems”.

8 Actually, the tools LPLIST and GLPARSE almost provide such facilities for the SMODELS for-
mat and the respective fragment of the input language accepted by LPARSE.

24 Tomi Janhunen

References

1. Marek, W., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: a 25-Year Perspective. Springer-Verlag (1999) 375–
398

2. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3–4) (1999) 241–273

3. Gelfond, M., Leone, N.: Logic programming and knowledge representation—the A-Prolog
perspective. Artificial Intelligence 138 (2002) 3–38

4. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1–2) (2002) 181–234

5. Syrjänen, T.: Lparse 1.0 user’s manual9. Available at the SMODELS website (2001) Appendix
B, pp. 86–89.

6. DIMACS: Satisfiability suggested format. Available at the ftp server10 of Rutgers University
(1993)

7. Clark, K.L.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data Bases.
Plenum Press, New York (1978) 293–322

8. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157 (2004) 115–137

9. Lierler, Y., Maratea, M.: CMODELS-2: SAT-based answer set solver enhanced to non-tight
programs. [29] 346–350

10. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16(1-2) (2006) 35–86

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Scarcello, F.: The DLV system for
knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3)
(2006) 499–562

12. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality and disjunc-
tions in stable model semantics. ACM Transactions on Computational Logic 7(1) (2006)
1–37

13. Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic programming systems by SAT
checkers. Artificial Intelligence 151(1-2) (2003) 177–212

14. Junttila, T., Niemelä, I.: Towards an efficient tableau method for boolean circuit satisfiability
checking. In Lloyd, J.W., et al., eds.: Proc. of CL 2000. Volume 1861 of LNCS., Springer
(2000) 553–567

15. Junttila, T.: File format for boolean circuit satisfiability. Available at the BCSAT website11

(2006)
16. Roussel, O.: PB06: Input format12. Available at the PB07 website (2006)
17. Borchert, P., Anger, C., Schaub, T., Truszczyński, M.: Towards systematic benchmarking in

answer set programming: The Dagstuhl initiative. [29] 3–7
18. Leone, N., et al.: Core language for ASP solver competitions. Available at the ASPARAGUS

website13 (2004) Minutes of the steering committee meeting at LPNMR’04.
19. Namasivayam, G., Liu, L., Truszczyński, M.: Syntax for ground logic programs – a proposal.

Available at URL14 (2006)

9 http://www.tcs.hut.fi/software/smodels/lparse.ps
10 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/
11 http://www.tcs.hut.fi/~tjunttil/bcsat/
12 http://www.cril.univ-artois.fr/pb07/pb06_inputformat.html
13 http://asparagus.cs.uni-potsdam.de/
14 http://www.cs.uky.edu/ai/groundlp-grammar-proposal.txt

Intermediate Languages of ASP Systems and Tools 25

20. Brewka, G., Niemelä, I., Syrjänen, T.: Implementing ordered disjunction using answer set
solvers for normal programs. In Flesca, S., et al., eds.: Proc. of JELIA’02. Volume 2424 of
LNCS., Springer (2002) 444–455

21. Ianni, G., Ielpa, G., Pietramala, A., Santoro, A., Calimeri, F.: Enhancing answer set program-
ming with templates. In Delgrande, J.P., Schaub, T., eds.: 10th International Workshop on
Non-Monotonic Reasoning, Whistler, Canada, June 6-8, 2004, Proceedings. (2004) 233–239

22. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles in modular
answer set programming. In: Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006). Volume 4079 of LNCS., Springer (2006) 376–390

23. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In Brewka,
G., et al., eds.: Proc. of ECAI’06, IOS Press (2006) 412–416

24. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella, A., eds.:
Proc. of SAT’03. Volume 2919 of LNCS., Springer (2003) 502–518

25. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In
Veloso, M., ed.: Proc. of IJCAI’07. (2007) 386–392

26. Oikarinen, E., Janhunen, T.: Verifying the equivalence of logic programs in the disjunctive
case. [29] 180–193

27. Oikarinen, E., Janhunen, T.: CIRC2DLP—translating circumscription into disjunctive logic
programming. In Baral, C., et al., eds.: Proc. of LPNMR’05. Volume 3662 of LNCS.,
Springer (2005) 405–409

28. Ranise, S., Tinelli, C.: The SMT-LIB standard. Available at the SMT-LIB website15 (2006)
Version 1.2.

29. Lifschitz, V., Niemelä, I., eds.: Logic Programming and Nonmonotonic Reasoning, 7th In-
ternational Conference, LPNMR 2004, Fort Lauderdale, FL, USA, January 6-8, 2004, Pro-
ceedings. In Lifschitz, V., Niemelä, I., eds.: LPNMR. Volume 2923 of LNCS., Springer
(2004)

15 http://combination.cs.uiowa.edu/smtlib/papers.html

What should an ASP Solver output?
A Multiple Position Paper ?

Martin Brain1, Wolfgang Faber2, Marco Maratea3, Axel Polleres4, Torsten Schaub5,
and Roman Schindlauer6,2

1 Department of Computer Science, University of Bath, United Kingdom
mjb@cs.bath.ac.uk

2 Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy
faber@mat.unical.it

3 DIST - University of Genova, Viale F. Causa 15, 16145, Genova, Italy
marco@dist.unige.it

4 Digital Enterprise Research Institute, National University of Ireland, Galway
axel.polleres@deri.org

5 Institut für Informatik, Univ. Potsdam, August-Bebel-Str. 89, D-14482 Potsdam, Germany,
torsten@cs.uni-potsdam.de

6 Institut für Informationssysteme 184/3, Technische Universität Wien, Favoritenstraße 9–11,
A–1040 Vienna, Austria, roman@kr.tuwien.ac.at

Abstract. This position paper raises some issues regarding the output of solvers
for Answer Set Programming and discusses experiences made in several different
settings. The first set of issues was raised in the context of the first ASP system
competition, which led to a first suggestion for a standardised yet miniature out-
put format. We then turn to experiences made in related fields, like Satisfiability
Checking, and finally adopt an application point of view by investigating inter-
face issues both with simple tools and in the context of the Semantic Web and
query answering.

1 Motivation

The development of solvers for Answer Set Programming (ASP;[1]) constitutes nowa-
days a major driving force of the field. This goes hand in hand with a growing range of
applications along with more and more substantial collections of benchmark suites. The
latter allow for a broad comparison among different ASP solvers. And benchmarking as
such plays a major role for progressing ASP solver technology, as already experienced
in many related areas, such as Automated Theorem Proving [2] or Satisfiability Check-
ing [3]. Although many benchmarks stem from distinguished application areas, certain
applications need dedicated formats due to sophisticated interactions with ASP solvers.
This is an important issue when interfacing ASP solvers with other software modules
in real-world applications.

? This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-
N04, and by the European Commission through the IST Networks of Excellence REWERSE
(IST-2003-506779).

What should an ASP Solver output? A Multiple Position Paper 27

This paper is one out of three position papers providing the basis for a discussion
forum to be held on ASP languages at the occasion of the Workshop on Software Engi-
neering for Answer Set Programming (SEA’07), co-located with the Ninth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07;[4]).
While the two other papers offer perspectives on input and intermediate languages7,
we concentrate in what follows on issues related to the output of ASP solvers. We begin
with a discussion on experiences made during the first ASP system competition. This is
complemented in Section 3 by lessons learned in related fields, like Satisfiability Check-
ing. Section 4 outlines the minimum requirements for an output format, based on end
user experience. In Section 5 we discuss interface issues that arise in a particular area of
application, namely the Semantic Web. Finally, in Section 6, we discuss requirements
for the output of query answering, a major reasoning mode for ASP solvers.

2 Lessons from the First ASP System Competition

The first ASP system competition [5]8, held in conjunction with LPNMR’07, provided
us with a first glance at issues arising from the distinct output formats of existing ASP
solvers. For example, the original design of the underlying Asparagus platform [6]9 was
based on trust, insofar as the output of a solver was never inspected.

This was changed when running the ASP system competition, for which the output
of solvers had to conform to the following formats (in typewriter font):

SAT : Answer Set: atom1 atom2 ... atomN
The output is one line containing the keywords ‘Answer Set:’ and the names
of the atoms in the answer set. Each atom’s name is preceded by a single space.
Spaces must not occur within atom names.

UNSAT : No Answer Set
The output is one line containing the keywords ‘No Answer Set’.

The following list comments on some issues that arose during the competition; it
also raises some further topics that might we worth considering in the future.

Result. The definition of the above basic output format was a big step forward in ac-
cessing the result of a solver’s computation in a uniform way.

However, the distinction between satisfiable and unsatisfiable results quickly turned
out to be insufficient. In future, we definitely need (at least) a third indicating string, say
UNKNOWN, signalling that the solver terminated without finding a solution, although
there might exist one. In fact, in the competition, we only had to deal with a single
incomplete solver, whose output had then to be checked by hand. However, such an
indicator also makes sense, for instance, in view of error handling (see below), where
an encountered error should not lead to an indicative output (for instance, of UNSAT),
simply because the wrapping script defaults to it.

7 That is, a language format for communication among grounders and solvers.
8 http://asparagus.cs.uni-potsdam.de/contest/
9 http://asparagus.cs.uni-potsdam.de/

28 Martin Brain et al.

Moreover, the competition only required the computation of a single answer set;
hence, no format for producing all answer sets was put forward. On the other hand,
printing a combinatorial elevated number of solutions is time consuming and presum-
ably not necessarily desired in the context of a system competition. Also, it is unclear
how the result could be verified in a reasonable amount of time (see below). Unlike
this, however, it may be interesting to simply count the number of answer sets and
have solvers report the number of answer sets they were able to compute within an
allotted time. The number of solutions is actually relevant in some applications, like
bio-informatics. On the other hand, it is unclear how such a result ought to be verified.

Certification. The second major advancement of the ASP competition was the verifi-
cation of solutions. This worked, however, only for satisfiable instances, and it is yet an
open problem how unsatisfiability should be certified.

The verification process builds upon the output of a certificate, given by an entire
answer set or simply a subset of distinguished predicate instances representing a solu-
tion. (The latter was needed in the modelling track of the competition.) However, what
should a solver output in case it treats an unsatisfiable instance? During the system com-
petition, this issue was resolved pragmatically by trusting the majority of outcomes; and
of course, whenever a single solver found a solution, we were able to check whether it
was right.

Another major hurdle is given by the computational complexity underlying the ver-
ification problem. While it is easy for normal logic programs, it becomes significantly
more difficult for disjunctive logic programs. But even in case of normal logic pro-
grams, we faced problem instances where the certificate became simply too large to be
treated in a pragmatic fashion.

In a nutshell, the output of a certificate is essential for trusting the result of an ASP
solver, however, there are still cases where it is yet unclear what constitutes a good
certificate or at least a good approximation of it.

Performance. During the ASP competition, the performance of ASP solvers was mea-
sured externally by regarding the number of timeouts and, in case of ties, the run time
of the respective solvers.

For a more fine-grained comparison among ASP solvers, one might be interested
in some information that can only be gathered by the solvers itself. One such piece of
information is the number of assignments, or to be more precise, the number of assign-
ments due to propagation and the one due to heuristic choice operations, which could
provide a much more detailed picture of the traversed search space. But apart from
finding an agreement on the output format of such information, we first need solver
developers to agree on collecting information in the same way. For instance, systems
like smodels or dlv report information about choice points, while having different def-
initions of what constitutes a choice point. Moreover, a system based on learning and
back-jumping like clasp does not even (explicitly) flip assignments at choice points.
Other solvers like cmodels, using SAT solvers as search engine, may not even have
easy access to this type of information. So, this is an example where an agreement on
an output format has to be preceded by a consideration of the underlying concepts.

What should an ASP Solver output? A Multiple Position Paper 29

Error handling. Asparagus controls the execution of each solver run by limiting it in
time and space. An excess of either limit is detected and recorded by Asparagus.

In fact, some solvers, or to be more precise, their wrapping scripts, output UNSAT
by default, even though they get interrupted by the run time system of Asparagus. Sim-
ilarly, we had situations in which solvers returned within time and space limits, despite
having encountered internal (e.g., input) errors. It becomes tricky when this happens
with a solver whose wrapper reports UNSAT by default and which actually attempted
to solve an unsatisfiable problem instance.

What is needed here is a systematic way of treating errors (or even termination)
through appropriate signals. We need to define different error categories and how errors
should be signalled (for instance, to standard error as opposed to standard output).

Moreover, it would be a great help, if solvers could receive termination signals,
output some relevant information, and terminate by themselves.

Optimisation. The first edition of the ASP system competition dealt exclusively with
decision problems, although more and more solvers allow for dealing with optimisation
problems as well.

Although one may treat optimisation problems as decision problems, by asking
whether a solution with optimal value of the objective function has been found, it is
also of interest to regard the value of the best solution a solver came up with, even
though it did not terminate within the allotted time. This is difficult because one needs
an output from an externally terminated program (see above).

As with error handling, it makes sense to find a consensus of how to handle this
problem in a uniform way.

3 Experiences from Related Areas

In this section, we will see how the issues that came up in the ASP Competition, and
pointed out in Section 2, have been raised (assuming they are) in other research areas.
It is interesting to note that also in other areas these issues showed up together with the
definition and organization of Competitions/Evaluations.

SAT. Propositional Satisfiability (SAT) is one of the most studied problems in Artificial
Intelligence and Computer Science. SAT Competitions10 are organized by years, with
a great impact on the performance of SAT solvers. SAT output format already fixed the
point about an UNKNOWN result by explicitly allowing it as a “valid” output, other
than SATISFIABLE and UNSATISFIABLE. These words have to be put in a new line
starting with “s” followed by a space, e.g., “s SATISFIABLE”. Then, if a formula is
satisfiable, a bunch of 0-terminated lines starting with “v” and representing a satisfying
assignment has to be printed as certificate.

Moreover, in order to automatically check the correctness of solvers’ answers, all
solvers must also exit with an error code which characterizes its answer on the consid-
ered instance. This is done in addition to the automatic syntactic analysis of solvers’
output. The error code must be:
10 http://www.satcompetition.org/

30 Martin Brain et al.

– 10 for SATISFIABLE
– 20 for UNSATISFIABLE
– 0 for UNKNOWN
– any other error code for internal errors (considered as UNKNOWN)

The issue of certifying an unsatisfiable formula is not raised in the SAT Competi-
tions (last year, SAT race11). Nonetheless, the need to cope with this problem is evident
in the community and has opened the way to significant research efforts in this direction.

QSAT. Quantified SAT (QSAT) is the extension of SAT where variables are to be explic-
itly quantified, universally or existentially. QSAT is the prototypical PSPACE-complete
problem. QBF Evaluations and Competitions12 are organized since five years and have
significantly contributed to this emerging research area. The output format requested
to QBF solvers is very similar to the one for SAT solvers (the output must be 1, 0
or -1 instead of SATISFIABLE, UNSATISFIABLE and UNKNOWN, respectively). A
main difference arises when certifying a formula: given the complexity of the problem,
no compact certification is known. At the moment, QBF solvers output just a partial
certificate of the input QBF’s truth or falsity.

Beyond the already detailed explanation of the output format, the organizers of the
QBF events have made available a “formal” description of such an output format, using
a BNF grammar.13 This document can be very useful for both competitors and organiz-
ers, in particular, when the “complexity” of the output increases, which is the direction a
future output format is likely to follow for expressing a non-trivial form of certification.

PB. In Pseudo-Boolean (PB) (optimization) problems, solvers have to satisfy a set of
on linear inequalities (with Boolean variables), while optimizing an objective function.
The PB07 Evaluation14 is the third event of the series. Given the nature of the problem,
solvers can output a new type of solution line, i.e., “s OPTIMUM FOUND”, when they
claim to have found the optimal value for the objective function. PB Evaluations intro-
duced a nice idea related to the optimization of solutions: each solver is asked to output
a line starting with ’o’ each time it finds a solution with a better value of the objective
function, even if it might not be optimal. This line should only contain the value of
the objective function for the new solution. This enables an analysis of the way solvers
progress toward the best solution. The utility of this information is (at least) twofold:
given the simplicity, a graphical view on the progression toward the best solution can
be provided, it is easy to (i) better understand a solver’s behavior, and (ii) perform a
deep analysis that can be used, for example, in the report of the competition.

Other series of Competitions/Evaluations can be interesting in the way they (try to)
certify solutions, often related to the “complexity” of the problems.

In the Deterministic track of the International Planning Competition (IPC) compe-
titions (the last being IPC-515), the found plan is printed into a solution file and then
11 http://fmv.jku.at/sat-race-2006/
12 http://www.qbflib.org/
13 http://www.qbflib.org/qdimacs.html
14 http://www.cril.univ-artois.fr/PB07/
15 http://zeus.ing.unibs.it/ipc-5/

What should an ASP Solver output? A Multiple Position Paper 31

checked by a plan validator made available by the IPC organizers. In the SMT Com-
petitions16 (SMT-COMP), a solver has to find solutions to formulas from decidable
(quantifier-free) fragments of first-order logic, allowing for theories, like arithmetic,
uninterpreted function, arrays, bit vectors, and their combinations. The SMT-COMP
organizers ask for “suitable evidence” of the results, allowing for a “third-party proof
checker publicly available, or a source code for it”, and asking for an explicit option of
the solver (‘−−evidence’) to dump the proof/model into a file because of the possibly
huge size. Then “the verification is let to a Competition panel, separately to the main
part of the competition” and “check is to be performed on small formulas”. The CADE
ATP System Competition (CASC) is related to first-order Automated Theorem Prov-
ing. Given the complexity of the problems, the organizers just “look for ‘acceptable’
proof/model”.

Finally, the International Competition of Constraint Satisfaction Problems (CSP)17

uses XML format, in this case to represent input instances. It could be fruitful to broaden
the use of such a format: a motivating example for such a direction can be found in the
next section.

4 An End User Perspective

From the point of view of an end user of answer set solvers, a standardised output
format is highly desirable but raises two important questions: what output from a solver
is needed and what is commonly done with this information? Output can be broken into
three categories:

1. Zero or more answer sets or a message saying that there aren’t any answer sets.
2. Optionally an error message of some sort (most commonly out of time or out of

memory).
3. Optionally some statistics.

Obviously as more sophisticated approaches to computing answer sets are devel-
oped, new types of information may be output (for example, problem specific analysis
results of tuning parameters), but most applications current use only these three areas.

In turn, there are three common uses of this information (and thus three key require-
ments for the output format):

1. Answer sets are read by a human. Either to find out the answer to the initial prob-
lem, or to diagnose problems with the encoding. Thus a human readable format
would seem to be a requirement.

2. Answer sets are ignored (or quickly checked), only the statistics are used. This is
the common case in the development and benchmarking of solvers. Thus some way
of quickly extracting the statistics would seem to be a good idea.

16 http://www.csl.sri.com/users/demoura/smt-comp/
17 http://www.cril.univ-artois.fr/CPAI06/

32 Martin Brain et al.

3. The output is parsed into another program18 for further interpretation / application.
Thus a format which is easy to parse would seem to be a requirement.

Additionally, there are practical arguments for keeping the output format as simple
as possible (so more complex output formats can be layered over them with minimal
overhead) and for minimising the amount of modification required for existing solvers.

Given these options, the simplest output standard seem to be roughly as follows:

– The success of the solver is given by it’s system return code. 0 for 1 or more an-
swer sets given, 1 for a program with no answer sets and any other return code
constituting an error. This is in keeping with the POSIX standard, GNU/Linux im-
plementations (a process killed due to signals, i.e. out of time, out of memory, etc.
can be recognised from it’s return code) and requires little to no extra implementa-
tion.

– Output is divided into lines, each prefixed by one of a number of codes. The actual
codes aren’t particularly important, but keeping to either the existing convention of
human readable strings (i.e. Answer Set) or the SAT convention of single letters,
seems sensible.
Answer Set : Indicates the solver has found an answer set, which is given

as a space separated list literals in the answer set. If any lines of this kind
are present, the return value of the solver must be 0 and no lines starting No
Answer Sets should be present.

No Answer Sets Indicates the solver has shown that the program contains no
answer sets. The line should contain nothing else. If any lines of this kind are
present, the return value of the solver must be 1 and no lines starting Answer
Set : should be present.

Statistic : Indicates a solver generated statistic, which should be given on
the rest of the line, preferably in a form that could be easily parsed. As an
appendix to the standard, a list of statistic names and how they are computed
would make analysis easier.

Comment : A catch all field for other solver output intended for humans.
Any other line would be a considered an error message and the solver must return
something other than 0 or 1.

5 Interfacing the Semantic Web

In recent years, several endeavours have been undertaken to deploy ASP in the area of
the Semantic Web, as a powerful rule language to complement and extend the possibil-
ities of established formalisms such as RDF and ontology languages. This development
requires ASP solvers to interoperate with other software in a complex reasoning frame-
work. Due to the heterogeneity of data in the domain of the Semantic Web, the most
straightforward approach to such interfacing tasks is usually to use an XML-based lan-
guage as data interchange format.

18 In this case, often the solver is being called from another program thus a standard calling
convention and some standard option flags would be useful.

What should an ASP Solver output? A Multiple Position Paper 33

A prominent attempt to create a Web-suitable syntax for rule languages in general
is the RuleML initiative [7], which aims at providing a Rule-Markup Language based
on XML and/or RDF, in order to facilitate a common representation and exchange of
rules. Also, the chosen format allows the possibility of annotating further information,
as needed in the Semantic-Web context. However, it is not trivial to embed in a general
framework the wide number of pre-existing rule-based formalisms, each of which pro-
vides its own variety of syntactic features. Thus, different classes of RuleML languages
have been gradually introduced, in order to support constructs such as default negation
or constraints.

One particular such branch of RuleML tailored to ASP and its extensions has been
presented in [9]. There, the authors integrate a general construct into the framework of
RuleML that can be used to express features such as built-in predicates, external atoms,
or cardinality constraints. However, in this work the authors do not explicitly consider
to encode the output of an ASP solver in RuleML. This can in fact be accomplished by
using the notions of RuleML atoms, conjunction, disjunction, and negation. In general,
RuleML does not impose specific semantics on its constructs; however, for the subset
of operators needed to represent answer sets and our purposes, the intuition is rather
straightforward. Atoms within the same answer set are connected by conjunction, while
multiple answer sets are joined by disjunction.

For instance, a single atom edge(a, b), i.e., a positive literal, is expressed in RuleML
as follows:

34 Martin Brain et al.

<Atom>
<Rel>edge</Rel>
<Ind>a</Ind>
<Ind>b</Ind>

</Atom>

The Tag <Rel> denotes the atom’s predicate name, while <Ind> surrounds indi-
vidual constants.19 An atom is negated by embedding it into a <Neg> tag. A conjunc-
tion of atoms is expressed by an enclosing <And> tag, a disjunction by <Or>. Thus,
the single answer set {edge(a, b), edge(a, c), color(a, blue)} would be written as

<Assert>
<And>

<Atom>
<Rel>edge</Rel>
<Ind>a</Ind> <Ind>b</Ind>

</Atom>
<Atom>

<Rel>edge</Rel>
<Ind>a</Ind> <Ind>c</Ind>

</Atom>
<Atom>

<Rel>color</Rel>
<Ind>a</Ind> <Ind>blue</Ind>

</Atom>
</And>

</Assert>

The outermost <Assert> tag acts as a wrapper and denotes a declarative content.20 A
complete result by an ASP solver comprises several answer sets, joined by a disjunction:

<Assert>
<Or>

<And> ... </And>
<And> ... </And>

</Or>
</Assert>

An empty answer set corresponds to an empty <And> tag, while an empty <Or> clause
denotes an empty result, i.e., no answer set.

19 In the context of the Semantic Web, individual names might well contain special chars, for
example URIs of resources. In XML we can simply encapsulate such strings within CDATA
sections.

20 <Assert> provides an attribute mapClosure to specify existential or universal closure
within the assertion, but since ASP results are currently always ground, we can omit this in-
formation.

What should an ASP Solver output? A Multiple Position Paper 35

Currently, this output format is supported by the HEX-program solver dlvhex.21

HEX-programs are an extension of ASP towards interoperability in the Semantic Web [8],
providing a mechanism to exchange knowledge with external sources of information.

Other ongoing streams in the Semantic Web realm

Standard formats. Apart from RuleML, there are other ongoing efforts worthwhile to
monitor in the context of how we could interface with the Semantic Web. First of all,
the Rule Interchange Format (RIF) working group22 is producing first results toward
channeling various proposals, of which RuleML is only one into a real standard for
exchanging rules. Emerging formats from this group will likely replace attempts like
RuleML which were not governed by an official standardization body. Whereas RIF
will likely be a good candidate for Web exchange of answer set programs, the exchange
of results of the evaluation of rules though is not (yet) an explicit goal yet in RIF, but
will likely arise as soon as people start to pick up these formats to a larger extent.

Standard formats. The Semantic Web and Web 2.0 ideas go towards piping results be-
tween different distributed applications. Such applications do not only require standard
input and output formats, but moreover standard protocols and interfaces to be used.
A good example for the definition of such normative interfaces and protocols is pro-
vided by W3C’s Data access working group, who are in charge of defining SPARQL23,
a standard query language for RDF. However, they also went one step further, defining
a protocol along with defining both the concrete message formats for sending a query
and receiving the results to a SPARQL endpoint, ie. an online interface for a SPARQL-
capable query engine. The definiton of such standard interfaces, makes smooth interplay
of semantic Web interfaces possible which can be invoked via standard Web Service in-
terfaces in the Web Services Definition Language (WSDL24).

When we think about defining defined standard input and output formats for ASP-
solvers, we also might think about extending such interface definitions like the one
defined for SPARQL toward standard Web service interfaces for ASP solvers in order
to make them accessible within the service-oriented world [10].

6 Query Answering

While many answer set solvers currently focus on computing answer sets, there are
applications that require query answering, among them Information Integration [11],
Enterprise Information Systems [12], and Text Classification [13]. In this section, we
will mainly discuss in which way the output requirements for query answering differ
from those for answer set generation. In particular, we shall argue that calculating query
answers from a standard answer set output in an easy way is not feasible in all cases,
thus giving rise to a native query answering output mode.
21 http://www.kr.tuwien.ac.at/research/dlvhex/
22 http://www.w3.org/2005/rules/
23 http://www.w3.org/TR/rdf-sparql-query/
24 http://www.w3.org/TR/wsdl

36 Martin Brain et al.

Given the fact that there may be any number of stable models, there is no unique way
of defining the consequence relation which is used for answering queries. Traditionally,
there are two major reasoning modes: Brave (also known as credulous) and cautious
(also known as skeptical) reasoning. For brave reasoning, a formula follows from a
program if it holds in one of the answer sets of the program, while for cautious reasoning
a formula follows if it holds in all answer sets.

Query answering is then defined as the set of ground substitutions over variables
in the query formula, such that the substituted formula follows (bravely or cautiously)
from the program. For ground queries, this means that the answer is either the empty
set (corresponding to “no”) or a set containing the empty substitution (corresponding
to “yes”). Usually, as for rules, queries are required to be domain independent, that is,
the query answer must not depend on the domain chosen to interpret the program. In
practice, queries are required to be safe (cf. [14]).

An important observation is that complex query formulas can be rewritten by means
of additional fresh predicates and rules to programs with an atomic query, which does
not contain constants (or function symbols). Ground queries therefore are reduced to
a query containing a predicate of arity 0. Let this predicate be p, one can simulate
brave reasoning by adding a constraint← notp to the program and checking whether
this program has an answer set, answering with the empty substitution if it does. For
cautious reasoning, one may add← p to the program and check whether this program
has an answer set, answering with the empty substitution if it does not.

For nonground queries, such a simple simulation is not easily possible. For brave
reasoning, one could compute the answer sets projected onto the query predicate by
eliminating duplicates and extracting the substitutions from the resulting set. For cau-
tious reasoning, things are not as easy; for example, if there is no answer set, the answer
should comprise all possible substitutions over the Herbrand Universe. As a result, es-
pecially for cautious reasoning, just providing all answer sets does not appear like an
acceptable solution.

Concerning the representation of the output for query answering, the query language
SPARQL, which has already been mentioned in Section 5, also defines a format for
query results25. As an example, two substitutions for variables X and Y, where one
substitutes a for X and b for Y, and the other one substitutes b for X and c for Y, would
be represented as follows:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head>
<variable name="X"/>
<variable name="Y"/>

</head>
<results ordered="false" distinct="true">

<result>
<binding name="X">a</binding>
<binding name="Y">b</binding>

25 http://www.w3.org/TR/rdf-sparql-XMLres/

What should an ASP Solver output? A Multiple Position Paper 37

</result>
<result>

<binding name="X">b</binding>
<binding name="Y">c</binding>

</result>
</results>

</sparql>

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Sutcliffe, G.: CASC-J3 — The 3rd IJCAR ATP System Competition. In Furbach, U., Shankar,
N., eds.: Proceedings of IJCAR. Springer (2006) 572–573

3. Berre, D.L., Simon, L., eds.: In Berre, D.L., Simon, L., eds.: Special Volume on the SAT 2005
Competitions and Evaluations. Journal on Satisfiability, Boolean Modeling and Computation,
IOS Press (2006)

4. Baral, C., Brewka, G., Schlipf, J., eds.: Proceedings of the Ninth International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’07), Springer (2007) To appear.

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In [4] To appear.

6. Borchert, P., Anger, C., Schaub, T., Truszczyński, M.: Towards systematic benchmarking in
answer set programming: The Dagstuhl initiative. In Lifschitz, V., Niemelä, I., eds.: Pro-
ceedings of the Seventh International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’04). Springer (2004) 3–7

7. Boley, H., Tabet, S., Wagner, G.: Design Rationale for RuleML: A Markup Language
for Semantic Web Rules. In: Proceedings of the first Semantic Web Working Symposium
(SWWS’01). (2001) 381–401. See also http://www.ruleml.org.

8. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: Proc. IJCAI 2005,
Morgan Kaufmann (2005) 90–97

9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A RuleML Syntax for Answer-Set Program-
ming. In Polleres, A., Decker, S., Gupta, G., de Bruijn, J., eds.: Informal Proceedings of the
Workshop on Applications of Logic Programming in the Semantic Web and Semantic Web
Services (ALPSWS’06). (2006) 107–108

10. Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Comm. ACM, vol.
46, no. 10, (2003) 25–28

11. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005). (2005) 915–917

12. Ruffolo, M., Manna, M.: A Logic-Based Approach to Semantic Information Extraction In:
ICEIS 2006 - Proceedings of the Eighth International Conference on Enterprise Information
Systems: Databases and Information Systems Integration. (2006) 115–123

13. Cumbo, C., Iiritano, S., Rullo, P.: OLEX - A Reasoning-Based Text Classifier In: Logics in
Artificial Intelligence, 9th European Conference, JELIA 2004, Proceedings. (2004) 722–725

14. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases Addison-Wesley (1995)

38 Martin Brain et al.

Part II

Research Papers

Modules and Signature Declarations for A-Prolog:
Progress Report

Marcello Balduccini

Computer Science Department
Texas Tech University

Lubbock, TX 79409 USA
marcello.balduccini@ttu.edu

Abstract. It has been demonstrated that A-Prolog can be used effectively to
encode knowledge about complex domains. However, there is still a lack of
well-established software engineering inspired tools and methodologies aimed at
helping the programmer in this task. Rather than going through a substantial
redesign of the language, as in most approaches from the literature, our purpose
here is to propose a light-weight extension of the language, introducing only a
few simple constructs with straightforward semantics, and nonetheless providing
key support for simple modular design of programs. Drawing from our
experience of encoding knowledge in A-Prolog, we identify two main
requirements that, we believe, need to be satisfied by such a simple extension of
A-Prolog. Next, we design our extension of A-Prolog, called RSig to satisfy
these requirements. A parser for RSig has been implemented, based on LPARSE,
and is available online. It is our belief that RSig can be quickly learned and used
by average A-Prolog users to both write new programs and restructure existing
programs. We also hope that the experience with RSig can promote the transition
towards more sophisticated extensions of A-Prolog.

1 Introduction

As demonstrated by several authors in recent years (see for example [18, 17, 8, 3]), A-
Prolog [10, 11] is a powerful knowledge representation language that allows the encod-
ing of commonsense knowledge about the most diverse domains, and the definition of
reasoning modules capable of planning, diagnostics, and learning.

Although A-Prolog can be used effectively to encode knowledge about complex do-
mains, there is still a lack of well-established software engineering inspired tools and
methodologies aimed at helping the programmer in this task. Most existing approaches
[7, 6, 9, 4] involve a substantial language redesign, and need to tackle important issues
involved in the design of modular extensions of non-monotonic formalisms. Finalizing
the design of such a language, its implementation, and its spreading through the com-
munity, is still likely to require a considerable amount time.

In this paper, we propose a light-weight extension of A-Prolog, called RSig, intro-
ducing only a few simple constructs with straightforward semantics, and nonetheless
providing key support for simple modular design of programs. It is our belief that RSig
can be quickly learned and used by average A-Prolog users to both write new programs

42 Marcello Balduccini

and restructure existing programs, thus providing a first step towards the use of more
sophisticated extensions of A-Prolog.

Drawing from our experience of encoding knowledge in A-Prolog, we have iden-
tified two main requirements that, we believe, need to be satisfied by any extension of
A-Prolog aimed at simplifying the task of encoding complex knowledge bases:

1. It should be possible to develop portions of an A-Prolog program independently
from each other.

2. In the inference engines that require typing of variables, such as LPARSE, the ac-
tions needed to provide such typing should interfere as little as possible with the
programming task.

The first requirement involves the ability, frequently used in imperative programming,
to define modules. Ideally, a module should be viewed by the module’s users as a black-
box, with clearly specified input and output. The module’s users should be able to en-
tirely disregard the actual implementation of the module.

If we turn our attention to the goal of limiting the burden of variable typing as much
as possible, we see that, of the two most widely used inference engines, only DLV [5]
satisfies this second requirement, because it does not require the typing of variables.
However, if a programmer chooses to use variable typing for efficiency reasons, then
he is forced to do that explicitly. Moreover, DLV still lacks the ability to work with
function symbols, which substantially limits its applicability in the encoding of complex
domains.

The requirement is not satisfied by LPARSE+SMODELS1 [19, 16], as well as by the
inference engines that rely on LPARSE (e.g. [13, 1, 14, 15]). In fact, with LPARSE, a pro-
grammer either explicitly types every variable, or uses the implicit typing facility pro-
vided by the #domain directive. Unfortunately, #domain fails to satisfy the require-
ment on typing: first of all, it forces the programmer to adhere to strict, and often unnat-
ural, conventions on the use of variables; moreover, it forces the programmer to keep
in mind one extra piece of information: the association between variables and their do-
mains, with the consequence of interfering with the programming task; finally, it limits
the ability of dividing a program in independent modules, because of the global scope
of the #domain directive.

On the other hand, we believe that RSig satisfies both requirements above, and sim-
plifies the task of representing knowledge for complex domains, by introducing only a
small number of new constructs. The extension is based on the introduction of signa-
ture declarations and module definitions.

Although the main ideas behind RSig are substantially independent from a
particular inference engine, here we concentrate on extending the language of
LPARSE. The choice is motivated by the fact that LPARSE already
allows function symbols, and that its sources are publicly available. An
implementation of a parser for RSig, based on LPARSE, is available online from
http://krlab.cs.ttu.edu/∼marcy/RSig/.

1 As here we are mostly concerned with language issues, rather than with inference algorithms,
from now on we will refer to the pair LPARSE+SMODELS by the term LPARSE.

Modules and Signature Declarations for A-Prolog: Progress Report 43

The paper is organized as follows. In the next section, we give an informal presenta-
tion of RSig. In Sections 3 and 4, we define the syntax and semantics of the language. In
Section 5 we show an example of use of RSig. In the final sections, we discuss related
work and draw conclusions.

2 RSig: The General Idea

Before we give a precise definition of RSig, let us describe the general idea behind the
language.

As we mentioned above, RSig introduces signature declarations and module defi-
nitions. We call signature declaration of a function or relation the specification of the
types of its arguments. The type of an argument is a sort – a unary predicate defined in
the program. For example, let us specify the signature of a relation sign(n, s) where n
is an integer between given constants min and max, and s is −1, 0, or 1.

We begin by defining suitable sorts:

num(min..max).

sign type(−1).
sign type(0).
sign type(1).

The signature of sign is given by a statement:

#sig rel sign(num, sign type).

Its informal meaning is “relation sign takes one argument of type num followed by
one of type sign type.” The keyword rel specifies that we are declaring the signature
of a relation.

Avoiding explicit typing has substantial advantages in terms of program readability
and writability, including the elimination of certain types of programming errors. As an
example, let us see how relation sign above can be defined with and without signature
declarations.2 Recall that, mathematically, the function “sign” can be defined as:

sign(n) =

1 if n > 0
0 if n = 0
−1 otherwise.

The definition can be encoded in A-Prolog as:

sign(N, 1)← N > 0.
sign(0, 0).
sign(N,−1)← not sign(N,S), S 6= −1.

where the body of the last rule encodes “otherwise.” Unfortunately, these rules cannot
be used directly with LPARSE. In fact, the variables occurring in numerical expressions

2 In this part of the paper, we do not consider the #domain directive of LPARSE. A discussion
on #domain can be found in Section 6.

44 Marcello Balduccini

such as “N > 0” need to be explicitly typed. Variable S needs to be explicitly typed,
too, because it occurs in the scope of default negation. The resulting LPARSE program
is:

num(min..max).
sign type(−1).
sign type(0).
sign type(1).

sign(N, 1)← num(N), N > 0.
sign(0, 0).
sign(N,−1)← num(N), sign type(S), not sign(N,S), S 6= −1.

For rules that contain several variables, explicit typing substantially reduces the read-
ability of the program, and increases the chances of errors due to mistakes in specifying
the types.

Using the signature declarations of RSig, the definition of sign becomes:

num(min..max).
sign type(−1).
sign type(0).
sign type(1).

#sig rel sign(num, sign type).

sign(N, 1)← N > 0.
sign(0, 0).
sign(N,−1)← not sign(N,S), S 6= −1.

The resulting definition of sign is arguably more natural and easier to read and the
chances of mistakes in writing the program are smaller.

The information from signature declarations also affects the special atoms of
LPARSE, i.e. those expressions of the form:

min{p(X, Y) : q(X) : r(Y)}max

and
min[p(X, Y) : q(X) : r(Y)]max

The typing information extracted from the signature declarations is used for the condi-
tion part of the special atom. Thus, the program:

q(0..3).

#sig rel p(q).

{p(X)}.

is as an abbreviation of:
q(0..3).

{p(X) : q(X)}.

Modules and Signature Declarations for A-Prolog: Progress Report 45

Let us now focus on module definitions. A module definition in RSig is a collection
of import/export declarations, signature declarations, and statements from the language
of LPARSE. Unless overridden by an import/export declaration, the interpretation of
each relation and function in a module is independent from the interpretations used
outside the module. For example, the program:

p← ¬r.

#module m1.
¬r.
#end module.

does not entail p, while of course the program consisting of {p← ¬r. ¬r.} does. This
separation of interpretations allows to work on different parts of the program indepen-
dently, as each module can be viewed as a black-box, of which only the import/export
declarations need to be known. For example, relation r in module m1 above could be
used as an auxiliary relation, whose meaning is independent from that of the relation r
used in the first rule of the program.

The import and export declarations allow to make the interpretations of some
relations and functions in a module coincide with those used outside the module. A
relation or function occurring in the scope of an import or export declaration is called
global. Intuitively, these statements specify respectively “input” and “output” relations
and functions of the module. The distinction between import and export declarations
has the purpose of improving the readability of the program: when a global relation or
function is intended to occur in the head of a module’s rules, it is be listed in an export
declaration. Similarly, when it occurs in the body of a module’s rules, it is to occur in
an import declaration.

Thus, if the interpretations of the two occurrences of relation r in the program above
are intended to coincide, we add an #export declaration to module m1. The program:

p← ¬r.

#module m1.
#export rel r.
¬r.
#end module.

entails p. As with any module-based approach, the relations declared in the import and
export statements should be carefully selected during the design phase, in order to avoid
conflicts. We say that a relation r is local to a module m if literals formed by r occur in
the rules of m, and r does not occur in an import/export declaration within m.

To help the debugging of programs, RSig also introduces a new variant of the #hide
directive of LPARSE:

#hide ∗ .

The new directive can be used only inside modules. The intuitive meaning of such a
statement occurring in a module m is that all the literals formed by relations local to m

46 Marcello Balduccini

are hidden in SMODELS’ output, unless they are explicitly shown by a #show directive
in m. For example, given the program:

p← not r.

#module m1.
r.
#hide ∗ .
#end module.

SMODELS displays:
Answer 1
Stable Model: p

Notice that whenever relations local to a module are displayed by SMODELS, they are
prefixed by the name of the module. For example, given the program:

p← ¬r.

#module m1.
#import rel r.
#export rel r.
¬r.
q ← not r.
t← q.
#hide ∗ .
#show q.
#end module.

SMODELS displays:
Answer 1
Stable Model: p ¬r m1.q

As the reader may have noticed, t, although true, is not displayed because of the
#hide ∗ directive in m1.

3 Syntax

Let us begin the definition of the syntax of RSig by summarizing the syntax of the
language of LPARSE.3

In the language of LPARSE, terms, atoms, and literals are defined as in A-Prolog. A
special atom is an expression of the form:

min{l1 : l2 : l3 : . . . : lk}max

3 For sake of simplicity, in this paper we consider a simplification of the language of LPARSE.
However, our approach extends in a natural way to the full language.

Modules and Signature Declarations for A-Prolog: Progress Report 47

or
min[l1 : l2 : l3 : . . . : lk]max

where li’s are literals and min, max are integers or variables.
An LPARSE rule, or regular rule, is an expression of the form:

l0 ← e1, . . . , em, not l1, . . . , ln.

where l0 and ei’s are literals or special atoms, and li’s are literals.
LPARSE directives, or regular directives, are expressions of the form:

#show l1, . . . , ln.
#hide l1, . . . , ln.

where li’s are literals (the list may be empty).
A program in the language of LPARSE, or regular program, is a collection of regu-

lar rules and regular directives. Next, we describe the extensions of the language intro-
duced by RSig.

A relation signature declaration is a statement:

#sig rel r1(p1
1, p

1
2, . . . , p

1
k1

), . . . , rm(pm
1 , pm

2 , . . . , pm
km

).

where ri’s are relations of arity ki and pi
j’s are names of sorts. The informal meaning

of the statement (for every i) is “the arguments of relation ri are respectively of types
pi
1, pi

2, . . ., pi
ki

.” A function signature declaration is a statement:

#sig func f1(p1
1, p

1
2, . . . , p

1
k1

)→ p1
0, . . . , fm(pm

1 , pm
2 , . . . , pm

km
)→ pm

0 .

where fi’s are functions of arity ki and pi
j’s are as above. The informal reading of the

statement is “the arguments of function fi are respectively of types pi
1, pi

2, . . ., pi
ki

, and
terms formed by function fi are of type pi

0.” The term signature declaration identifies
both relation and function signature declarations.

A relation import (resp., export) declaration is a statement:

#import rel r1(, , . . . ,), . . . , rm(, , . . . ,).

or, respectively:

#export rel r1(, , . . . ,), . . . , rm(, , . . . ,).

where ri’s are relation symbols, and the number of anonymous variables “ ” listed
matches the arity of each ri. The informal reading of the #import statement is
“symbol r1 denotes the same relation associated with symbol r1 outside the module,”
and similarly for all ri’s and for the #export statement.

A function import (resp., export) declaration is a statement:

#import func f1(, , . . . ,), . . . , fm(, , . . . ,).

or, respectively:

#export func f1(, , . . . ,), . . . , fm(, , . . . ,).

48 Marcello Balduccini

where fi’s are function symbols. The informal meaning is similar to that of relation
import and export declarations. By import declaration we mean both relation import
and function import declaration. Similarly for export declaration.

A module definition (or module for short) is the sequence of statements:

#module µ.
ι1
...
ιm
ρ1

...
ρn

#end module.

where µ is a constant denoting the name of the module (the name of a module must
be unique), ιi’s are optional import and export declarations, and ρi’s are regular rules,
regular directives (with the exception of directives #show. and #hide., which are not
allowed in modules), signature declarations, or the new directive #hide ∗. We denote
the set ρ1, . . . , ρn by Γ (µ). The relations listed in ι1, . . . , ιm are called global relations
of µ, and are denoted by Θ(µ). The literals from µ, formed by relations that are not in
Θ(µ), are called local literals of µ. The functions listed in ι1, . . . , ιm are called global
functions of µ, and are denoted by Λ(µ). If global relations of µ occur in the head of the
regular rules of Γ (µ), they must be listed in an export declaration. If they occur in the
body of the regular rules of Γ (µ), they must be listed in an import declaration. Similarly
for global functions. For simplicity, from now on we assume that each predicate and
function symbol is associated with a unique arity, and that the same symbol cannot
denote both a predicate and a function.4

An RSig program is a collection of regular rules, regular directives, signature dec-
larations, and module definitions.

4 Semantics

We give the semantics of RSig programs by defining a mapping from RSig programs
to programs in the language of LPARSE. We proceed in two steps: first we eliminate
module definitions, and in the resulting program we introduce explicit typing for the
arguments of the functions and relations for which signature declarations are given.

Intuitively, the elimination of module definitions is based on the addition of suitable
prefixes to the occurrences of predicate and function symbols in a module.

Let µ be a module. The module-elimination of a function symbol f with respect to
µ (denoted by fµ) is f if f is a global function of µ, and µ.f otherwise. The module-
elimination of a variable is the variable itself. The module-elimination of a term t =
f(t1, . . . , tk), denoted by tµ, is fµ(tµ1 , . . . , tµk).

4 Our approach applies beyond these restrictions, thanks to the use of the “rel” and “func” key-
words in signature and import/export declarations.

Modules and Signature Declarations for A-Prolog: Progress Report 49

The module-elimination of a predicate symbol p with respect to µ (denoted by pµ)
is p if p is a global relation of µ, and µ.p otherwise. The module-elimination of an atom
p(x1, . . . , xm) with respect to µ is: pµ(xµ

1 , . . . , xµ
m). Similarly, the module-elimination

of a literal ¬p(x1, . . . , xm) is ¬pµ(xµ
1 , . . . , xµ

m). We denote the module-elimination of
a literal l with respect to µ by lµ.

The module-elimination of a special atom min{l1 : l2 : . . . : lk}max is the special
atom min{lµ1 : lµ2 : . . . : lµk}max. The module-elimination of special atom c with
respect to µ is denoted by cµ.

The module-elimination of a regular rule, regular directive, or signature declaration
ρ is obtained by replacing all literals, special atoms, and terms in ρ with their module-
eliminations. The resulting statement is denoted by ρµ.

The module-elimination of a directive #hide ∗ with respect to a module µ is a
directive #hide l1, l2, . . . , lm, where li’s are all those local literals of µ, which do not
appear in any #show directive of µ. For example, the module-elimination of #hide ∗
in the program:

p← ¬r.

#module m1.
#import rel r.
#export rel r.
¬r.
q ← not r.
t← q.
#hide ∗ .
#show q.
#end module.

is #hide t.
The module-elimination of a module µ is the set

Γ ′(µ) = {ρµ | ρ ∈ Γ (µ)}.

The module-elimination of a program Π is obtained by replacing every definition
of a module µ by Γ ′(µ). The following proposition follows easily from the construction
of the module-elimination of Π:

Proposition 1. For every program Π , the module-elimination of Π contains no module
definitions and no #hide ∗ directives.

The programs obtained by the module-elimination process are called module-free pro-
grams.

The next step of the translation consists in providing typing for the arguments of the
functions and relations listed in the signature declarations.

Given a module-free program Π , ∆(Π) denotes the set of signature declarations
from Π . For every predicate p or function symbol f such that, respectively,
p(s1, s2, . . . , sm) or f(s1, s2, . . . , sk) → s0 occur in ∆(Π), let δi

f denote si (recall
that si’s are names of unary predicates).

50 Marcello Balduccini

The explicit-typing set of a constant or variable is the empty set. The explicit-typing
set of a term t = f(t1, . . . , tk) is denoted by tσ , and consists of the set of atoms:

{δ0
f (t), δ1

f (t1), δ2
f (t2), . . . , δk

f (tk)} ∪
⋃

1≤i≤k

tσi .

For example, given the declaration:

#sig func g(r, s)→ u, h(q)→ r.

the explicit-typing set of term g(X, Y) is {u(g(X, Y)), r(X), s(Y)}, and the explicit-
typing set of g(X, h(Z)) is {u(g(X, h(Z))), r(X), s(h(Z)), r(h(Z)), q(Z)}.

The explicit-typing set of an atom a = p(t1, . . . , tk), denoted by aσ , is the set:

{δ1
a(t1), δ2

a(t2), . . . , δk
a(tk)} ∪

⋃
1≤i≤k

tσi .

The explicit-typing set of a literal ¬a is aσ . For example, given the declarations:

#sig rel p(u, v).
#sig func g(r, s)→ u, h(q)→ r.

the explicit-typing set of p(X, Y) is {u(X), v(Y)}; the explicit-typing set of
p(g(X, Y), Z) is {u(g(X, Y)), v(Z), r(X), s(Y)}; the explicit-typing set of
p(g(X, Y), h(Z)) is {u(g(X, Y)), v(h(Z)), r(X), s(Y), r(h(Z)), q(Z)}.

The explicit-typing set of a special atom c = min{l1 : l2 : . . . : lk}max is cσ = lσ1 .
For example, given 1{p(g(X, Y), Z)}2 and the signature declarations from the previous
example, the explicit-typing set is:

{u(g(X, Y)), v(Z), r(X), s(Y)}.

We can finally define the explicit-typing set of a regular rule. Given a regular rule ρ,
let lit(ρ) denote the set of literals from ρ (only the special atoms from ρ do not belong
to lit(ρ)). The explicit-typing set of a regular rule ρ is the set

ρσ =
⋃

l∈lit(ρ)

lσ.

For example, the explicit-typing set of the rule in the program:

#sig rel p(u, v), w(r).
#sig func g(r, s)→ u, h(q)→ r.

1{p(g(X, Y), Z)}2← w(h(Z)).

is:
{r(h(Z)), q(Z)}.

Intuitively, the explicit-typing set provides the typing information for the arguments
of functions and relations. To complete the translation, we modify each rule by adding

Modules and Signature Declarations for A-Prolog: Progress Report 51

to it the atoms from suitable explicit-typing sets. This operation is called explicit-typing,
and is defined more precisely as follows.

The explicit-typing of a special atom c = min{l1 : l2 : . . . : lk}max is the atom
cτ = min{l1 : l2 : . . . : lk : p1 : p2 : . . . : pm}max, where cσ = {p1, p2, . . . , pm}.
For instance, the explicit-typing of special atom 1{p(g(X, Y), Z)}2 from the example
above is:

1{p(g(X, Y), Z) : u(g(X, Y)) : v(Z) : r(X) : s(Y)}2.

The explicit-typing of a regular rule ρ is the rule ρτ , obtained from ρ by replacing
every special atom c with its explicit-typing cτ , and by adding ρσ to the body of ρτ . For
example, the explicit-typing of the rule in:

#sig rel p(u, v), w(r).
#sig func g(r, s)→ u, h(q)→ r.

1{p(g(X, Y), Z)}2← w(h(Z)).

is:

1{p(g(X, Y), Z) : u(g(X, Y)) : v(Z) : r(X) : s(Y)}2← w(h(Z)), r(h(Z)), q(Z).

Finally, the explicit-typing of a module-free program Π is the program Πτ , consist-
ing of:

– The explicit-typing of every rule from Π;
– All the regular directives of Π .

The following proposition follows directly from the above construction.

Proposition 2. For every module-free program Π , the explicit-typing of Π is a regular
program.

The semantics of RSig associates every RSig program Π with the program obtained by
applying module-elimination to Π , followed by explicit-typing. The resulting program
is denoted by Πλ. The following corollary holds:

Corollary 1. For every RSig program Π , Πλ is a regular program.

5 Example of Use of RSig

To demonstrate the use of RSig, in this section we employ the new language to combine
existing programs from the literature. Suppose we want to combine the Military Exam-
ple from Section 4 of [12] with the theory of intended actions from [9]. Program ΠM

from [12] consists of the declaration (refer to Section 6 for a discussion on #domain):

#domain step(T), agent(A), f luent(F), target(TAR), report id(R).

together with the set of rules RM :

h(F, T)← report(R, T), content(R, F, t), not problematic(R).
problematic agent(A)← problematic(R), author(R, A).
h(destroyed(TAR), T + 1)← o(attack(TAR), T),¬failed(attack(TAR), T).
...

52 Marcello Balduccini

Axioms ΠI for intentions, on the other hand, include the declaration:

#domain step(I), action(A).

together with the set of rules RI :

occurs(A, I)← intend(A, I), not ¬occurs(A, I).
intend(A, I1)← next(I1, I), intend(A, I),¬occurs(A, I), not ¬intend(A, I1).
...

Combining ΠM and ΠI using only A-Prolog is non-trivial, because the programs
are written rather differently. Key issues are: (1) variable A is used for both actions and
agents; (2) relations o from ΠM and occurs from ΠI must be connected; (3) ΠM and
ΠI have to be inspected to ensure that the same predicate and function names are not
used with different meanings. In general, the sets of rules being combined will need to
be modified by hand, which is a time-consuming and error-prone task.

On the other hand, using RSig, the programs can be merged without changes to the
existing rules. All that is needed is removing the #domain declarations, and adding
suitable declarations of signatures and modules. The program combining ΠM and ΠI ,
outlined below, consists of: (1) signature declarations for relations and functions of
global scope; (2) module military, containing RM together with appropriate
import/export declarations and signature declarations for local relations and functions;
(3) module intentions, containing RI together with import/export and signature
declarations.

#sig rel h(fluent, step), occurs(action, step).
#sig rel failed(action, step).
...

#module military.
#import rel occurs(,), failed(,).
...
#export rel problematic agent().
#export rel h(,).

#sig rel o(action, step).

o(A, T) : −occurs(A, T).

RM

#end module.

#module intentions.
#import rel occurs(,), intend(,), next(,).
#export rel occurs(,), intend(,).
...
RI

#end module.

Modules and Signature Declarations for A-Prolog: Progress Report 53

6 Related Work

The language of LPARSE includes a directive, #domain, which aims at allowing
implicit typing. Differently from the signature declarations presented here, #domain
specifies an association between each variable and a type. Thus, a declaration:

#domain r(X).

states that occurrences of X denote an object of type r. For simple cases, #domain is
fairly effective. For example, it allows to write a definition of relation sign that is as
compact as the one in RSig:

num(min..max).
sign type(−1).
sign type(0).
sign type(1).

#domain num(N).
#domain sign type(S).

sign(N, 1)← N > 0.
sign(0, 0).
sign(N,−1)← not sign(N,S), S 6= −1.

However, #domain directives apply to all the occurrences of a variable in the program.
This substantially complicates the task of adding other rules, because the programmer
needs to keep in mind the typing of all the variables already declared. Suppose, for
example, that we were to use the above definition of sign in a program that already
contains a formalization of sets. Such a program could contain rules defining when a
set is empty, similar to:

%% If O is a member of set S, then S has at least one member.
at least one member(S)← member(O,S).

%% Set S is empty unless we know that S has at least one member.
empty(S)← not at least one member(S).

Unfortunately, the two sets of rules cannot be combined directly, because the
#domain directive for variable S forces the domain of S to be {−1, 0, 1} even in the
rules about sets: the programmer needs to carefully rename the variables in either set
of rules. If, instead, he is writing new rules, the programmer has to select carefully the
variables, in order to match the intended argument types for the relations or functions
he is using. Additional difficulties arise when special atoms are used in the program, as
the occurrence, in these atoms, of variables from a #domain directive often yields
unintended results. On the other hand, when writing rules in RSig, one only needs
information about the argument types of relations and functions, different sets of rules
can be more easily combined, and the signature declarations do not interfere with
special atoms.

54 Marcello Balduccini

Various languages for the modular encoding of knowledge have been proposed in
[7, 6, 9, 4]. All of these efforts are far more ambitious than RSig, in that they allows so-
phisticated definitions of classes or templates, including various degrees of the specifi-
cation of object-oriented style inheritance and parametrization. We believe that learning
and mastering these extensions requires a substantial effort. The goal of our work was
to provide a simpler extension of A-Prolog that can be easily learned, mastered, and
used for both new and existing programs.

7 Conclusions and Future Work

In this paper, we have presented an extension of A-Prolog satisfying the two main re-
quirements for the simplification of the task of encoding complex knowledge bases.

We believe that the resulting language, RSig, is simple to learn for average A-Prolog
users, and yet effective in satisfying those requirements.

An implementation of RSig, based on LPARSE, is available from
http://krlab.cs.ttu.edu/∼marcy/RSig/. With respect to the language
described here, the implementation has the following limitations:

– The types used in signature declarations must be domain predicates.
– The parser does not check for duplicated module names.
– The parser does not check for directives #show. and #hide. occurring inside

module definitions.
– Import and export declarations are allowed to occur anywhere inside a module def-

inition.
– No error checking is done for improper import/export declarations, for example

when a global relation is used in the head of a module’s rules, but is not listed in an
export directive.

In the future, we expect to assess the effectiveness and ease of use of RSig by en-
coding various complex knowledge bases. In this respect, we have already begun using
RSig for a sophisticated intelligent system (partially covered in [2]) that applies deep
reasoning to question answering in the context of natural language understanding.

8 Acknowledgments

The author would like to thank Michael Gelfond and Yana Maximova Todorova for
their suggestions, and the anonymous reviewers for drawing attention to related works.
This work was partially supported by NASA contract NASA-NNG05GP48G and by
ATEE/DTO contract ASU-06-C-0143.

References

1. Marcello Balduccini. CR-MODELS: An Inference Engine for CR-Prolog. In LPNMR 2007,
May 2007.

Modules and Signature Declarations for A-Prolog: Progress Report 55

2. Marcello Balduccini and Chitta Baral. Knowledge Representation and Question Answering,
chapter 21. Handbook of Knowledge Representation. Elsevier, 2006.

3. Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Jan 2003.

4. Chitta Baral, Juraj Dzifcak, and Hiro Takahashi. Macros, Macro Calls and Use of Ensembles
in Modular Answer Set Programming. In Proceedings of ICLP-06, pages 376–390, 2006.

5. Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Giovan-
battista Ianni, Giuseppe Ielpa, Christoph Koch, Nicola Leone, Simona Perri, Gerard Pfeifer,
and Axel Polleres. The DLV System. In Sergio Flesca and Giovanbattista Ianni, editors,
Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002), Sep
2002.

6. Francesco Calimeri, Giovanbattista Ianni, Giuseppe Ielpa, Adriana Pietramala, and
Maria Carmela Santoro. A System with Template Answer Set Programs. In JELIA 2004,
2004.

7. Thomas Eiter, Georg Gottlob, and Helmuth Veith. Modular Logic Programming and Gen-
eralized Quantifiers. In Proceedings of the 4th International Conference on Logic Program-
ming and Non-Monotonic Reasoning (LPNMR’97), volume 1265 of Lecture Notes in Artifi-
cial Intelligence (LNCS), pages 290–309, 1997.

8. Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C. Kakas and Fariba
Sadri, editors, Computational Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part II, volume 2408, pages 413–451. Springer Verlag, Berlin, 2002.

9. Michael Gelfond. Going places - notes on a modular development of knowledge about travel.
In AAAI Spring 2006 Symposium on Knowledge Repositories, 2006.

10. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proceedings of ICLP-88, pages 1070–1080, 1988.

11. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, pages 365–385, 1991.

12. Nicholas Gianoutsos. Detecting Suspicious Input in Intelligent Systems using Answer Set
Programming. Master’s thesis, Texas Tech University, May 2005.

13. Yulia Lierler and Marco Maratea. Cmodels-2: SAT-based Answer Sets Solver Enhanced to
Non-tight Programs. In Proceedings of LPNMR-7, Jan 2004.

14. Veena S. Mellarkod. Optimizing the Computation of Stable Models using Merged Rules.
Master’s thesis, Texas Tech University, May 2002.

15. Veena S. Mellarkod and Michael Gelfond. Enhancing ASP Systems for Planning with Tem-
poral Constraints. In LPNMR 2007, pages 309–314, May 2007.

16. Ilkka Niemela, Patrik Simons, and Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1–2):181–234, Jun 2002.

17. Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew
Barry. An A-Prolog decision support system for the Space Shuttle. In PADL 2001, pages
169–183, 2001.

18. Timo Soininen and Ilkka Niemela. Developing a declarative rule language for applications
in product configuration. In Proceedings of the First International Workshop on Practical
Aspects of Declarative Languages, May 1999.

19. Tommi Syrjanen. Implementation of logical grounding for logic programs with stable model
semantics. Technical Report 18, Digital Systems Laboratory, Helsinki University of Tech-
nology, 1998.

Visual Querying and Application Programming
Interface for an ASP-based Ontology Language⋆

Lorenzo Gallucci2,3 and Francesco Ricca1

1 Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
ricca@mat.unical.it

2 DEIS, University of Calabria, 87036 Rende (CS), Italygallucci@deis.unical.it
3 Exeura S.r.l., c/o University of Calabria, 87036 Rende (CS), Italy gallucci@exeura.it

Abstract. Answer Set Programming (ASP) is a logic-based programming paradi-
gm which has been recently exploited for solving complex real-world applica-
tions in an effective way. However, ASP systems currently miss important tools
for the development of industry-level applications, such as easy-to-use graphic
environments and application programming interfaces.
In this paper, we present two new tools, tailored for OntoDLP(an ASP-based
ontology representation and reasoning language), which represent a step towards
overcoming the above-mentioned limitations: a novel visual querying interface,
which allows non-expert users to compose and run queries; and a Java API, en-
abling the development of software systems embedding ASP programs.

1 Introduction

Motivation. Answer Set Programming (ASP) is a novel programming paradigm which
has been proposed in the area of non-monotonic reasoning andlogic programming. The
idea of ASP is to represent a given computational problem by alogic program whose
answer sets correspond to solutions, and then use a solver tofind such a solution [1]. The
language of ASP is able to express all problems belonging to the complexity classesΣP

2

andΠP
2

(under brave and cautious reasoning, respectively) [2]. Thus, ASP is strictly
more powerful than SAT-based programming (unless some widely believed complexity
assumptions do not hold), and, at the beginning, it has been profitably exploited to
solve problems of high complexity from the AI field (e.g. diagnosis and planning under
incomplete knowledge4).

Furthermore, the availability of some efficient ASP systems, like DLV [3], GnT [4],
Clasp [5], NoMore++[6] and Cmodels [7], made ASP a powerful tool for developing
advanced knowledge-based applications; and the viabilityof the approach has been
confirmed by the recent applications of ASP systems for solving problems in the areas
of Knowledge Management (KM), Security, and Information Integration [8].

⋆ Supported by M.I.U.R. within the PRIN project “Potenziamento e Applicazioni della Pro-
grammazione Logica Disgiuntiva” and within Internationalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni etecniche di ottimizzazione.”

4 Note that, both the above-mentioned problems are complete for the complexity classΣP

2 or
ΠP

2

Visual Querying and API for ASP-based Ontology Languages 57

However, ASP systems are far away from comfortably enablingthe development
of industry-level applications, mainly because they miss important tools for supporting
users and programmers. In particular, friendly user interfaces are missing, and there is
a lack of advanced Application Programming Interfaces (API) for implementing appli-
cations on top of ASP systems.

In this paper, we try to overcome the above-mentioned limitations by developing
and implementing advanced interfaces for both users and programmers of an ASP-
based system called OntoDLV [9]. OntoDLV is conceived for ontology representation
and reasoning, and it is already employed in a couple of industrial applications [10, 11].

OntoDLP. An ontology is the specification of a common vocabulary by defining the
meaning of terms and their relations, usually modeled by using primitives such as con-
cepts organized in taxonomy, relations, and axioms. Ontology representation languages
have become a central tool in many research areas and in particular in the field of
the Semantic Web. However, in general, the most common ontology languages miss5

“rule-based” inference mechanisms, an important feature considered indispensable for
enabling agents to reason about the knowledge represented in an ontology [14].

OntoDLP [9] is a novel ontology representation language which naturally com-
bines the reasoning power of ASP with the benefits of a set of ontology-representation
constructs. In particular, the language includes, besidesthe concept ofrelation, the
object-oriented notions ofclass, object (class instance),object-identity, complex ob-
ject, (multiple) inheritance, and the concept of modular programming by means of
reasoning modules.

A classcan be thought of as a collection of individuals that belong together because
they share some features. An individual, orobject, is any identifiable entity in the uni-
verse of discourse. Objects, also called class instances, are unambiguously identified by
their object-identifier (oid) and belong to a class. A class is defined by a name (which
is unique) and an ordered list of attributes, identifying the properties of its instances.
Each attribute has a name and a type, which is, in truth, a class. This allows for the
specification ofcomplex objects(objects made of other objects).

Classes can be organized in a specialization hierarchy (or data-type taxonomy) us-
ing the built-inis-a relation (multiple inheritance).

Relationships among objects are represented by means ofrelations, which, like
classes, are defined by a (unique) name and an ordered list of attributes (with name
and type). As in DLP, logic programs are sets of logic rules and constraints. However,
OntoDLP extends the definition of logic atom by introducing class and relation predi-
cates, and complex terms (allowing for a direct access to object properties). In this way,
the OntoDLP rules merge, in a simple and natural way, the declarative style of logic
programming with the navigational style of the object-oriented systems. In addition,
OntoDLP logic programs are organized inreasoning modules, taking advantage of the
benefits of modular programming.

The OntoDLP language has been implemented in the OntoDLV system[9], which
is a cross-platform visual development environment for knowledge modeling and ad-

5 Even if there are some proposal combining Description Logic-based languages with rules (e.g.
see [12, 13])

58 Lorenzo Gallucci and Francesco Ricca

vanced knowledge-based reasoning. The OntoDLV system seamlessly integrates the
DLV system [3] exploiting the power of a stable and efficient DLP solver.

Importantly, the strongly-typed nature of OntoDLP allowedfor the implementation
of a number of type-checking routines that verify the correctness of a specification on
the fly, resulting in an help for the programmer.

Contribution. In this paper, we present two novel and important features ofthe On-
toDLV system which represent a first step towards overcomingthe above-mentioned
limitations of ASP systems:

– anadvanced visual-quering interface, which allows the user to formulate and run
queries on OntoDLV by using an intuitive graphic interface `a la QBE;

– and, anApplication Programming Interfacewhich enables the implementation of
Java applications embedding OntoDLP ontologies and reasoning modules.

The remainder of this paper is structured as follows. In the next section, we present
an informal overview of the OntoDLP language; followed, in Section 3 by a descrip-
tion of the OntoDLV system. After that, in Section 4 and 5, we present the visual-query
interface and the OntoDLV API , respectively. Finally, Section 6 we draw our conclu-
sions.

2 The OntoDLP Language

In this section we informally describe the OntoDLP language, a knowledge representa-
tion and reasoning language which allows one to define and to reason on ontologies.

An ontology in OntoDLP can be specified by means ofclassesandrelations. Classes
are organized in aninheritance(ISA) hierarchy, while the properties to be respected are
expressed through suitableaxioms, whose satisfaction guarantees the consistency of
the ontology.Reasoning modulesallow us to express rich forms of reasoning on the
ontologies.

For a better understanding, we will describe each constructin a separate section and
we will exploit an example (theliving being ontology), which will be built throughout
the whole section, thus illustrating the features of the language.

OntoDLP is actually an extension of the ASP language, which has been enriched
by ontology representation concepts, and hereafter we assume the reader to be familiar
with ASP syntax and semantics (for further details refer to [3]).

2.1 Classes

A classcan be thought of as a collection of individuals that belong together because
they share some properties.

Classes can be defined in OntoDLP by using the the keywordclassfollowed by its
name, and class attributes can be specified by means of pairs(attribute-name : attribute-
type), whereattribute-nameis the name of the property andattribute-typeis the class
the attribute belongs to.

Suppose we want to model theliving beingdomain, and we have identified four
classes of individuals:persons, animals, food, andplaces.

Visual Querying and API for ASP-based Ontology Languages 59

For instance, we can define the classpersonhaving the attributes name, age, father,
mother, and birthplace, as follows:

class person(name:string, age:integer, father:person, mother:person, birthplace:place).

Note that, this definition is “recursive” (both father and mother are of typeperson).
Moreover, the possibility of specifying user-defined classes as attribute types allows
for the definition of complex objects, i.e. objects made of other objects6. Moreover,
many properties can be represented by using alphanumeric strings and numbers by
exploiting the built-in classesstring and integer (respectively representing the class
of all alphanumeric strings and the class of non-negative numbers).

In the same way, we could specify the other above mentioned classes in our domain
as follows:

class place(name:string).

class food(name:string, origin:place).

class animal(name:string, age:integer, speed:integer).

Each class definition contains a set of attributes, which is calledclass scheme. The
class scheme represents, somehow, the “structure” of (the data we have about) the indi-
viduals belonging to a class.

Next section illustrates how we represent individuals in OntoDLP.

2.2 Objects

Domains contain individuals which are calledobjectsor instances.
Each individual in OntoDLP belongs to a class and is univocally identified by using

a constant calledobject identifier(oid) orsurrogate.
Objects are declared by asserting a special kind of logic facts (asserting that a given

instance belongs to a class). For example, with the following two facts

rome : place(name:”Rome”).
john:person(name:”John”, age:34, father:jack, mother:ann, birthplace:rome).

we declare that “Rome” and “John” are instances of the classplaceandperson, re-
spectively. Note that, when we declare an instance, we immediately give an oid to the
instance (e.g.romeidentifies a place named “Rome”), which may be used to fill an at-
tribute of another object. In the example above, the attribute birthplace is filled with the
oid romemodeling the fact that “John” was born in Rome; in the same way, “ jack” and
“ann” are suitable oids respectively filling the attributesfather, mother(both of type
person).

The language semantics (and our implementation) guarantees the referential in-
tegrity, bothjack, annandromehave to exist whenjohn is declared.

6 Attributes model the properties thatmustbe present in all class instances; properties thatmight
be present or not should be modeled by using relations. In other words, an attribute(n : k) of
a classc is a total function fromc to k; while partial functions fromc to k can be represented
by a binary relation on(c, k).

60 Lorenzo Gallucci and Francesco Ricca

2.3 Inheritance

OntoDLP allows one to model taxonomies of objects by using the well-known mecha-
nism of inheritance.

Inheritance is supported by OntoDLP by using the special binary relationisa. For
instance, one can exploit inheritance to represent some special categories of persons,
like studentsandemployees, having some extra attribute, like a school, a company etc.
This can be done in OntoDLP as follows:

class studentisa {person}(
code:string,
school:string,
tutor:person).

class employeeisa {person}(
salary:integer,
skill:string,
company:string,
tutor:employee).

In this case, we have thatpersonis a more generic concept orsuperclassand both
studentandemployeeare a specialization (orsubclass) of person. Moreover, an instance
of studentwill have both the attributes: code, school, and tutor, which are defined lo-
cally, and the attributes: name, age, father, mother, and birthplace, which are defined
in person. We say that the latter are “inherited” from the superclassperson. An analo-
gous consideration can be made for the attributes ofemployeewhich will be name, age,
father, mother, birthplace, salary, skill, company, and tutor.

An important (and useful) consequence of this declaration is that each proper in-
stance of bothemployeeandstudentwill also be automatically considered an instance
of person(the opposite does not hold!).

For example, consider the following instance ofstudent:

al:student(name:”Alfred”, age:20, father:jack, mother:betty, birthplace:rome,
code:”100”, school:”Cambridge”, tutor:hanna).

It is automatically considered also instance of person as follows:

al:person(name:”Alfred”, age:20, father:jack, mother:betty, birthplace:rome).

Note that it is not necessary to assert the above instance.
In OntoDLP there is no limitation on the number of superclasses (i.e. multiple in-

heritance is allowed). We complete the description of inheritance recalling that there is
also another built-in class in OntoDLP, which is the superclass of all the other classes
and is calledobject (or⊤). For a formal description of inheritance we refer the reader
to [9].

2.4 Relations

Relationships can be modeled in OntoDLP by means ofRelations.
Relationsare declared like classes: the keywordrelation (instead ofclass) precedes

a list of attributes.
As an example, the relationfriend, which models the friendship between two per-

sons, can be declared as follows:

Visual Querying and API for ASP-based Ontology Languages 61

relation friend(pers1:person, pers2:person).

Like classes, the set of attributes of a relation is calledscheme, while the cardinality
of the scheme is called arity. The scheme of a relation definesthe structure of its tuples
(this term is borrowed from database terminology).

In particular, to assert that two persons, say “john” and “bill” are friends (of each
other), we write the following logic facts (that we call tuples):

friend(pers1:john, pers2:bill). friend(pers1:bill, pers2:john).

Thus, tuples of a relation are specified similarly to class instances, that is, by assert-
ing a set of facts (but tuples are not equipped with an oid).

2.5 Axioms and Consistency

An axiomis a consistency-control construct modeling sentences that are always true (at
least, if everything we specified is correct). They can be used for several purposes, such
as constraining the information contained in the ontology and verifying its correctness.

As an example suppose we declared the relation colleague, which associates persons
working together in a company, as follows:

relation colleague (emp1:employee, emp2:employee).

It is clear that the information about the company of an employee (recall that there is
an attribute company in the scheme of the class employee) must be consistent with the
information contained in the tuples of the relation colleague. To enforce this property
we assert the following axioms:

(1) :–colleague(emp1 : X1, emp2 : X2), not colleague(emp1 : X2, emp2 : X1)
(2) :–colleague(emp1 : X1, emp2 : X2),

X1 : employee(company : C), not X2 : employee(company : C).

The above axioms states that,(1) the relation colleague is symmetric, and(2) if two
persons are colleagues and the first one works for a company, then also the second one
works for the same company.

If an axiom is violated, then we say that the ontology is inconsistent (that is, it con-
tains information which is, somehow, contradictory or not compliant with the intended
perception of the domain).

2.6 Reasoning modules

Given an ontology, it can be very useful to reason about the data it describes.
Reasoning modulesare the language components endowing OntoDLP with power-

ful reasoning capabilities. Basically, areasoning moduleis a disjunctive logic program
conceived to reason about the data described in an ontology.Reasoning modules in On-
toDLP are identified by a name and are defined by a set of (possibly disjunctive) logic
rules and integrity constraints.

62 Lorenzo Gallucci and Francesco Ricca

Syntactically, the name of the module is preceded by the keyword modulewhile
the logic rules are enclosed in curly brackets (this allows one to collect all the rules
constituting the encoding of a problem in a unique definitionidentified by a name).

As an example consider the following module, which allows tosingle out in the
derived predicateyoungAndShythe names of the persons who are less than 18 years
old, and who have less than ten friends:

module(shyFriends){
youngAndShy(N) :–P : person(name : N, age : A), A < 18,

#count{F : friend(pers1 : P, pers2 : F)} < 10.}

Note that, this information is implicitly present in the ontology, and the reasoning
module just allows to make it explicit.

2.7 Querying

An important feature of the language is the possibility of asking queries in order to
extract knowledge contained in the ontology, but not directly expressed. As in DLP a
query can be expressed by a conjunction of atoms, which, in OntoDLP, can also contain
complex terms.

As an example, we can ask for the list of persons having a father who is born in
Rome as follows:

X:person(father:person(birthplace:place(name: “Rome”)))?

Note that we are not obliged to specify all attributes; rather we can indicate only the
relevant ones for querying. In general, we can use in a query both the predicates defined
in the ontology and the derived predicates in the reasoning modules.

For instance, consider the reasoning moduleshyFriendsdefined in the previous sec-
tion, the following query asks whether there is a person whose name is “Jack” and is
“young and shy”:

youngAndShy(X), X:person(name:”Jack”))?

3 The OntoDLV System

OntoDLV is a complete framework that allows one to specify, navigate, query and per-
form reasoning on OntoDLP ontologies. We refrain from describing the implementation
details of OntoDLV in this paper. Rather, we illustrate the overall OntoDLV architec-
ture, and present the main features of the system; subsequently, in the following sec-
tions, we will describe the main components of the graphicaluser interface of OntoDLV.

The system architecture of OntoDLV, depicted in Figure 1, can be divided in three
abstraction levels. The lowest level, namedOntoDLV corecontains the components im-
plementing the main functionalities of the system, namely:Persistency Manager, Type
Checker, andRewriter. The Persistency Manager provides all the methods needed to
store and manipulate the ontology components. In particular, it exploits theParser

Visual Querying and API for ASP-based Ontology Languages 63

submodule to analyze and load the content of several OntoDLPtext files, and aDB
Managersubmodule to implement data persistency on relational databases through Hi-
bernate/JDBC.

The admissibility of an ontology is ensured by the Type Checker module which
implements a number of type checking routines. TheRewritermodule translates On-
toDLP ontologies, axioms, reasoning modules and queries toan equivalent ASP pro-
gram which runs on the DLV system, and redirects results and possible error mes-
sages to the Persistency Manager. TheRewriterfeatures a number of optimization and
caching techniques in order to reduce the time used by interacting with DLV. All

Fig. 1.The OntoDLV architecture

the features implemented by theOntoDLV core(data persistency, browsing invocations
results etc.) can be employed by both system developers and programmers through a
sophisticated application interface (which will be described in detail in Section 5): the
OntoDLV API. Eventually, the end user exploits the system through an easy-to-use vi-
sual environment calledGUI (Graphical User Interface), which is built on top of the
OntoDLV API. TheGUI combines a number of specialized visual tools for authoring,
browsing and querying a OntoDLP ontology. In particular, the GUI features a graph-
based ontology viewer and a graphical query environment (which will be described in
detail in the next Section).

The OntoDLV system has been implemented in Java and exploitsthe DLV system,
a state-of-the-art ASP solver that has been shown to performefficiently on both hard
and “easy” (having polynomial complexity) problems

The DLV system is a highly portable software written in ISO C++, available for
various operating systems. Thus, the OntoDLV system runs under a variety of operating
systems.

4 Visual Querying

In this section we describe the visual query interface of theOntoDLV system. This tool
has been designed in a way that a non-expert user can ask queries without worrying
about the syntax of the language, and a programmer can compose and test in an easy
way complex queries. The query interface is integrated in the OntoDLV Graphical User

64 Lorenzo Gallucci and Francesco Ricca

Interface. We fist report a description of the GUI, in order togive an idea of the en-
vironment in which the query tool is embedded, and then describe it by running an
example.

4.1 The OntoDLV GUI

The OntoDLV GUI was designed to be simple for a novice to understand and use,
and powerful enough to support experienced users. A snapshot of the system running
the ontology described in Section 2 is depicted in Figure 2. The GUI presents several

Fig. 2. OntoDLV GUI: Browsing and editing the ontology.

panels offering access to several facilities combining thebrowsing environment with
the editing environment.

The class/subclass hierarchy is displayed both in an indented text (on the left in
Figure 2) and a graph-based form (on the bottom in Figure 2).

The user can browse the ontology by double-clicking the items in the panels. The
structure of each ontology entity (classes, relations, andinstances) can be displayed
in the middle of the screen by switching between several tabbed panels. For example,
in Figure 2 the class person is selected in the class list and the class panel shows the
scheme of that class. In particular, the name and the type of the class attributes are
shown in a table, while, on the left, both the relations and the axioms involving the
class, together with the list of the instances, are reportedin an indented text form.

Visual Querying and API for ASP-based Ontology Languages 65

In the editing phase, the user enters the domain informationby filling in the blanks
of intuitive forms and selecting items from lists (exploiting an simple mechanism based
on drag-and-drop). An up-to-date list of messages informs the user about the occur-
rence of errors (e.g. type checking messages, etc.) in the ontology under development.
When the user clicks on an error message item the system promptly shows the entity
involved in it. Reasoning and querying can be performed by selecting the appropriate
panel, where the user can create/edit reasoning modules andqueries, respectively. The
reasoning module panel contains a text editor featuring syntax coloring and a simple
auto-complete feature. The interface also allows the reasoning modality (both brave
reasoning and cautious reasoning are supported) to be selected, and the reasoning mod-
ules needed to solve the specified reasoning task to be enabled/disabled.

4.2 Querying Interface

After creating or loading an ontology, the most common operation performed by users
is to query the system to obtain information stored in the ontology. This task can be
performed in OntoDLV by running queries through an appropriate interface7. Even if
the OntoDLP language simplifies (w.r.t. standard ASP languages) the task of writing
a query by exploiting both complex terms and strong typing, this operation may be
performed by expert users only. In order to make more intuitive and easy this task, and
to allow a non-expert user to query an ontology, the system features a full graphical
query interface similar to the QBE (Query By Example) editors, which are nowadays
largely adopted for formulating queries on relational databases. Compared to relational
QBE interfaces (like, e.g., the QBE of MS Access), ours interface is more powerful
thanks to the exploitation of the strong typing informationof the underlying language.
Thus, by using the graphical interface an user can create queries without worrying about
the syntax, simply selecting classes and relations from thepanels (elements can be
added exploiting drag-and-drop) and creating links between class attributes and relation
parameters.

In order to practically understand how the interface works,we describe it by the fol-
lowing example. Suppose the system already loaded the living being ontology described
in Section 2, and an we want to compose the following query:

X : person(father : person(birthP lace : place(name : ”Rome”)))?
(i.e. who are the people whose father was born in a place namedRome?).

This query can be easily composed by selecting from the left panel, displaying the list
of classes of the ontology (Fig. 3a), the person class, and bydragging it inside the query
panel. Automatically, a box representing the person class together with its attributes
(name, age, father, and birthplace, namely) appears in the panel (Fig. 3b). To complete
the query we now have to indicate that the father of this person was born in a place
named “Rome”. To do that, we just drag the attribute father out of the box representing
the class person (Fig. 3c). The system automatically buildsa list (by exploiting the
strongly typed nature of the language) suggesting classes and relations that can correctly
“join” with the attribute father, which is of the type person(Fig. 3d). In this case, we

7 Due to space constraints, and since we are mainly interestedin describing the graphical query
editor, we refrain from describing the text-based query interface.

66 Lorenzo Gallucci and Francesco Ricca

Fig. 3.OntoDLV GUI: How to build a query.

Visual Querying and API for ASP-based Ontology Languages 67

select the person class in order to indicate that the father is a person having birthplace
attribute valued to rome. Consequently, another box of typeperson appears (Fig. 3e),
and we link the oid field with the father attribute of the original person box (Fig. 3f).
We continue by applying the same criterion; in particular, we drag-out (Fig. 3g) the
birthplace attribute (which is of type place) of the second person box (representing the
father) and we select the place class (creating a place box linked with the birthplace
attribute, see Fig. 3h). Finally, we double click on the nameattribute (which is of type
string) of the place box to set the value of this attribute to ”Rome” (Fig. 3i). The obtained
query is shown in Figure 3j. It is easy to see that the graphical interface makes the
meaning of that query more intuitive, and it allows an unexperienced user to work with
the system without knowledge about the underlying syntax details. Importantly, the
system helps the user suggesting the classes or the relationthat are allowed to “join”
a given attribute, exploiting the strongly-typed nature ofthe language. Moreover, to
help expert users, a sort of “reverse-engineering” procedure allows to smoothly switch
between the text editing and the visual editing environment.

5 OntoDLV API

In order to enable third parties develop their own knowledge-based applications on
top of OntoDLV, we developed an application programming interface named OntoDLV
API. Since OntoDLV is a Java application, the OntoDLV API hasbeen written in this
language. In particular, all the operations the user can require (e.g. creation and brows-
ing of ontology elements, reasoner invocations etc.) are made available through a suit-
able set of Java interfaces. It is worth noting that, the OntoDLV API is characterized by
a rather high level of abstraction; and it is composed of a relatively rich set of Java inter-
faces, together with a single factory class (like, e.g., theJAXP API from Sun). However,
the extensive usage of standard Java components (e.g. both the interfacesCollection

andIterator play a central role) makes expert programmers rapidly familiar with our
interface.

It is impossible, due to space constraints, to give here an in-depth description of all
the methods and classes which constitute the OntoDLV API; however, in the following
subsections we describe its core components and we sketch its working principles by
running an example.

5.1 Core API Components and Ontology browsing

In the core part of the OntoDLV API each language construct (class schema, relation
schema, instance etc.) has an associated Java interface describing it. In particular, the
available interfaces are:Class, Relation, ClassInstance, Tuple, Query, Axiom,
ReasoningModule. All the concrete objects implementing the above-mentioned in-
terfaces are made available to the user through another interface containing a set of
browsing methods calledComponentBrowser. In particular,ComponentBrowser

has seven methods which return lists of component, namely:classes(), relations(),
classInstances(), tuples(), queries(), axioms(), modules(). The first method re-
turns the list of all class objects, the second one the list ofall relation objects and so

68 Lorenzo Gallucci and Francesco Ricca

forth. For example, ifcb is aComponentBrowser, one can print out the definition of
all known classes with this code:

for (Class cl: cb.classes()) System.out.println(cl);

It is worth noting that these lists are not “materializations” of the corresponding
entities8; they rather represent virtual “views” aggregating a set ofobjects, possibly
coming from many sources (e.g. different physical storage9), and they are a extensions
of Java standardCollections, which henceforth can manipulated using well-known
Java methods such asadd(), contains(), remove(), etc.

The same principle, based on lists ofComponents, is applied to browse the content
of schemas and instances. For example, theClass component has a method which
returns the list of all superclasses of the given class object. Moreover, the lists returned
by the browsing methods also provide the user the ability to performselectionsover the
set of objects through specialized methods. Those methods,called “selectors”, return a
list of the same kind as the one they were called on (cascadingcalls are allowed), but
filtered on the basis of a given criterion.

A number of selection criteria has been designed by exploiting the properties of each
collection; and, for instance, a list of classes has a set of specialized selectors that deal
with the schema properties (such ashavingSubclass() andhavingSuperclass()). As
an example, the following code snippet allows one to print out the names of all classes
(if any) which are common ancestors of bothaClass andbClass:

System.out.printf("Class names are: %s",
cb.classes().havingSubclass(aClass).
havingSubclass(bClass).names());

Similarly, a list of instances (namely, eitherClassInstanceLists orTupleLists)
may be queried for the occurrence of a particular value for anattribute by using the
methodhavingV alue(). For example, one can obtain the list of instances (ofany
class) having, among their attribute values, both the number 1974 and the string “Rome”
(clearly, for different attributes of a given instance) in this way:

ClassInstanceList specialInstances =
cb.classInstances().havingValue(1974).havingValue("Rome");

5.2 OntoDLP API Usage

In this section, we show how to use OntoDLV API by running an example. In particular,
we describe a snippet of Java code which uses the API to deal with the living being
ontology introduced in Section 2. We refrain from reportingall the technical details
(package inclusions, main function declaration etc.), while we focus on the part of the
code where the API methods are used. In particular, we reporta program which executes
the following four operations:

8 Importantly, whereas core data is always kept in memory, anyinformation derived by the
framework for internal purposes (such as collections, dependency graphs, computed attributes,
etc.) is “memoized” (basically, it is stored to make the computation efficient); but, if needed,
the garbage collector of the Java virtual machine can reclaim it. This allows the API to dynam-
ically adapt the memory usage to the available system resources.

9 As described in Secion 3 OntoDLV Core supports both filesystem and database persistency,
which are handled transparently by the API

Visual Querying and API for ASP-based Ontology Languages 69

1. load a text file containing the living being ontology;
2. add some new data to the relationfriends;
3. build the reasoning moduleshyFriends described in Section 2.6;
4. perform the queryyoungAndShy(X), X:person(name:”Jack”))?, and print the ob-

tained results in standard output.

To perform step 1, we first create an instance of theProjectclass, which, in general,
allows one to handle many different sources of data (e.g. text files, and/or, relational
databases).

Project project = ProjectFactory.buildEmptyProject();

Then, we load the ”living-beings.dlpp” text by writing:

project.buildStreamRepository("LB",
new File("living-beings.dlpp"));

This statement, actually, creates a newRepositoryclass object that handles the data
stored in the ”living-beings.dlpp” text file. Basically, the text file is parsed, and an in-
memory representation of its content can be handled exploiting that object.

Then, we add some tuple to the relationfriends (step 2) by writing as follows:

repository.buildTuple("friend(pers1:ted, pers2:frank).");
repository.buildTuple("friend(pers1:frank, pers2:josh).");

In order to perform step 3, we build an object of the classReasoningModule, and
we add a rule within it:

ReasoningModule module = ontology.buildReasoningModule(
"shyFriends");

module.buildRule("youngAndShy(N) :- P:person(name:N, age:A),
A<18, #count{ F : friend(pers1:P, pers2:F)} < 10.");

Eventually, we perform step 5 by building aQueryInvocationobject as follows:

String queryText = "youngAndShy(X), X:person(name:"Jack"))?";
QueryInvocation queryInvocation =
project.getEngine().performQuery(queryText, DerivationMode.BRAVE);
queryInvocation.invokeSynchronously();

The last statement, basically, performs a synchronous invocation of the internal rea-
soner (i.e. the current thread it is constrained to wait until the output is computed); then
we get and print the results on standard output by writing:

QueryResult result = queryInvocation.getResults();
System.out.printf("Results: \%s", result.toString());

6 Conclusions

In this paper we have presented two novel tools tailored for an integrated ontology
development and reasoning platform called OntoDLV:

70 Lorenzo Gallucci and Francesco Ricca

– avisual query interfacèa la QBE, which simplifies the usage of the system for both
developers and unexperienced users;

– an application programming interface, which enables the programmers to embed
ASP programs in systems that are based on Java.

These tools represent a step towards the development of frameworks supporting the
implementation of industry-level applications based on ASP.

References

1. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: ICLP’99, Las Cruces, New
Mexico, USA, The MIT Press (1999) 23–37

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS22(3) (1997) 364–418
3. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562
4. Janhunen, T., Niemelä, I.: Gnt - a solver for disjunctivelogic programs. In: Proceedings of

the Seventh International Conference on Logic Programmingand Nonmonotonic Reasoning
(LPNMR-7). LNCS 2923

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.
In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), AAAI Press/The MIT Press (2007)

6. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.:The nomore++ Approach to
Answer Set Solving. In: Logic for Programming, Artificial Intelligence, and Reasoning,
12th International Conference, LPAR 2005. LNCS 3835

7. Lierler, Y.: Cmodels for Tight Disjunctive Logic Programs. In: W(C)LP 19th Workshop on
(Constraint) Logic Programming, Ulm, Germany. Ulmer Informatik-Berichte, Universität
Ulm, Germany (2005) 163–166

8. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (2005) 915–917

9. Ricca, F., Leone, N.: Disjunctive logic programming withtypes and objects: The dlv+ sys-
tem. Journal of Applied Logics (2005) To appear.http://www.kr.tuwien.ac.at/
research/reports/rr0510.ps.gz.

10. Ruffolo, M., Leone, N., Manna, M., Sacca’, D., Zavatto, A.: Exploiting ASP for Semantic
Information Extraction. In: Proceedings ASP05 - Answer SetProgramming: Advances in
Theory and Implementation, Bath, UK (2005)

11. Cumbo, C., Iiritano, S., Rullo, P.: Reasoning-based knowledge extraction for text classifica-
tion. In: Discovery Science. (2004) 380–387

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining
logic programs with description logics. In: Proceedings ofthe Twelfth International World
Wide Web Conference, WWW2003, Budapest, Hungary. (2003) 48–57

13. Horrocks, I., Patel-Schneider, P.F.: A proposal for an owl rules language. In: Proceedings
of the 13th international conference on World Wide Web, (WWW2004), New York, USA
(2004) 723–731

14. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet,S., Grosof, B., Dean, M.: Swrl: A
semantic web rule language combining owl and ruleml (2004) W3C Member Submission.
http://www.w3.org/Submission/SWRL/.

“That is Illogical Captain!” – The Debugging Support
Tool spock for Answer-Set Programs:

System Description⋆

Martin Brain1, Martin Gebser2, Jörg Pührer3, Torsten Schaub2,
Hans Tompits3, and Stefan Woltran3

1 Department of Computer Science, University of Bath,
Bath, BA2 7AY, United Kingdom

mjb@cs.bath.ac.uk
2 Institut für Informatik, Universität Potsdam,

August-Bebel-Straße 89, D-14482 Potsdam, Germany
{gebser,torsten}@cs.uni-potsdam.de

3 Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria

{puehrer,tompits,stefan}@kr.tuwien.ac.at

Abstract. Answer-set programming (ASP) is a logic programming paradigm for
declarative problem solving which gained increasing importance during the last
decade. However, so far hardly any tools exist supporting software engineers in
developing answer-set programs, and there are no standard methodologies for
handling unexpected outcomes of a program. Thus, writing answer-set programs
is sometimes quite intricate, especially when large programs for real-world appli-
cations are required. In order to increase the usability of ASP, the development of
appropriate debugging strategies is therefore vital. In this paper, we describe the
systemspock, a debugging support tool for answer-set programs making use of
ASP itself. The implemented techniques maintain the declarative nature of ASP
within the debugging process and are independent from the actual computation
of answer sets.

1 Introduction

Answer-set programming(ASP) [1] is an important logic-programming paradigm for
declarative problem solving, based on principles of nonmonotonic reasoning. Any answer-
set program consists of logical rules specifying a problem,for which each of the pro-
gram’s answer sets is a solution. Since every rule of a program might significantly
influence the resulting answer sets, it is hard to find the sources of errors in large pro-
grams in case of a mismatch between the program’s output and the user’s expectations.
For example, consider the problem of inviting guests to a party at the renowned starship
Enterprise. Sulu wants to give a party for his colleagues, however facing the compli-
cation that some of them would appear only if certain others do or do not attend the
festivity. Knowing the social preferences of potential party guests, Sulu tries to get an

⋆ This work was partially supported by the Austrian Science Fund (FWF) under project P18019.

72 Martin Brain et al.

overview of possible invitation scenarios by means of answer-set programming and
ends up with the following rules for a programΠinv , where each atom represents the
actual appearing of a potential party visitor:

r1 = jim ← uhura, r4 = chekov ← not bones ,
r2 = jim ← not chekov , r5 = bones ← jim ,
r3 = uhura ← chekov ,not scotty, r6 = scotty ← not uhura.

This program has two answer sets, viz.{chekov , scotty} and {bones , jim , scotty}.
Sulu is quite perplexed by this result, wondering why there is a scenario where only
Chekov and Scotty attend who merely have a neutral relation to each other rather than
a friendship. On the other hand, Sulu is astonished as there is no satisfactory possibility
such that Uhura and Jim can jointly be invited. The only way out appears to consult his
half-Vulcan half-Human friend, Spock, for advice.

In this paper, we describe a system helping developers of answer-set programs to
detect and locate errors in their programs. We call our systemspock, making reference
to its ability of supporting users detecting errors based onprinciples of logic, since the
implemented techniques make use of ASP itself for debugginganswer-set programs. In
contrast to other debugging strategies in logic programming, our methodology works
independently of specific ASP solvers and preserves the declarative nature of ASP.

The theoretical background for our approach was introducedin previous work [2],
and relies on atagging techniqueas used by Delgrande et al. [3] for compiling or-
dered logic programs into standard ones. In our approach, a program to debug,Π , is
translated into another program,TK[Π], equipped with several meta atoms, calledtags,
which allow for controlling the formation of answer sets andreflect different properties
(like the applicability status of a rule, for instance). This way, we have the possibility
of investigating the actual answer sets ofΠ . TK[Π] can be regarded as akernel trans-
formationthat may be extended for further debugging techniques. One such extension,
featured byspock, is the extrapolation of non-existing answer sets in combination
with explanations why an interpretation is not an answer setof Π .

The paper is organised as follows. Section 2 gives the relevant prerequisites about
ASP, while Section 3 reviews the theoretical background of our tool. The main features
of our tool, then, are described in Section 4. The paper is concluded with Section 5
containing some general remarks and a discussion about related work. An appendix
lists specific commands ofspock.

2 Background

A (normal) logic program(over an alphabetA) is a finite set of rules of the form

a← b1, . . . , bm,not c1, . . . ,not cn, (1)

wherea andbi, cj ∈ A are atoms, for0 ≤ i ≤ m, 0 ≤ j ≤ n. A literal is an atoma
or its negationnot a. For a ruler as in (1), lethead(r) = a be theheadof r and
body(r) = {b1, . . . , bm,not c1, . . . ,not cn} the bodyof r. Furthermore, we define
body+(r) = {b1, . . . , bm} andbody−(r) = {c1, . . . , cn}. The set of atoms occurring

The Debugging Support Toolspock for Answer-Set Programs 73

in a programΠ is denoted byAt(Π). For collecting rules sharing the same heada,
we usedef (a, Π) = {r ∈ Π | head(r) = a}. For uniformity, we assume that any
integrity constraint← body(r) is expressed as a rulew ← body(r),not w, wherew
is a globally new atom. Moreover, we allow nested expressions of form not not a,
wherea is some atom, in the body of rules. Such rules are identified with normal rules
in which not not a is replaced bynot a⋆, wherea⋆ is a globally new atom, together
with an additional rulea⋆ ← not a. We also take advantage of (singular)choice rules
of form {a} ← body(r) [4], which are an abbreviation fora ← body(r),not not a.
A programΠ is positiveif body−(r) = ∅, for all r ∈ Π . By Cn(Π), we denote the
smallest model of a positive programΠ .

The definition of an answer set is as follows. Thereduct, ΠX , of a programΠ
relative to a setX of atoms is the positive program{head(r) ← body+(r) | r ∈ Π,
body−(r) ∩X = ∅}. Then,X is ananswer setof Π iff Cn(ΠX) = X . The set of all
answer sets of a programΠ is denoted byAS(Π).

An alternative characterisation of answer sets is providedby the Lin-Zhao Theo-
rem [5], qualifying answer sets as models of thecompletionof a program in the sense
of Clark [6] and theloop formulasof the program. We make use of this perspective on
the answer-set semantics to identify sources of errors whenextrapolating non-existing
answer sets as described in the following section.

3 Tag-Based Debugging Methodology

Our approach relies on thetagging techniqueas used by Delgrande et al. [3]. In what
follows, we sketch the theoretical principles underlying our systemspock. For a more
detailed discussion, we refer to Brain et al. [2].

The basic idea of tagging is to decompose the rules of a program Π overA into
several other rules, in order to gain control over their applicability and for analysing
their mutual interferences. To be able to refer to individual rules, we use a bijection,n,
assigning each ruler overA a unique namenr. We call a pairnr : r, comprising a
ruler and its namenr, a labeled rule, and a set of labeled rules alabeled program. The
semantics of a labeled programΠ is given by the semantics of the ordinary program
{r | nr : r ∈ Π}. In view of this straightforward correspondence between programs
(resp., rules) and labeled programs (resp., labeled rules), we will usually not distinguish
between them in the sequel.

For decomposing the rules of a program, so-calledtagsare introduced, which are
new, pairwise distinct propositional atoms, given byap(nr), bl(nr), ok(nr), ok(nr),
ko(nr), abp(nr), abc(a), andabl(a), for eachr ∈ Π anda ∈ At(Π). Intuitively,
ap(nr) and bl(nr) indicate whether some ruler is currently applicable or blocked,
respectively, whileok(nr), ok(nr), andko(nr) are used to include or exclude particular
rules from a debugging request. Furthermore, theabnormalitytagsabp(nr), abc(a),
andabl(a) inform the user what went wrong in case no answer set for the program
under consideration exists. We explain their particular functioning in detail below.

In a first transformation step, thekernel transformation, TK, rewrites a given pro-
gram,Π , such that, for everyr ∈ Π , ap(nr) (resp.,bl(nr)) is contained in an answer
set ofTK[Π] wheneverr can be applied (resp., is blocked). Apart from tags, the answer

74 Martin Brain et al.

sets ofΠ andTK[Π] are preserved. Formally,TK maps a logic programΠ overA into
another programTK[Π] over an extended alphabetA+ in the following way: for every
r ∈ Π , b ∈ body+(r), andc ∈ body−(r), TK[Π] contains

head(r)← ap(nr),not ko(nr), (2)

ap(nr)← ok(nr), body(r), (3)

bl(nr)← ok(nr),not b, (4)

bl(nr)← ok(nr),not not c, (5)

ok(nr)← not ok(nr). (6)

Intuitively, everyr ∈ Π is split into Rules (2) and (3), separating the head and the body
of r, thereby decoupling the applicability ofr, indicated by the tagap(nr), from the
conclusionhead(r) of r. Rules (4) and (5) derive tagsbl(nr) wheneverr is blocked.
The tagok(nr), along withok(nr), provides a handle for switchingr “on or off”.

The programTK[Π] plays the role of a basic module for various debugging requests.
Extension modules may add new rules, using tagsok(nr), ok(nr), andko(nr) for ma-
nipulating the applicability of a ruler, in order to analyse the behaviour ofΠ .

Example 1.Reconsider the programΠinv from the introduction, having the answer sets
{chekov , scotty} and{bones , jim , scotty}. The answer sets ofTK[Πinv] are

X1 = {chekov , scotty, ap(nr4
), ap(nr6

), bl(nr1
), bl(nr2

), bl(nr3
), bl(nr5

)} ∪OK ,

and

X2 = {bones, jim , scotty, ap(nr2
), ap(nr5

), ap(nr6
), bl(nr1

), bl(nr3
), bl(nr4

)}∪OK ,

whereOK = {ok(nr1
), ok(nr2

), ok(nr3
), ok(nr4

), ok(nr5
), ok(nr6

)}. The presence
of ap(nr4

) in X1 indicates that ruler4 is applicable with respect toX1, and hence
chekov ∈ X1 but bones /∈ X1, while bl(nr3

) ∈ X1 indicates thatr3 is blocked with
respect toX1. This is becausescotty ∈ X1. ♦

As stated above, the tagged kernel programTK[Π] can be used as a basic submod-
ule for more enhanced programs, facilitating debugging requests. One such extension
scenario is the extrapolation of non-existing answer sets of a programΠ overA. Using
further translations of the original program, we may investigate why an interpretation
is not an answer set ofΠ . An answer set,X+, of the transformed program offers in-
formation about the interpretationX = X+ ∩ A of Π in form of the three abnormal-
ity tags,abp(nr), abc(a), andabl(a). Their presence signals whyX is not an answer
set, by detecting problems originating from the program, its completion, and its non-
trivial loop formulas, respectively. For the detection of these three problem sources, we
have the corresponding program translationsTP, TC, andTL, which are used together
with the kernel tagging of the respective program, yieldingan overall transformation
TEx[Π, X] = TK[Π] ∪ TP[Π] ∪ TC[Π, X] ∪ TL[X], whereX ⊆ At(Π).

The program-oriented abnormality tagabp(nr) indicates that ruler is applicable
but not satisfied with respect toX , i.e., body+(r) ⊆ X , body−(r) ∩ X = ∅, but

The Debugging Support Toolspock for Answer-Set Programs 75

head(r) /∈ X . The respective translationTP[Π] overA+ is given by the set of all rules

ko(nr)← , (7)

{head(r)} ← ap(nr), (8)

abp(nr)← ap(nr),not head(r), (9)

for r ∈ Π . By adding the facts of form (7), the rules of form (2) are blocked. Their
purpose, deriving the consequences of the original rules, is now fulfilled by the rules of
form (8). However, the head atom of an original ruler is not necessarily derived, even
whenr is applicable. Whenever an applicable rule is not applied, arule of form (9)
provides the program-oriented abnormality tagabp(nr).

Example 2.Consider programΠp = {nr : chekov ← not bones }. The empty set is
not an answer set ofΠp, sincer is applicable with respect to∅ butchekov /∈ ∅. This is
reflected byTEx[Πp,At(Πp)] in that it possesses an answer setX+ containing abnor-
mality tagabp(nr) andX+ ∩At(Πp) = ∅. ♦

The completion-oriented abnormality tagabc(a) is included inX+ whenevera is
in the considered interpretation but all rules havinga as head are blocked. The logic
programTC[Π, X] overA+, for X ⊆ At(Π), is given by the set of all rules

{a} ← bl(nr1
), . . . , bl(nrk

), (10)

abc(a)← bl(nr1
), . . . , bl(nrk

), a, (11)

for a ∈ X , where{r1, . . . , rk} = def (a, Π).
The rules of form (10) allow an atoma ∈ At(Π) to be derived even if all rules

r ∈ def (a, Π) are blocked. Whenever this happens, a rule of form (11) provides the
completion-oriented abnormality tagabc(a).

Example 3.Consider programΠc = {nr : uhura ← chekov }. The interpretationX =
{uhura} is not an answer set ofΠc, since the only rule derivinguhura is not applicable.
Accordingly, there is an answer setX+ of TEx[Πc,At(Πc)] containing abnormality tag
abc(uhura) andX+ ∩At(Πc) = X . ♦

Finally, the presence of a loop-oriented abnormality tagabl(a) in X+ indicates that
the occurrence of atoma might recursively depend ona itself and, therefore, violate the
minimality criterion for answer sets. The corresponding translationTL[X] overA+, for
X ⊆ At(Π), is given by the following set of rules, for eacha ∈ X :

{abl(a)} ← not abc(a), (12)

a← abl(a). (13)

The rules of form (12) allow to add a loop-oriented abnormality tagabl(a) for a ∈ X+,
providing a is supported. The rules of form (13) ensure thata is actually contained
in X+.

Example 4.Consider programΠl, consisting of

nr1
: jim ← bones and nr2

: bones ← jim .

The interpretationX = {bones, jim} is a classical model ofΠl but does not satisfy
the loop formulas ofΠl. So, every answer setX+ of TEx[Πl,At(Πl)] such thatX+ ∩
At(Πl) = X includes one of the abnormality tagsabl(bones) or abl(jim). ♦

76 Martin Brain et al.

Table 1.Labeled program syntax ofspock.

program := (
. . .)∗rule((

. . .)∗rule)∗(
. . .)∗

rule := (rulelabel . . . ‘:’ . . .)? (head . . . ‘.’ |
head . . . ‘:-’ . . . body . . . ‘.’ | ‘:-’ . . . body . . . ‘.’)

head := atom
body := literal(‘ , ’ . . . literal)∗

literal := atom | ‘not’ . . . atom
atom := symb (‘(’ . . . term(‘,’ . . . term)∗ . . . ‘)’)?
term := variable | symb
rulelabel := (‘a’ − ‘z’ | ‘A’ − ‘Z’ | ‘0’ − ‘9’)∗

variable := (‘A’ − ‘Z’)(‘a’ − ‘z’ | ‘A’ − ‘Z’ | ‘0’ − ‘9’ | ‘ ’)∗

symb := (‘a’ − ‘z’ | ‘0’ − ‘9’)(‘a’ − ‘z’ | ‘A’ − ‘Z’ | ‘0’ − ‘9’ | ‘ ’)∗

. . . := (. . .)∗ ‘\n’ (. . .)∗

. . . := (‘ ’ | ‘\t’)∗

4 System

Our debugging systemspock implements the program translations described in the
previous section. It is a command-line oriented tool, parsing and translating its input,
which is taken from standard input and text files. The programis written in Java 5.0
and published under the GNU General Public License [7]. It can be used either with
DLV [8] or with Smodels [4] (together withlparse) and is publicly available at

http://www.kr.tuwien.ac.at/research/debug

as a jar-package including binaries and sources.

4.1 Usage

Generally,spock is executed by a shell command of the form

java -jar spock.jar { OPTION | FILENAME }∗ ,

assumingjava is the execution command for the Java virtual machine. If no filename
is given,spock expects input from the operation system’s standard input. Alist of
important options is given in Appendix A.

4.2 System Input

The input primarily consists of the logic programs which areto be debugged. Addition-
ally, spock also accepts debugging statements, and various solver-specific input. The
accepted program syntax is closely related to the core languages ofDLV andSmodels.
Here, we restrict ourselves to labeled normal logic programs albeitspock accepts also
programs with a richer syntax like disjunctive logic programs. The basic input language
of spock is depicted in Table 1 using regular expressions.

The Debugging Support Toolspock for Answer-Set Programs 77

<file_n>

<file_1>

<file_2>
... Parser

spock

Arguments
Command Line

Solver

Representation
Answer Set
Program and
Internal

Answer Sets

Standard Input
Program Syntax
Solver SpecificAnswer Sets

Input Program

Fig. 1. Data flow of answer-set computation for labeled normal programs.

Rule labeling is introduced as a device to explicitly refer to certain rules. As stated in
Table 1, a rule may have its label omitted. For a previously unlabeled rule,spock auto-
matically assigns the labelrn according to the line numbern in which it appears in the
program. Note that duplicate rule labels will produce a warning message. If the input
is spread over multiple input files, their contents will be internally joined as if it were
only one file. Additional content read from standard input when using the ‘--’ flag is
also appended to any input from files.

Since labeled rules cannot be read by conventional ASP solvers, spock offers
an interface toDLV andSmodels providing answer-set computation for labeled pro-
grams, described next.

4.3 Answer-Set Computation for Labeled Normal Programs

In order to perform answer-set computation for labeled programs,DLV or Smodels
(the latter in combination with its grounderlparse) must be found in the command
search path of the used system.

Internally,spock transforms the parsed input programΠ into a solver-compatible
representation before forwarding it to the externally called answer-set solver. The re-
sulting set of answer sets,AS(Π), is then parsed and stored for further processing.
When using flag ‘-o’, spock outputsAS (Π). Command line arguments for exter-
nally called systems can be forwarded using the flags ‘-dlvarg’, ‘ -lparg’, and
‘-smarg’ (see also Appendix A). Fig. 1 illustrates the typical data flow of answer-set
computation withspock.

Example 5.Consider input filefile5, containing our example programΠinv :

r1 : jim :- uhura.
r2 : jim :- not chekov.
r3 : uhura :- chekov, not scotty.

78 Martin Brain et al.

<file_n>

Translation

<file_1>

<file_2>
... Parser

spock

Command Line

Standard Input

Representation
Program
Internal

Arguments

Input Program

Program

Fig. 2. Data flow of program translations.

r4 : chekov :- not bones.
r5 : bones :- jim.
r6 : scotty :- not uhura.

The answer sets for this program can be computed usingDLV by the command:

java -jar spock.jar -x -o file5.

Flag ‘-x’ calls DLV externally on the input program and ‘-o’ triggers the output of
its answer sets. Note that the call yields the output of the corresponding answer sets in
lexicographic order:

{bones, jim, scotty}
{chekov, scotty}.

The same result can be achieved usingSmodels andlparse in a similar manner:

java -jar spock.jar -xsm -o file5. ♦

4.4 Kernel Translation

The kernel translationTK[Π] overA+ of a logic programΠ overA can be obtained by
the call

java -jar spock.jar -k FILE1 FILE2 ... ,

where the filesFILE1, FILE2, . . . , contain a representation ofΠ . As visualised in
Fig. 2,spock first creates an internal representation for the input program before com-
puting and returning its translation.

Example 6.For filefile5 from Example 5, when executing the command

java -jar spock.jar -k file5,

spock returns the translated programTK[Πinv]:

The Debugging Support Toolspock for Answer-Set Programs 79

jim :- ap(r1), not ko(r1).
ap(r1) :- ok(r1), uhura.
bl(r1) :- ok(r1), not uhura.
ok(r1) :- not -ok(r1).
jim :- ap(r2), not ko(r2).
ap(r2) :- ok(r2), not chekov.
bl(r2) :- ok(r2), not not chekov.
ok(r2) :- not -ok(r2).
uhura :- ap(r3), not ko(r3).
ap(r3) :- ok(r3), chekov, not scotty.
bl(r3) :- ok(r3), not chekov.
bl(r3) :- ok(r3), not not scotty.
ok(r3) :- not -ok(r3).
chekov :- ap(r4), not ko(r4).
ap(r4) :- ok(r4), not bones.
bl(r4) :- ok(r4), not not bones.
ok(r4) :- not -ok(r4).
bones :- ap(r5), not ko(r5).
ap(r5) :- ok(r5), jim.
bl(r5) :- ok(r5), not jim.
ok(r5) :- not -ok(r5).
scotty :- ap(r6), not ko(r6).
ap(r6) :- ok(r6), not uhura.
bl(r6) :- ok(r6), not not uhura.
ok(r6) :- not -ok(r6).
:- falsum.

When solving this program, we obtain the answer setsX1 andX2 (cf. Example 1). ♦

4.5 Translations for Extrapolating Answer Sets

Translations for the extrapolation of non-existing answersets of a programΠ can be
invoked analogously to the kernel transformation. However, here, the consideration may
be restricted to the generation of extrapolation tagging ona subset ofΠ . This way, the
developer can focus the search for errors on a subprogram. The data flow is still the one
depicted in Fig. 2.

The flags ‘-expo’, ‘ -exco’, and ‘-exlo’ activate the extrapolation translations
TP, TC, andTL, respectively. Instead of using all three flags simultaneously, setting
‘-ex’ produces the union of these program translations. In orderto restrict the genera-
tion of an extrapolation tagging to a subprogram ofΠ , the names of the considered rules
must be explicitly stated in a comma-separated list following the ‘-exrules’ flag.
Since programs translated viaTP, TC, andTL involveSmodels-specific choice rules,
we need to set the ‘-sm’ flag to activateSmodels syntax. Otherwise,spock will
produce disjunctive rules, simulating the respective choice rules.

Example 7.Consider input filefile7:

80 Martin Brain et al.

r1: jim :- not chekov.
r2: bones :- not jim.
r3: chekov :- not bones.

Since Bones would definitely attend if Jim did, the programmer seemed to err when
specifyingr2. By calling

java -jar spock.jar -ex -exrules=r1,r2 -sm file7,

we get the extrapolation tagging of the subprogram consisting of the rules labeledr1
andr2, where we expect an error:

ko(r1).
{jim} :- ap(r1).
ab_p(r1) :- ap(r1), not jim.
ko(r2).
{bones} :- ap(r2).
ab_p(r2) :- ap(r2), not bones.
{bones} :- bl(r2).
ab_c(bones) :- bl(r2), bones.
{chekov}.
ab_c(chekov) :- chekov.
{jim} :- bl(r1).
ab_c(jim) :- bl(r1), jim.
{ab_l(bones)} :- not ab_c(bones).
bones :- ab_l(bones).
{ab_l(chekov)} :- not ab_c(chekov).
chekov :- ab_l(chekov).
{ab_l(jim)} :- not ab_c(jim).
jim :- ab_l(jim).

Since the extrapolation taggings make only sense in conjunction with the kernel
tagging, we usually also use the ‘-k’ flag to output both translations at once. In order
to compute the answer sets of the obtained program, it can be piped from the output of
spock into another instantiation of it:

java -jar spock.jar -k -ex -exrules=r1,r2 -sm file7 |
java -jar spock.jar -xsm -o.

The output of this operation yields nine answer sets; among them are the following:

A1 = {abc(bones), abc(chekov), abc(jim), bl(nr1
), bl(nr2

), bl(nr3
),

bones , chekov , jim} ∪ S ,

A2 = {abc(bones), abl(jim), ap(nr1
), bl(nr2

), bl(nr3
), bones , jim} ∪ S ,

A3 = {abc(bones), ap(nr1
), bl(nr2

), bl(nr3
), bones , jim} ∪ S ,

where
S = {ko(nr1

), ko(nr2
), ok(nr1

), ok(nr2
), ok(nr3

)}.

The Debugging Support Toolspock for Answer-Set Programs 81

The conclusions drawn from these answer sets depend on the considered interpreta-
tion. For example, the abnormality tags inA1 provide an explanation why{bones ,
chekov , jim} is not an answer set, because all rules havingbones , chekov , or jim in
their heads are blocked.

InterpretationsA2 andA3 provide information whyI = {bones, jim} is not an
answer set. Note thatA2 is a superset ofA3 and contains the additional abnormality
tagabl(jim). This is a consequence of the definition of translationTL (and the choice
rule used therein). The existence ofA3 makes the information inA2 obsolete, since the
occurrence of atomjim in I is not (positively) depending on itself.

In this debugging situation,A3 delivers the most relevant information for the pro-
grammer since, firstly, he or she expects Bones and Jim to be compatible party guests,
and, secondly,A3 contains only one abnormality tag,abc(bones), focusing the source
of error to the question why Bones is not coming. From that, the programmer can iden-
tify the erroneous ruler2 of file7. ♦

In order to reduce the amount of debugging information in a translated program, one
can make use of standard ASP optimisation techniques, such asminimise statementsin
Smodels or weak constraintsin DLV. The idea is to take only answer sets with a
minimum number of abnormality tags into consideration.

By using the flags ‘-minab’, ‘ -minabp’, ‘ -minabc’, or ‘-minabl’, spock
produces weak constraints for minimising all abnormality tags, all program-oriented
abnormality tags, all completion-oriented abnormality tags, or all loop-oriented abnor-
mality tags, respectively.

Example 8.Let us reconsider the programΠinv from the introduction and recall that
Sulu wanted to know why there is no chance for Uhura and Jim to attend the same party.
For this purpose, we add the two constraints

← not uhura and ← not jim

to Πinv in order to investigate only scenarios including Uhura and Jim as guests. Note
that this restriction could also be achieved by using theassignedstatement of the de-
bugging language presented in our companion work [2], whichis partly implemented in
spock but not further discussed here. The modified program is stored in file file8:

r1 : jim :- uhura.
r2 : jim :- not chekov.
r3 : uhura :- chekov, not scotty.
r4 : chekov :- not bones.
r5 : bones :- jim.
r6 : scotty :- not uhura.

c1 : :- not uhura.
c2 : :- not jim.

The following call returns extrapolation answer sets with aminimum number of abnor-
mality tags:

82 Martin Brain et al.

java -jar spock.jar -k -ex
-exrules=r1,r2,r3,r4,r5,r6 -minab file8 |
java -jar spock.jar -x -as.

Note that we do not use the ‘-sm’ flag since weak constraints for minimisation require
the use ofDLV as external solver. In the present case, choice rules are simulated by
head disjunctions, introducing new auxiliary atoms. They are filtered out automatically,
in the second invocation ofspock, giving the following answer sets as output:

{ab_c(chekov), ap(r1), ap(r3), ap(r5), bl(c1),
bl(c2), bl(r2), bl(r4), bl(r6), bones, chekov, jim,
ko(r1), ko(r2), ko(r3), ko(r4), ko(r5), ko(r6),
ok(c1), ok(c2), ok(r1), ok(r2), ok(r3), ok(r4),
ok(r5), ok(r6), uhura}

{ab_c(uhura), ap(r1), ap(r2), ap(r5), bl(c1), bl(c2),
bl(r3), bl(r4), bl(r6), bones, jim, ko(r1), ko(r2),
ko(r3), ko(r4), ko(r5), ko(r6), ok(c1), ok(c2),
ok(r1), ok(r2), ok(r3), ok(r4), ok(r5), ok(r6),
uhura}

{ab_p(r5), ap(r1), ap(r3), ap(r4), ap(r5), bl(c1),
bl(c2), bl(r2), bl(r6), chekov, jim, ko(r1), ko(r2),
ko(r3), ko(r4), ko(r5), ko(r6), ok(c1), ok(c2),
ok(r1), ok(r2), ok(r3), ok(r4), ok(r5), ok(r6),
uhura}

The atomab_c(chekov) in the first answer set, corresponding to interpretation
{bones , chekov , jim , uhura}, identifieschekov as not being supported by any applica-
ble rule. The only rule with headchekov , r4, would requirebones not to be in the in-
terpretation in order to be applicable. Analogously,ab_c(uhura) signals thatuhura

lacks support when considering interpretation{bones , jim , uhura}.
The tagab_p(r5) in the third answer set indicates the applicability of the rule

labeledr5 with respect to interpretation{chekov , jim , uhura} and hence Bones’ in-
compatible party participation. Clearly, there is no solution for this problem instance
that is satisfactory for everybody, given that Jim and Uhurashould jointly come and
that the respective social preferences are all respected. However, the last answer set
indicates an obvious solution for Sulu’s diplomatic conflict, viz. not inviting Bones.♦

All three answer sets in Example 8 give us a potential handle for resolving our
problem, each of them involving a minimum number of abnormalities. However, they
are not of the same quality in terms of a real-life solution. So, resolving problems in the
context of ASP still depends in large part on knowledge aboutthe domain.

5 Discussion and Related Work

In this paper, we gave an overview aboutspock, a prototype implementation of a de-
bugging support tool for answer-set programs. The implemented methodology is based

The Debugging Support Toolspock for Answer-Set Programs 83

on theoretical results presented in a companion paper [2] and relies on a tagging tech-
nique similar to one used for compiling ordered logic programs into standard ones [3].

With spock, programs to debug are translated into other programs, having answer
sets that offer debugging-relevant information about the original programs. After an
initial kernel transformation, we get insight into the applicability of rules with respect
to individual answer sets. In a further step,spock outputs translations for extrapo-
lating putative, yet non-existing answer sets. In this application scenario, the system
allows to identify explanations why interpretations are not answer sets. Here,spock
distinguishes between abnormalities due to missing or spare atoms, or atoms whose
presence in the interpretation is self-caused. In order to restrict the amount of informa-
tion returned to the programmer, standard ASP optimisationtechniques can be used to
focus on interpretations with a minimal number of abnormalities. Future work includes
the integration of further aspects of the translation approach as well as the design of a
graphical user interface to ease the applicability of the different featuresspock pro-
vides.

Implementations of related techniques includesmdebug [9], a prototype debugger
focusing on odd-cycle-free inconsistent programs. For programs without odd cycles,
inconsistency can always be linked to conflicting integrityconstraints. The system is
designed to find minimal sets of constraints, restoring consistency when removed from
the program. In most real-world applications, odd cycles are bugs, so, on the one hand,
smdebug technically catches many of the common programming errors.On the other
hand, actual error recovery is often related to normal rules, since constraints, used for
restricting the solution space, are more likely to be semantically correct.

Brain and De Vos [10] present the systemIDEAS (Interactive Development and
Evaluation Tool for Answer-Set Semantics), implementing two query algorithms, an-
swering the questions why a setS is in some answer setA and why a setS is not in
any answer set. Both algorithms are procedural and similar to the ones used in ASP
solvers, suggesting that an approach using a program-leveltransformation would be
more practical.

Pontelli and Son [11] developed a preliminary implementation for their adoption
of so-calledjustifications[12–14] to the problem of debugging answer-set programs.
The system is embedded inASP− PROLOG [15] and returns visual output in form of
justifications, which are graphs explaining why an atom is inan answer set.

Appendix A Selected Argument Options ofspock

-- If a filename is given,spock does not read from standard input, un-
less this flag is set.

-p Outputs the given program with rule labels.
-c Outputs the given program without rule labels.
-x RunsDLV on the given program.
-xsm RunsSmodels on the given program.
-n=NR Computes maximallyNR many answer sets.

84 Martin Brain et al.

-sm Formats various output inSmodels syntax, otherwiseDLV syntax is
used.

-o Outputs all computed or read answer sets.
-as Displays all computed or read answer sets in a GUI frame.
-k Outputs the kernel taggingTK[Π] of a given programΠ .
-ex Outputs the extrapolation taggingTEx[Π,At(Π)] of a given program

Π (like -expo -exco -exlo; see next).
-expo Outputs the program-oriented extrapolation taggingTP[Π] of a given

programΠ .
-exco Outputs the completion-oriented extrapolation taggingTC[Π,At(Π)]

of a given programΠ .
-exlo Outputs the loop-oriented extrapolation taggingTL[At(Π)] of a given

programΠ .
-exrules=r,s,... Restricts extrapolation tagging generation to rules labeledr, s, . . .
-minab Outputs weak constraints to minimise abnormality tags (like the ones

described next).
-minabp Outputs weak constraints to minimise program-oriented abnormality

tags.
-minabc Outputs weak constraints to minimise completion-orientedabnormal-

ity tags.
-minabl Outputs weak constraints to minimise loop-oriented abnormality tags.
-koall Outputs atomko(nr) for every ruler in the given program.
-nas Outputs the number of computed or read answer sets.
-cig Outputs the given program, grounded bylparse, having each

ground atom replaced by a constant (Constant Intelligent Grounding;
CIG). Using flag-ca, spock provides a table of these constants to-
gether with the corresponding atoms.

-ca Outputs a table of constant aliases from a CIG, together withthe
ground atoms they represent. This list can be used in anotherinvo-
cation ofspock using flag-ocr to re-translate the answer sets of a
CIG.

-ocr Outputs all computed or read answer sets of a CIG, having the constant
aliases substituted by the corresponding ground atoms, provided that
a list of constant aliases was read.

-dlvarg ARG Adds an argument for external calls ofDLV.
-lparg ARG Adds an argument for external calls oflparse.
-smarg ARG Adds an argument for external calls ofSmodels.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP
programs by means of ASP. In Baral, C., Brewka, G., Schlipf, J., eds.: Proceedings of the
9th International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’07). Springer-Verlag (2007) 31–43

3. Delgrande, J., Schaub, T., Tompits, H.: A framework for compiling preferences in logic
programs. Theory and Practice of Logic Programming3(2) (2003) 129–187

The Debugging Support Toolspock for Answer-Set Programs 85

4. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence138(1-2) (2002) 181–234

5. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence157(1-2) (2004) 115–137

6. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data Bases.
Plenum Press (1978) 293–322

7. Free Software Foundation Inc.: GNU General Public License - Version 2, June 1991 (1991)
http://www.gnu.org/copyleft/gpl.html

8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

9. Syrjänen, T.: Debugging inconsistent answer set programs. In Dix, J., Hunter, A., eds.:
Proceedings of the 11th International Workshop on Nonmonotonic Reasoning (NMR’06).
Number IFI-06-04 in Technical Report Series, Clausthal University of Technology, Institute
for Informatics (2006) 77–83

10. Brain, M., De Vos, M.: Debugging logic programs under theanswer set semantics. In De
Vos, M., Provetti, A., eds.: Proceedings of the 3rd International Workshop on Answer Set
Programming (ASP’05). CEUR Workshop Proceedings (2005) 141–152

11. Pontelli, E., Son, T.: Justifications for logic programsunder answer set semantics. In Etalle,
S., Truszczyński, M., eds.: Proceedings of the 22nd International Conference on Logic Pro-
gramming (ICLP’06). Springer-Verlag (2006) 196–210

12. Roychoudhury, A., Ramakrishnan, C., Ramakrishnan, I.:Justifying proofs using memo ta-
bles. In: Proceedings of the 2nd ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’00). (2000) 178–189

13. Pemmasani, G., Guo, H., Dong, Y., Ramakrishnan, C., Ramakrishnan, I.: Online justification
for tabled logic programs. In Kameyama, Y., Stuckey, P., eds.: Proceedings of the 7th Inter-
national Symposium on Functional and Logic Programming (FLOPS’04). Springer-Verlag
(2004) 24–38

14. Specht, G.: Generating explanation trees even for negations in deductive database systems.
In: Proceedings of the 5th Workshop on Logic Programming Environments (LPE’93). (1993)
8–13

15. El-Khatib, O., Pontelli, E., Son, T.: ASP-PROLOG: A system for reasoning about answer set
programs in Prolog. In Delgrande, J., Schaub, T., eds.: Proceedings of the 10th International
Workshop on Nonmonotonic Reasoning (NMR’04). (2004) 155–163

An integrated graphic tool for developing and testing
DLV programs

S. Perri, F. Ricca, G. Terracina, D. Cianni, and P. Veltri

Dipartimento di Matematica, Università della Calabria, 87036 Rende (CS), Italy
{perri,ricca,terracina}@mat.unical.it,

cianni daniela@yahoo.it, veltri p@libero.it

Abstract. In the last few years, significant improvements characterized state-of-
the-art Answer Set Programming (ASP) systems. It is now wellaccepted that
their applicability is becoming more and more suited for real world applications
requiring complex reasoning tasks. Among the available ASPsystems, DLV re-
cently came up with a large variety of language extensions, front-ends and vari-
ants that significantly widened its range of applicability.This paper presents an
integrated development environment, customized for DLV and some of its ex-
tensions, which aims to simplify both the development-and-test process and the
coupling of this ASP system with DBMSs.

1 Introduction

In the last few years, the development of ASP systems like DLV[1], Smodels [2], GnT
[3], and Cmodels [4] has renewed the interest in the area of non-monotonic reasoning
and declarative logic programming for solving real world problems.

Moreover, the recent application of ASP systems in the areasof Knowledge Man-
agement, Security, and Information Integration [5, 6], hasconfirmed, on the one hand,
the viability of the exploitation of disjunctive logic programming in real application
settings. On the other hand, it has evidenced the lack of tools, like easy-to-use graphi-
cal environments, capable of supporting the programmers inmanaging large and com-
plex projects (where the interaction with database management systems storing large
amounts of data is also a crucial point).

On the contrary, imperative and object oriented programming languages are nowa-
days endowed with a rich set of tools allowing the user to create complex project infras-
tructures and to work on data residing in external databasesin a quite simple way. This
may discourage the usage of the declarative programming paradigm, even if it could
provide the needed reasoning capabilities and, in principle, could significantly simplify
the programming and maintenance tasks.

This paper provides a contribution in this setting. In fact,it presents a graphical pro-
gramming environment, called VISUALDLV, which integrates several tools for devel-
oping, testing and executing logic programs (having possible interactions with external
databases) in a quite simple way.

The development environment is tailored on DLV [1], an ASP system which has
been recently enriched with several enhancements enablingthe treatment of industrially-
relevant applications [5].

The main features of VISUALDLV are:

An integrated graphic tool for developing and testing DLV programs 87

– an easy-to-use integrated graphical environment which drives the programmer dur-
ing all the phases of the implementation of projects based onDLV;

– the ability to perform both a static check (i.e., of the syntax) and a dynamic check
(i.e., debugging) of the developed programs;

– the ability to help the programmer to avoid syntactic errorsduringthe editing phase,
with, e.g., automatic completion features;

– a specific interface which allows the programmer to graphically configure the in-
teraction of DLV with external DBMSs (the system automatically generates the
configuration options enabling this kind of interaction).

It is worth pointing out that, the presented system is a first step towards the imple-
mentation of an integrated development environment and, presently, it provides just the
core functionalities outlined above. However, it has been designed in a modular way,
so that further improvements can be easily integrated and existing functionalities can
be extended. In the following, we first provide some background on the DLV execution
modalities and debugging approach; then we present the developed system.

2 DLV execution modalities

In this section we describe DLV, a state-of-the-art ASP system [1]. In particular, we
focus on three different modalities to invoke DLV: StandardVersion [7],DLVIO and
DLVDB [8]. The first one is the more common way to call DLV. Basically, the in-
put program is supplied by means of text files and the output isprovided on standard
output. The second one adds to the standard version the possibility to configure basic
interactions with one or more databases through ODBC. In this case, a part of the input
can be imported from a DBMS, and part of the output can be exported into a DBMS.
In the last one DLV tightly works with external DBMSs evaluating the programs di-
rectly in mass-memory, where the data resides (with some limitations on the supported
language).

2.1 Standard version

The DLV system is an efficient engine for computing the answersets (one, some, or all)
of its input. The core language of DLV [1] is disjunctive datalog under the answer sets
semantics (also known as stable model semantics [9]), whichhas been enriched with a
number of extensions such as: true negation [10], (strong and weak) constraints [11],
aggregate functions [12], and external function calls [13].

A detailed description of the DLV language is out of the scopeof this paper. The
interested reader is referred to [1, 12, 13]. In order to sketch its syntax, we next present
a very symple example which will be also used throughout the paper to clarify the
presented concepts.

Example 1.Assume that a travel agency needs to derive all the destinations reachable
by an airline company, either by using its aircrafts or by exploiting code-share agree-
ments. Moreover, the direct flights of each company are stored in facts of the form
flight(ID, FromX, ToY, Company), whereas the code-share agreements between

88 S. Perri et al.

companies are stored in facts of the formcodeshare(Company1, Company2, ID);
if a code-share agreement holds betweenCompany1 and theCompany2 for the flight
ID, it means that the flightID is actually provided by an aircraft ofCompany1, but
it can be considered also carried out byCompany2. The DLV program that can derive
all the connections is:

destinations(FromX, ToY, Company) :– flight(ID, FromX, ToY, Company).
destinations(FromX, ToY, Company) :– flight(ID, FromX, ToY, Company2),

codeshare(Company2, Company, ID).
destinations(FromX, ToY, Company) :– destinations(FromX, T2, Company),

destinations(T2, ToY, Company).

2

In the standard execution modality, the input of DLV is stored in one or more text
files. Those files are first parsed to create the internal data structures, which are then
stored in main memory where the entire computation is performed.

The answer sets computation can be split in three steps. In the first step (performed
by the Grounder) the variables present in the input program are eliminated, generating
the so-calledground instantiationof the program, which is a (usually much smaller)
subset of all syntactically constructible instances of therules of the program having
precisely the same stable models. Then, the nondeterministic part of the computation
is performed on this simplified ground program by the Model Generator (MG) module.
The MG searches for candidate answer sets by employing a Davis-Putnam procedure
similar to the ones employed in SAT-solvers. Basically, MG builds the answer set by
tentatively assuming the truth of the literals, and “propagating” the deterministic con-
sequences of those assumptions by applying suitable inference rules. If an assumption
(also called choice point) leads to an inconsistency the system goes back to modify
exactly those choice points that caused the inconsistency.The process continues un-
til a candidate answer set is found or all the possible choices have been tried. Finally,
each candidate answer set (which has been found by the MG) is analyzed by the Model
Checker (MC), which verifies its stability (w.r.t. the Gelfond-Lifschitz transformation
[9]). If the stability check succeeds then the system outputs the answer set; otherwise
the MG continues its search by modifying the assumptions which caused the stability
check failure.

2.2 DLV IO

In this execution modality, the system allows input facts tobe (possibly complex) views
on database tables, which are stored in different DBMSs; moreover, it allows (parts of)
the results of the execution to be exported in database relations. The logic program
is evaluated completely in main-memory with the same evaluation strategy employed
in the standard version; this allowsDLVIO to support completely the DLV language
and all its extensions (like strong and weak constraints, aggregate functions, external
function calls, etc.), with only minor restrictions (see below).

Intuitively,DLVIO can be exploited when the user has to perform complex reasoning
tasks but the data is available in database relations, or theoutput must be permanently
stored in a database for further elaborations.

In order to perform these tasks, two built-in commands are introduced in the DLV
syntax, namely the #import and the #export commands:

An integrated graphic tool for developing and testing DLV programs 89

#import(databasename,“username”,“password”,“query”,predname, typeConv).
#export(databasename,“username”,“password”,predname,tablename).

An #import command retrieves data from a table “row by row” through thequery
specified by the user in SQL and creates one atom for each selected tuple. The name
of each imported atom is set topredname, and is considered as a fact of the program.
typeConvspecifies the data conversion rules to be applied for converting database types
into DLV data types.

The #export command generates a new tuple intotablenamefor each new truth
value derived forprednameby the program evaluation. Both commands require that an
ODBC connection withdatabasenamehas been previously set up.

Note that if a program contains at least one #export command,the system will be
able to compute only the first answer set.

A description ofDLVIO and its functionalities can be found in [8]; moreover, the
system, along with a manual and some examples, are availablefor download at the
addresshttp://www.mat.unical.it/terracina/dlvdb.

Example 2.Consider the scenario introduced in Example 1, and assume that the in-
formation about direct flights (factsflight) are stored in a relationflight rel(ID,

FromX, ToY, Company) of the databasedbAirports; whereas the code-share agree-
ments between companies (factscodeshare) are stored in a relationcodeshare rel

(Company1, Company2, ID) of another databasedbCommercial. Finally, assume
that, for security reasons, travel agencies are not allowedto directly access the databases
dbAirports anddbCommercial, and, consequently, it is necessary to store the output
result in a relationcomposedCompanyRoutesbelonging to another databasedbTravel-
Agency (accessible by the travel agencies).

To this end we must add the following directives to the DLV program of Example 1:

#import(dbAirports,“airportUser”,“airportPasswd” , “SELECT * FROM flight rel”, flight,
type : U INT, Q CONST, QCONST, QCONST).

#import(dbCommercial,“commUser”,“commPasswd” , “SELECT * FROM codesharerel”,
codeshare, type : QCONST, QCONST, UINT).

#export(dbTravelAgency,“agencyName”,“agencyPasswd”,destinations, composedCompanyRoutes).

The first two commands maps the predicateflight to the relationflight rel of
dbAirports, and the predicatecodeshare to the relationcodeshare rel of dbCom-
mercial; the last one maps the predicatedestinations to the relationcomposed-
CompanyRoutes of dbTravelAgency. 2

2.3 DLV DB

The user needing this execution modality has its data storedin (possibly distributed)
database tables and wants to carry out some reasoning on them; however the amount
of such data, or the amount of facts the reasoning generates on them, is such that the
evaluation can not be carried out in main-memory. Then, the only way out is to evaluate
the program directly in mass-memory.

Three main peculiarities characterize the system in this execution modality:(i) its
ability to evaluate logic programs directly and completelyon databases with a very

90 S. Perri et al.

Auxiliary-Directives ::= Init-section [Table-definition]+ [Query-Section]?
[Final-section]*

Init-Section ::=USEDB DatabaseName:UserName:Password [System-Like]?.
Table-definition ::=

[USE TableName [(AttrName [, AttrName]*)]? [AS (SQL-Statement)]?
[FROM DatabaseName:UserName:Password]?
[MAPTO PredName [(SqlType [, SqlType]*)]?]?.
|
CREATE TableName [(AttrName [, AttrName]*)]?
[MAPTO PredName [(SqlType [, SqlType]*)]?]?
[KEEP_AFTER_EXECUTION]?.]

Query-Section ::= QUERY TableName.
Final-section ::=

[DBOUTPUT DatabaseName:UserName:Password.
|
OUTPUT [APPEND | OVERWRITE]? PredName [AS AliasName]?
[IN DatabaseName:UserName:Password.]

System-Like ::= LIKE [POSTGRES | ORACLE | DB2 | SQLSERVER | MYSQL]

Fig. 1. Grammar of the auxiliary directives.

limited usage of main-memory resources,(ii) its capability to map program predicates
to (possibly complex and distributed) database views, and(iii) the possibility to easily
specify which data is to be considered as input or as output for the program. As for
DLVIO, also inDLVDB access to DBMSs is carried out through ODBC.

Currently,DLVDB does not fully support the DLV language. In particular, only
disjunction free stratified programs (possibly with built-ins and aggregate functions)
are supported. However, it allows handling significantly greater amounts of data w.r.t.
DLV andDLVIO with also important improvements in query answering times.

In order to properly carry out the evaluation, this execution modality requires some
explicit specifications for the mappings between input and output data and program
predicates, as well as proper indications for the temporaryrelations possibly needed for
the mass-memory evaluation. The grammar in which these directives must be expressed
is shown in Figure 1.

Intuitively, the user must specify a working database in which the system has to
perform the evaluation (theInit-Section in the grammar). Moreover, he can spec-
ify a set of table definitions, each of which must be mapped into one of the program
predicates. Facts can reside on separate databases or they can be obtained as views on
different tables. Attribute type declaration is needed only if the program must carry out
arithmetic operations on them.USE andCREATE directives can be exploited to specify
input and output data. Finally, the user can choose to copy the entire output of the eval-
uation or parts thereof in a database different from the working one by someOUTPUT
directives.

Example 3.Consider again the scenario introduced in Examples 1 and 2, and suppose
that, due to a huge size of input data, it is not possible to perform the evaluation in main-
memory. In order to evaluate the program in mass-memory (on aDBMS), the auxiliary
directives shown in Figure 2 should be used. Here, the first line is theInit-Section
and states that the evaluation must be carried out in a database nameddlvdb. The two
USE directives are equivalent to (but more precise than) the #import commands of Ex-
ample 2. Finally, theOUTPUT directive is equivalent to the #export command of Exam-
ple 2. 2

An integrated graphic tool for developing and testing DLV programs 91
USEDB dlvdb:myname:mypasswd.
USE flight_rel (ID, FromX, ToY, Company) FROM dbAirports:airportUser:airportPasswd
MAPTO flight (integer, varchar(255), varchar(255), varchar(255)).
USE codeshare_rel (Company1, Company2, ID) FROM dbCommercial:commUser:commPasswd
MAPTO codeshare (varchar(255), varchar(255), integer).
CREATE destinations_rel (From, To, Company)
MAPTO destinations (varchar(255), varchar(255), varchar(255)) KEEP_AFTER_EXECUTION.
OUTPUT destinations AS composedCompanyRoutes IN

dbTravelAgency:agencyName:agencyPasswd.

Fig. 2. Auxiliary directives for Example 1.

3 Debugging DLV Programs

Debugging is the process of locating and fixing known errors (which are commonly
called “bugs”) on both computer programs and hardware devices. Unfortunately, de-
bugging is difficult to be carried out due to the extremely high number of causes for
a bug. As a consequence, techniques and tools (debuggers) helping the programmer to
deal with this problem must be associated with each programming language.

However, while debugging an imperative program can be carried out by monitor-
ing its execution (usually with a step-by-step strategy), debugging a program with a
declarative semantics must follow a completely different approach. As an example, the
notion of “unexpected” behaviour is substantially different comparing DLV and C++
programs. The absence of an intuitive operational semantics makes it harder to under-
standwhy the results of a declarative program are not the expected ones.

Intuitively, a bug in a DLV programP is a difference between what is actually mod-
elled byP and what the programmer was planning to model withP . Examples of bugs
of a DLV program are an unexpected number of answer sets or thepresence/absence of
a literal in a specific answer set.

The reasoning above clearly points out that, in a declarative programming setting,
even what must be meant for debugging is not obvious (as also pointed out by [14, 15]).
In what follows, we consider that a debugger for DLV must allow the programmer to
understand the “reasons” which “caused” the derivation of the various literals in an
answer set or, in absence of it, to have a justification for thefailure.

The DLV debugger we developed in this work uses information collected during
the program evaluation, especially in the Model Generationphase (see Section 2.1).

In more detail, the MG module of DLV, introduced in Section 2.1, exploits a so-
called backjumping (or non-chronological backtracking) technique (described in [16]),
based on the ability to detect and to undo, during the backtracking phase, the choices di-
rectly causing an inconsistency. This technique constructs a data structure, calledRea-
son Table, which stores for each literal the choices implying its presence/absence in
the current (partial) answer set. The Reason Table is built (and updated) during the
search, according to the reason calculus technique presented in [16]. The information
stored in the Reason Table is directly used in the debugging modality to justify the pres-
ence/absence of a literal in an answer set (or the unsatisfiability of the program). Due
to space limitations we cannot describe here the whole process of reasons computation;
rather, we try to give an intuition with an example.

Example 4.Let P be the following program

a ∨ b. c :- a. d :- b.

92 S. Perri et al.

At a certain point of the MG computation,a is chosen as true and its truth value is
propagated trough the program rules, deriving truth valuesfor other atoms. Obviously,
in this case,c andnot b are derived as true. Thus, intuitively, we set in the Reason Table
a as reason forc. But, what about the reason ofa? We say thata is a choice and that its
reason is itself. 2

When DLV starts in debug mode, the main computation stops as soon as an answer
set has been found, or when it is detected that no answer set can be found, and the
system waits for some user command. The available commands are:why, why unstable,
nextmodel, print model, print instantiation, andquit. The first one can be used to know
the choices implying a literalL (it can be read as “why is L in current model?”); the
second command can be used to investigate why a program is unsatisfiable. In this case,
the system reports the reason causing the last inconsistency found during the search.
The remaining commands can be used to ask the system for looking for another answer
set, printing the current answer set, printing the ground instantiation, and stopping the
system. Currently,DLVDB does not support debugging, because it exploits a completely
different (mass-memory based) evaluation strategy. The next example shows the usage
of commandswhy, andwhy unstable.

Example 5.Consider again the programP of Example 4. In order to know why literalc

appears in one of the answer sets ofP we can use the commandwhy (c). This command
will return a indicating thatc is in the current model because of the choice ofa.

Now, let add toP the following two strong constraints

:- c, not d. :- d, not c.

Clearly, the program has no answer set. In fact, if we choosea as true the first constraint
is violated (i.e.a caused the inconsistency, and this can be easily obtained bylooking in
the reason table); similarly, if we chooseb the second constraint is violated (i.e.b caused
the inconsistency). Assuming that the last choice actuallymade during the computation
is b then the commandwhy unstablereturnsb. 2

4 System Description

4.1 Functionalities

The functionalities implemented in VISUALDLV borrow several ideas from the wide
variety of well known integrated tools available for developing programs with impera-
tive languages (such as C++ and Java). The interesting innovation is the adaptation of
such ideas to the declarative world, providing a wide set of features to assist the user in
developing, configuring and testing DLVprojects.

The main functionalities provided graphically by VISUALDLV are:

– Project definition. It allows to gather in a single logical unit several DLV program
files, auxiliary directives and configuration options.

– Automatic completion. The editing of DLV programs and auxiliary directives is
simplified by this functionality which suggests the user howto complete the por-
tions of programs he is writing.

An integrated graphic tool for developing and testing DLV programs 93

Fig. 3.The general structure of the system interface.

– Dynamic syntax checking. This functionality checks the syntactical correctness of
the program during its development, warning the user in caseof errors.

– Configuration of the interactions with the databases. It allows the user to easily,
and graphically, specify which input data resides in external databases, and which
parts of the program output must be permanently stored in a database.

– Configuration of the execution. It allows to select the execution options for DLV.
– Presentation of results. The output of the program (either its answer sets, or the

database table contents) can be visualized within the same environment.
– Debugging. This functionality allows the user to interact with DLV in order to

understand why a program does not produce the expected output.

In the following, we describe in more detail system’s functionalities, using some
screen-shots of the system to show how it works.

Interface overview
The general structure of the system interface is illustrated in Figure 3. The central

area is the main editing area, where DLV programs and auxiliary directives can be
typed. The left part of the interface is dedicated to the database management; in par-
ticular, as it will be more clear in the following, the list ofthe databases included in
the project, as well as some database management features are located in this portion
of the interface. The right part is dedicated to providing the summary of the concepts
(atoms and predicates) defined in the currently open DLV programs and can be used
as a support for editing. The bottom part contains two panelsallowing the system to
provide messages to the user, namely awarningpanel, collecting all warning messages,
and aconsolepanel showing the output of the programs. Finally, in the upper part of
the interface, classical menus and toolbars allow the user to access all the features of
the system.

Project definition
Declarative programming allows specifying in a natural waycomplex problems; it

is true. However, when the application scenario is composedby several sub-problems or

94 S. Perri et al.

Fig. 4. The creation of a new project.

it requires the application of different reasoning modulesthe user can be easily involved
with several program components, which should be developedand tested separately, but
which logically belong to the same project.

Moreover, the various kinds of DLV execution modality described in Section 2 may
require different kinds of interaction of the user with the GUI (e.g., the standard DLV
version does not require information about external databases, which, on the contrary,
is necessary forDLVDB andDLVIO) and different kinds of invocation parameter.

In order to face these issues, our system introduces the notion of project, i.e. a col-
lection of DLV programs, auxiliary directives, database connections and configuration
options defining, as a whole, a complete project.

Figure 4 shows the interface allowing the definition of a new project. A project is
characterized by aname; all its data is put in a folder having this name. Finally, the
user has to specify the project type, which determines the DLV execution modality to
exploit, and the kinds of interaction expected between the user and the system. In Figure
4 the user is choosing to create aDLVDB project with namedemoAirports.

Automatic completion
Following the success of other systems for imperative programming (like Visual

C++, Eclipse, etc.) our system provides a functionality that suggests the user how to
complete the portions of programs he is writing, just duringthe typing.

It is worth pointing out that imperative languages have bothexplicit data typing and
fixed language constructs; this allows a quite straightforward definition of lists of legal
keywords or of user-defined variables to be used in the automatic completion facilities.

On the contrary, declarative languages in general, and DLV in particular, do not
comprise such features and, consequently, it is less evident what the automatic com-
pletion functionality must suggest to the user. In our system, the automatic completion
works on what has been “declared” by the programmer up to thattime; in other words, it
works on the list of atoms previously specified in the program. Figure 5a illustrates this
functionality; each time a rule is typed, it is parsed and theatoms it contains are added
to the list of atoms defined by the user. Then, when the user is writing a new rule, the
system shows a pop-up window where an atom is highlighted if its prefix corresponds
to what the user is typing. Note that this functionality significantly simplifies the devel-
opment of complex programs constituted by several rules andatoms. As an example,
consider the program of Example 1 and assume that the user (without the support of

An integrated graphic tool for developing and testing DLV programs 95

(a) Program completion (b) Auxiliary directives completion

Fig. 5. The automatic completion feature.

the automatic completion) typesdestination instead ofdestinations; there is no
way for an automatic checker to understand whether the user intention was to define a
new conceptdestination or if he just mistyped the predicate namedestinations.
Helping to prevent these kinds of errorsduring the programming phase, may allow the
user to save a lot of time in the testing phase!

The same functionality is provided by the system also for thedefinition of the aux-
iliary directives, necessary forDLVDB projects. In this case, the automatic completion
is more context sensitive, because the auxiliary directives are characterized by a precise
grammar (see Figures 1 and 5b).

Dynamic syntax checking
When the user types a rule, it is parsed by the parsing module and its syntactical

correctness is verified. If an error is identified, a message is displayed in the warning
panel. Note that these warning messages do not block the userinteraction; this is im-
portant in order to let the system accommodate also to further extensions of the DLV
language currently not expected by the parser.

Presently, only the correctness of the syntax is checked; however, we plan to extend
this feature to carry out more refined checking tasks. As an example, one of the most
frequent errors in developing datalog rules is the mistyping of a variable name involved
in a join; in this case, the rule is syntactically correct, but it contains a semantic error. If
the system would warn the user about the presence of variables in some atom not joined
with any other atom of the rule, the user could easily check whether this situation is
wanted or it is the result of a mistyped variable name.

Interaction with external databases
As pointed out in the previous section,DLVIO and DLVDB extend the capabili-

ties of DLV allowing various kinds of interactions with external databases via ODBC.
Our system provides various functionalities aiming to simplify the correct configuration
of DLVIO andDLVDB. In more detail, it provides both functionalities for accessing,
querying and manipulating data residing in external databases, and functionalities for
graphically compiling the auxiliary directives.

Figure 6 illustrates some of the capabilities for accessingand querying data residing
in external databases. Each database is accessed via ODBC and, consequently, in order
to access it, the database name, the user and password for it must be supplied. For
each opened database, the list of tables and their structureare shown. Moreover, the

96 S. Perri et al.

Fig. 6. Interaction with external databases.

user can visualize the content of the various tables (in the Figure, the content of table
flight rel is shown). Finally, other editing operations can be carriedout, such as
the execution of SQL statements (including CREATE or ALTER statements) and table
deletion. In other words, the system provides a restricted (but common) set of database
management features.

Concerning the support in compiling auxiliary directives,even ifDLVDB provides
several simplifications in their specification (see the manual on the system’s web site),
writing them by hand could by quite hard for a non specialist.For this reason, our
system provides both the automatic completion facility andan automatic generation
feature for such directives. Figures 5b and 7 graphically show both of them.

In particular, Figure 5b illustrates an example of automatic completion for theUSEDB
directive; here, the grammar specifies that after theUSEDB keyword the database con-
nection parameters must be specified. Then, the system suggests such information,
based on the databases currently open in the project.

Figure 7 illustrates the form to automatically create aUSE directive. It can be acti-
vated with a right-click on the table that must be “used” as input in the program; the
system automatically retrieves from the database all the information necessary to gener-
ate the directive. Moreover, it provides the user with a preview of it, in order to let him
check the correctness.CREATE directives can be generated analogously; in this case, the
user must select one of the predicates listed in the right part of the main interface.

Configuration of project execution
The execution of a DLV program can be often a tricky task for a non specialist; in

fact, the wide range of extensions developed for DLV in the last ten years produced a
wide set of options that can be specified within the command line. Our system deals
with this situation providing the comprehensive set of DLV options in a user-friendly

An integrated graphic tool for developing and testing DLV programs 97

Fig. 7.Automatic generation of auxiliary directives.

Fig. 8.Options for the execution of DLV programs.

fashion, as shown in Figure 8. The user can choose graphically the needed options and
the system automatically generates the corresponding portion of command line. The
system is also open to further extensions of DLV allowing theuser to input personalized
execution options. This configuration phase can be carried out once and for all the runs
of the current project.

After this, when the user wants to run his project, the systemproposes him the list of
program files currently active, and the user can choose thoseones that must be included
in the current run. Moreover, an expert user can personalizethe command line proposed
by the system, if he think it is necessary.

Presentation of results
During the execution of DLV (resp.,DLVIO, DLVDB) the output is redirected to the

consolepanel, located in the lower part of the interface (see Figure3) in such a way
that the user can check the program output from the same environment. Moreover, the
output redirected to database tables inDLVIO or DLVDB can be analyzed as illustrated
in Figure 6.

98 S. Perri et al.

Fig. 9. The Debugger graphical interface.

Debugging of a Program
The debugging of a program is, in general, a crucial task in the development of an

application. In VISUALDLV it can be carried out through a graphic interface (see Figure
9); this is promptly displayed when the user asks to run DLV indebugging mode. In
this case, VISUALDLV transparently adds to the invocation parameters the “-debug”
option. Figure 9 shows the first model found by DLV for the program:

a(X) ∨ b(X) :- #int(X). c(X):-a(X), X<3. #maxint(10).

and the answer of the debugger to the user request “print instantiation”.
All the debugging commands available for the user can be activated with the menus

on the left side of the interface, as shown in Figure 9; these are automatically translated
and forwarded to DLV in the proper format (as XML tags).

Note that, the debugger interface is a non-modal window, so that the programmer
can contemporarily look at the input program during a debugging session (without the
need to stop the debugger). However, the debugger must be re-launched after any mod-
ification to the input program is applied.

4.2 Architecture

The architecture of the system is shown in Figure 10. The Graphical User Interface
(GUI) allows the user to access all the system’s functionalities. These are implemented
by five main modules.

The Parser, is responsible of translating DLV programs and auxiliary directives,
taken both from the user interface and by pre-existing files,in suitable internal data
structures. These are currently used for the automatic completion and the dynamic syn-
tax checking features, but can be the basis also for more refined functionalities (e.g., a
graphical representation of the dependencies between program predicates, etc.).

The Editor module implements classical file editing operations and provides the
automatic completion feature.

The DB Connection Handler, manages all the interactions of the system with the
external databases, such as ODBC connections, table contents viewing, database query-

An integrated graphic tool for developing and testing DLV programs 99

Fig. 10.The general architecture of the system.

ing and manipulation, etc. Moreover, it interacts with the GUI for the generation of the
auxiliary directives.

TheConfiguration Handleris responsible of storing and managing all configuration
information of the current project. In particular, it takesinto account both the project
typology and the options specified by the user through the interface, to compose the
correct command line needed to invoke DLV (resp.,DLVIO, DLVDB).

TheDLV Executorinvokes the proper versions of DLV (including the debugging
version) and redirects the corresponding output (possiblyreformatted) to the GUI.

Note that, the proposed tool might be extended in order to support other flavors of
ASP, e.g, the Smodels language. This can be done by adding both specialized parser
and executor modules1.

5 Conclusions

In this paper we have presented a graphic integrated environment, called VISUALDLV,
for the development of DLV applications. Our system represents a first step toward the
implementation of an integrated and complete suite of toolsfor a DLV developer. It in-
tegrates many interesting features which help the programmers during the development
phases: editing, configuration, interaction with externalDBMS, debugging, and deploy-
ment. We are currently working on several improvements of the existing functionalities
(e.g. enabling drag-and-drop facilities for the generation of DLVDB directives, etc.),
and we are planning the introduction of additional capabilities, such as a graphical rep-
resentation of program dependencies and a tree view of answer sets.

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562

2. Niemelä, I., Simons, P., Syrjänen, T.: Smodels: A System for Answer Set Programming. In:
NMR’2000 (2000)

1 In the interface, we can deal with that by adding a new kind of project, let say Smodels project.

100 S. Perri et al.

3. Janhunen, T., Niemelä, I.: Gnt - a solver for disjunctivelogic programs. In: Proceedings of
the Seventh International Conference on Logic Programmingand Nonmonotonic Reasoning
(LPNMR-7). LNCS 2923

4. Lierler, Y.: Cmodels for Tight Disjunctive Logic Programs. In: W(C)LP 19th Workshop on
(Constraint) Logic Programming, Ulm, Germany. Ulmer Informatik-Berichte, Universität
Ulm, Germany (2005) 163–166

5. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (2005) 915–917

6. Massacci, F.: Computer Aided Security Requirements Engineering with ASP Non-
monotonic Reasoning, ASP and Constraints, Seminar N 05171.Dagstuhl Seminar on Non-
monotonic Reasoning, Answer Set Programming and Constraints (2005)

7. Faber, W., Pfeifer, G.:DLV homepage (since 1996)http://www.dlvsystem.com/.
8. Terracina, G., Leone, N., Lio, V., Panetta, C.: Adding efficient data management to logic

programming systems. In: Proc. of 16th International Symposium on Methodologies for
Intelligent Systems (ISMIS 2006), Bari, Italy, Lecture Notes in Artificial Intelligence (4203),
(2006) 524–533

9. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Logic
Programming: Proceedings Fifth Intl Conference and Symposium, Cambridge, Mass., MIT
Press (1988) 1070–1080

10. Buccafurri, F., Leone, N., Rullo, P.: Stable Models and their Computation for Logic Pro-
gramming with Inheritance and True Negation. JLP27(1) (1996) 5–43

11. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
TKDE 12(5) (2000)

12. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational Properties of
Logic Programs with Aggregates. In: Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI-05). (2005) 406–411

13. Calimeri, F., Ianni, G.: External sources of computation for Answer Set Solvers. In: LP-
NMR’05. LNCS 3662

14. Brain, M., Vos, M.D.: Debugging Logic Programs under theAnswer Set Semantics. In:
Proceedings ASP05 - Answer Set Programming: Advances in Theory and Implementation,
Bath, UK (2005)

15. El-Khatib, O., Pontelli, E., Son, T.C.: Justification and debugging of answer set programs
in ASP. In: Proceedings of the Sixth International Workshopon Automated Debugging,
California, USA, ACM (2005)

16. Ricca, F., Faber, W., Leone, N.: A Backjumping Techniquefor Disjunctive Logic Program-
ming. AI Communications19(2) (2006) 155–172

APE: An AnsProlog* Environment

Adrian Sureshkumar, Marina De Vos, Martin Brain, and John Fitch

Department of Computer Science
University of Bath

Bath, BA2 7AY, UK
{mdv,mjb,jpff}@cs.bath.ac.uk

Abstract. It has been recognised that better programming tools are required to
support the logic programming paradigm of Answer Set Programming (ASP), es-
pecially when larger scale applications need to be developed. In order to meet this
demand, the aspects of programming in ASP that require better support need to
be investigated, and suitable tools to support them identified and implemented. In
this paper we detail an exploratory development approach to implementing an In-
tegrated Development Environment (IDE) for ASP, the AnsProlog* Programming
Environment (APE). APE is implemented as a plug-in for the Eclipse platform.
Given that an IDE is itself composed of a set of programming tools, this approach
is used to identify a set of tool requirements for ASP, together with suggestions
for improvements to existing tools and programming practices.

1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm with a seman-
tics known as the answer set semantics [4]. It is declarative in that the programmer
specifies what needs to be achieved, rather than how it should it be achieved. It there-
fore lends itself naturally to applications in the domain of artificial intelligence, such as
plan generation and reasoning in agents.

ASP programs, which are written in the language of AnsProlog*, are composed of
a set of facts together with a set of rules from which other facts can be derived. A set
of consistent facts that can be derived from a program using the rules is known as an
answer set of the program. The possible answer sets for an AnsProlog* input program
are computed with a program called a solver. Current solvers include SMODELS[23, 27],
DLV[9, 10], CLASP [13] and CMODELS [19].

A report by the Working group on Answer Set Programming (WASP) [26] acknowl-
edges that better tools are required to support programming in this paradigm [22]. How-
ever in order to identify the aspects that require better support, and consequently de-
velop the appropriate tools to support them, a better understanding of the programming
process is needed.

The widespread use of programming tools in other paradigms is an indication of
their value to the programmer. It is therefore important to investigate whether these tools
could be applied to the domain of ASP and whether they would have the same impact
as in other domains, in addition to identifying new tools to solve problems specific to
ASP and improving programming practices.

102 A. Sureshkumar et al.

[17] and [11] describe the situation in the 1980’s, in which little progress had been
made with respect to programming environments for logic programming. Indeed they
observe that the environments of the time were restricted to imperative and functional
languages. This is clearly no longer the case, given that a quick Internet search for
Prolog IDE generates many pages of results for development tools. The same is true for
other declarative approaches like SAT and CLP.

However, performing a similar search for ASP does not return any relevant results.
In fact, at the time of writing the top search result on Google for the query “Answer
Set Programming” Integrated Development Environment was the undergraduate project
proposal that resulted in this paper, demonstrating that this is indeed one of the areas
of tools for ASP that is underdeveloped. Thus it can be said that we find ourselves in a
similar situation today with ASP, as [17, 11] did in the 1980’s with logic programming
in general.

The fact that several environments exist for the Prolog language indicate that the
development of IDEs for logic programming languages can be achieved and warrants
an investigation into whether this would also be possible for ASP.

2 Requirement Elicitation

In order to develop a set of requirements for the system, the people who have a vested
interest in the successful development of the system needed to be identified - these
are known as the stake-holders [25]. The primary stake-holders for the IDE, are ASP
programmers and other members of the ASP community, as they stand to benefit from
the improved tool support that the IDE could provide.

In order to gather the fundamental requirements for the IDE and a list of potential
features, a questionnaire was developed and distributed by e-mail to members of the
ASP community.

The questionnaire was designed to be short and consisted mainly of closed questions
in order to minimise the time required by the participant to complete it, although a
few open questions were included to allow further elaboration if required. From the
48 questionnaires, only 17 were returned although some of them were group responses
instead of individual responses.

The experience of the participants in ASP development ranged from 1 to 10 years
experience, with 4 years experience on average. Only 4 participants of the 16 that re-
sponded to the question had less than 3 years experience. This suggests that the par-
ticipants have sufficient knowledge about the process of developing in ASP to provide
valuable feedback on how this could be better supported. However it is also possible that
through their years of using the current ASP development tools, the participants may be
less aware of areas that need better support, as they have learned to work around them.

Supported Solvers: The first question on the questionnaire aimed to determine which
tools were used by the participants.

The results of the questionnaire showed DLV and LPARSE/SMODELS to be the ASP
tools most widely used by the participants, although this was not surprising given
that they are arguably the most well known solver implementations. Although it had

APE: An AnsProlog* Environment 103

a slightly lower response than the DLV solver, it was chosen to develop the IDE around
the SMODELS solver and LPARSE front-end. Given that it is an open source product
under the GNU General Public Licence (GPL) [12], whereas only binary builds are
available for DLV, the possibility of code reuse was available. Beside the tools that had
been suggested to the respondents, the questionnaire also identified five other tools that
had not previously been considered:
CMODELS - “an answer set solver that uses SAT solvers as search engines” [19, 18].
DLV-EX - An implementation for the DLV system of “Answer Set Programming with

External Predicates (ASP-EX), a framework aimed at enabling ASP to deal with
external sources of computation” [6, 7].

CR-MODELS - The inference engine for CR-Prolog, “an extension of A-Prolog by con-
sistency restoring rules with preferences” [3, 16].

ASSAT - A system that computes “answer sets of a logic program by using SAT solvers”
[21, 20].

ASET-SOLVER - A solver for ASET-Prolog, “an extension of A-Prolog that adds to the
language sets of terms and functions from these terms to natural numbers” [15, 14].
Given the range of tools used by members of the community, it would clearly not be

viable to attempt to provide support for every one of these, at least in the initial version.
Equally, it would clearly be impractical for users of these tools to develop a program
from within the IDE, but solve it, say, from the command line. Consequently, this could
limit the user base of the system. Given this, it was clear that the IDE would need to
provide some sort of extension mechanism (e.g. plug-ins) or the ability to run external
commands from within the IDE. This would allow others to integrate other tools into
the environment if required. Indeed it was commented that “it would be nice to have a
plugin system that will enable it to be extended to other AnsProlog inference systems”
and to have “the possibility to choose which solver one wants to use”.

Target Platform: The second question in the questionnaire aimed to identify the oper-
ating systems used by the community for ASP development.

The most widely used operating system for ASP development by participants of
the survey was clearly Linux. Thus this was chosen as the target platform for the sys-
tem. However as other platforms were in use, and indeed some participants used these
exclusively (e.g. Windows), a platform independent solution is clearly desirable.

The target platform for the IDE is also constrained by the supported platforms of
any tools to be integrated. However, given that LPARSE and SMODELS are available
in source form, and builds of DLV are available for Linux, Free-BSD, MacOS X and
Windows this should not have a great impact on the IDE. If other tools were to be
integrated that only supported specific platforms, the availability of a version for the
desired platform could be arranged with the tool developer.

Potential Features: In order to determine some potential features for the IDE, a local
brainstorming session was conducted.

Syntax highlighting could help the programmer to more easily distinguish between
different elements of the program code. For example, by highlighting all keywords in
a given colour it would immediately become apparent to the programmer if they at-

104 A. Sureshkumar et al.

tempted to use a keyword as a constant name. This error may otherwise not have been
discovered until the program was run through the solver or grounder.

Providing the automatic completion of predicates (or terms) that had already been
defined in the program would reduce the time taken to input the program. It would also
help to reduce errors in the code caused by mistyping a name, not only by reducing the
amount of typing that occurs, but equally through the lack of an expected completion
indicating to the programmer that a mistake had been made.

Although the name of a predicate should be descriptive, it may not always be pos-
sible to achieve this without making the name long and cumbersome to type. Therefore
it would be convenient to be able to associate a textual description with each predicate
giving a more accurate definition of its meaning. However as there is currently no syn-
tax to support this in DLV or LPARSE, this would have to be encoded within comments.
If this feature was shown to be a success the inclusion of a special syntax for this could
be requested from the solver developers.

Version control tools, such as the Concurrent Versions System (CVS), are often
used when developing software to maintain a history of revisions of source files and
facilitate several developers working together on a project. Integrating such tools into
the IDE would facilitate their use within ASP development and eliminate the need to
switch to an external program to interact with them.

The ability to divide a program into multiple files is important as it allows a core
set of rules to be used in more than one program. For example, a set of rules encoding a
problem could be defined in one file and sets of facts representing inputs to the problem
in several other files. Given that input from multiple files is supported by the same
grounder, this should also be supported by an IDE.

An ASP program can be represented in terms of a dependency graph [4], which
shows how the truth value of a predicate depends on the truth or falsity of other pred-
icates. Providing a graph representation of programs as part of the IDE would convey
this information easily, rather than having to manually extract it from the source code.

It can be difficult to find the source of errors in programs, and as discussed by [5]
this is compounded by the fact that it is difficult to determine whether an ASP program
is behaving correctly. Whereas a procedural program may crash or throw an exception
when an error is encountered, this is not the case for an ASP program. It would therefore
be useful to include some form of debugging tools in the IDE to support this process.

Constantly switching between different tools can limit the productivity of the pro-
grammer. This frequently occurs when programming, for example switching between
the editor to write a program, and to the command line in order to run it. Therefore,
integrating the running of the LPARSE and SMODELS tools and the editor into the same
environment would remove this need.

Validation: An important aspect of the requirements engineering process is to verify
that the requirements that have been gathered for a system “actually define the system
that the customer wants” [28]. In order to understand how the features proposed at Bath
would be viewed by the wider community, an informal review of the requirements was
performed by presenting the list of potential features on the questionnaire. Participants
were asked to rate their desire for a particular feature on a unipolar scale, with 0 being
least useful and 10 being the most useful.

APE: An AnsProlog* Environment 105

0 1 2 3 4 5 6 7 8 9 10

Integration of editor and
lparse/smodels

Integration of editor and dlv

Syntax/predicate highlighting

Automatic completion of
predicates

Ability to associate a textual
description with each predicate

Debugging tools

Integrated version control tools

Modularity of programs over
multiple files

Automatic file conversion
between lparse and dlv

Graph representation of
programs

Replacement of a rule by its
grounding

Score

0 1 2 3 4 5 6 7 8 9 10

Fig. 1. Score of Suggested IDE Features

The results of this questionnaire have been presented as a box-and-whisker plot
(Figure 1), in order to show the spread in the responses for each feature. The plot shows
the upper and lower scores for each response (whiskers), together with the median score
and interquartile range (box). Any outliers have been indicated with a cross.

From the list of features proposed on the questionnaire, it was clear that debugging
tools were the most desired by the respondents, given that the majority gave this a score
between 9 and 10. This would therefore be a core component of an IDE for ASP. At
present a number of groups are working on debugging techniques for ASP [5, 31, 24].
Given the early stages of this research, it was not deemed viable to specifically consider
debugging as part of this initial IDE. However we look forward to integrate or support
their work in the future.

Another popular choice was the automatic conversion between files in the LPARSE
and DLV formats. However, as the version of the IDE produced will only support the
LPARSE language, this feature will not be implemented.

Although there was a large spread in the responses for integrating an editor with the
solver, it was generally desired as most responses rated it at 5 and above. Moreover,
this is an essential component of an IDE as the programmer needs to be able to edit the
program and then run it through the solver. The replacement of a rule by its grounding,
graph representation of programs and modularity of programs over multiple files, also
appeared to be popular with the respondents as the interquartile range for each fell
between a score of 5 and 8.

106 A. Sureshkumar et al.

Furthermore, the remaining features all received a median score of at least 5 demon-
strating some support for them, even if there was a wide spread in the scores that they
were given. As none of the features in the list was shown to be very unpopular, in the
way that debugging tools were shown to be very popular, it would appear that they
are all judged to be of some potential by the respondents and should therefore all be
explored further.

Suggested Features: As discussed by [25], it is important to include as large a number
of representatives from each stakeholder group as possible in the data gathering process,
in order to avoid getting a narrow view of the requirements. Therefore in order to inte-
grate the views of the wider community into the list of potential features, respondents
to the questionnaire were asked to suggest any other features that could be included.
We now consider these features.

One request was made to incorporate the statical analysis of program tightness into
the IDE. This syntactic condition on a program is also known as positive order consis-
tency [2]. If a program can be shown to be tight, then for that program the answer set
semantics are equivalent to another semantics known as the completion semantics. In
this case a satisfiability solver can be used to determine the answer sets of a program,
rather than an answer set solver such as SMODELS. Including this analysis as part of the
IDE could be used for indicating whether this type of solver could be used on a given
program.

It was also requested to provide support for make files. Given that a program could
potentially be split over several files, some of which may have already been grounded,
a build script could be used to automate the process of grounding any files that had
changed since last being grounded and then running the program through a solver. The
IDE would therefore need to provide support for this functionality.

In addition to this was the request to support scripts to filter the input to and out-
put from the solvers. Providing support for scripts to perform this would permit the
transformation of data from some source into a program that would be accepted by the
solver, and accordingly the output from the solver to be transformed into a more useable
form.

Another key feature that was suggested by one participant was automatic syntax
checking. Highlighting syntax errors in the editor as they are typed, would make the
error immediately evident to the programmer and prompt them to make a correction.
This would eliminate the overhead of running the program through the solver before
the error would be discovered, and potentially doing this multiple times to locate and
correct all of the errors.

Given the range of solvers used for ASP, it was suggested that the IDE should allow
the user to choose which solver they want to use when running the program. However
as we have restricted the initial version of the system to supporting the LPARSE and
SMODELS tools, this feature will not be considered. Related to this was the ability to
provide benchmarks for the different solvers in the system, such as the time taken to run
the solver. This feature would allow the user to compare different solvers and potentially
choose the one most suited to their specific program.

APE: An AnsProlog* Environment 107

The value of generating the dependency graph for a program has already been con-
sidered, however this was reiterated with requests to display the components of these
graphs (such as the atoms) and the dependencies between them.

Features Supported by Version 1 of APE This initial requirements gathering phase has
helped to identify some of the non-functional requirements of the system, such as the
platform on which it must operate and the tools that it must support, together with a
list of potential features. For the initial release of an IDE, we decided on the following
options:

– Support for LPARSE and SMODELS tools
– Multi-platform support
– Syntax highlighting
– Automatic syntax checking
– Integrated version control tools
– Multiple file support
– Display of program dependency graph
– Integration of editor and LPARSE
– Integrated build script support

The selection is wide enough so that the IDE can be evaluated in a significant man-
ner, yet restricted enough for users to make comments and suggestions. Given that
LPARSE is used as a grounder for many other solvers than SMODELS, the IDE can also
be used for the development for these solvers. With a minor change this solver can also
be called directly from the IDE.

3 Eclipse

To develop our IDE, we have opted for the Eclipse platform. Some of the people we
questioned are already familiar with the platform, it already provides a number of pro-
gramming tools and it can be easily extended in incremental steps.

The Eclipse platform, described as “an IDE for anything, and for nothing in par-
ticular” [8], is surrounded by an industry buzz according to [34]. The author identifies
several reasons for this success including being free, given that equivalent IDEs can cost
more than $1,000, and supporting multiple platforms including Windows, MacOS, So-
laris and Linux (Red Hat & SuSE). The platform provides a lot of generic functionality
and “is built on a mechanism for discovering, integrating, and running modules called
plug-ins” [8]. Moreover, the licence terms allow third-party developers to charge for
any extensions that they produce [34], which clearly provides an incentive for develop-
ers of commercial and open-source tools to use this platform. It is however criticised by
some for having an excess of features, which could be overwhelming for inexperienced
users.

Plug-ins typically consist of Java code contained in a JAR (Java Archive) file, to-
gether with resources and a manifest file [8]. The development of plug-ins is facilitated
by the provision of an IDE in Eclipse - the Plug-in Development Environment (PDE).
The manifest file is an XML file which defines a set of extension points, which other
plug-ins may extend, together with its extensions - how it is extending the extension

108 A. Sureshkumar et al.

point defined by another plug-in. This could clearly be an advantage in an IDE for
ASP, by allowing developers to integrate their own solvers into the framework pro-
vided. The best known plug-in for Eclipse is probably the Java Development Tooling
(JDT) included in the main distribution together with the platform and PDE - although
the platform is also available separately. [34] observes that this is probably why Eclipse
is viewed by many as simply a Java IDE, rather than a framework to host IDEs and
other tools.

4 APE Version 1.0

In this section we have a closer look at how these features are incorporated in our IDE.
By opting for Eclipse as our base model, we automatically obtain that our system is
platform independent, provided that the we do not use any platform specific package
to implement the various tools. Furthermore, the use of Eclipse gave us access to in-
tegrated version control tools and integrated build script support. Given its modular
approach it provides the necessary support for integrating additional solvers into the
IDE.

4.1 System Overview

The final system consists of 6 plug-ins: the core (doing the background work), the
general user interface, one to run SMODELS and one for LPARSE, the user interface for
both programs and one to generate dependency graphs.

Figures 2, 3 and 4 give three different screen shots of the final system. They demon-
strate that IDE has four parts (if not closed). The left shows the working directory. The
middle is the actual editor with all open files in the workbench and one file active. The
right shows different views of the active program like the syntactic outline or the de-
pendency graph. The bottom part shows either the console with the answer sets of the
program if SMODELS is called or the errors/warnings the system has detected in the
active program. Note that the layout can be customised by the Eclipse user if this is not
what is wanted.

The system is licensed under the GNU GPL [12] and available at http://krr.
cs.bath.ac.uk/index.php/APE. More information about APE can be found in
[29] and on the above webpage.

4.2 Syntax Highlighting

In order to have syntax highlighting, or colouring as it called in Eclipse, that was suit-
able for ASP, it was not sufficient to extend one of the already available syntax colouring
tools. Unfortunately, the highlighting of tokens such as constants and functions could
not be achieved without additional parsing of the source file.

To solve this problem, we adapted the parser and scanner from LPARSE to work
with Java and reused this in the IDE. Using the same specification also ensures that the
IDE’s parser accepts the same programs as the LPARSE tool itself.

APE: An AnsProlog* Environment 109

Fig. 2. IDE in outline mode
The scanner used in the LPARSE tool performed the analysis of a single program

combined from all the input files specified on the command line. However for a file
open in the LPARSE editor, it is not known with which other files it would be used or
whether it would even be used with any other files. Therefore when programs are split
over multiple files, some way of defining how these files are aggregated to form a single
program would be necessary to perform an analysis of the entire program. We decided
to leave this for future work and limit ourselves to only analysing the file which was
currently open in the editor.

Thus parsing of the LPARSE source files is not only necessary for the more detailed
syntax highlighting, but for any other tools that need to perform an analysis of the
program. This includes highlighting of errors and warnings in the editor, computation
of dependency graphs, auto-completion and analysis of program tightness. Given this is
needed, we have opted for a data integration approach in which the source code is only
parsed once and stored in a shared data structure that could be used by several tools.

The parser generates a data structure very similar to the one displayed in the outline
view of Figure 2 which can then be used for assigning different colours to the various
components.

Whenever a change is made to the source file, the entire document is re-parsed and
a data structure is generated. However this one data structure is shared amongst all the
features of the IDE such as syntax colouring and checking and graphs – in order that
the file does not have to be re parsed for each feature. An improvement would be to do
this incrementally.

The user can change the colour assignment of each of the individual components of
the program using the ASPSyntaxColouring Dialog, as shown in Figure 5.

4.3 Automatic Syntax Checking

A syntax error occurs “when the string of input tokens is not a sentence in the language”
[1]. In order that as many syntax errors as possible can be reported to the programmer

110 A. Sureshkumar et al.

Fig. 3. IDE in dependency graph mode
in a single pass through the program, the parser should be able to recover from the
discovery of an error and continue to discover other potential errors [33].

An LPARSE program consists of rules, statements and declarations each separated
by a full stop (.)[30]. Therefore after encountering an error the parser can skip over the
tokens until this token is encountered. Indeed this is the method of recovery used in the
original parser, and has been maintained for the IDE.

In Eclipse, marker objects can be used to attach annotations to workspace resources,
with these annotations being stored in the workspace meta-data rather than by modify-
ing the existing file. The Eclipse text editor automatically highlights errors and warnings
in a file, if problem markers representing them are attached to the resource. These are
also displayed in the Eclipse problems view.Figure 4 on page 111. When the source
file is modified, the problem markers are replaced with a new set generated from the
information in the shared data structure.

The original grammar for LPARSE contained code in the action for the constant dec-
laration rule to warn the user if the constant that they were declaring had already been
defined or used as a symbolic constant. It also contained rules for common mistakes
made when entering constant declarations: using a variable name rather than identifier
for the constant or missing the assignment operator. This provided a more specific error
message than the general ‘parse error’ message would have, aiding the programmer to
locate the problem more quickly. The action for these rules was therefore implemented
to create a new problem object with the same message as provided in the original C
code. This could be extended by investigating other common errors made when writing
LPARSE programs, adding rules to support them, and returning a problem object with a
more specific error message.

4.4 Integration of Editor, LPARSE and SMODELS

To eliminate the user overhead of switching between the editor and command-line to
run a program, we have provided a plug-in to enable launching LPARSE and SMODELS

APE: An AnsProlog* Environment 111

Fig. 4. Program with syntactical errors

from within the IDE. The respective dialog boxes allows the user to set all the flags and
parameters that are available to the programs. Figure 6 shows a screen shot of a LPARSE
dialog box where the user can opt for different run-time settings.

The output provided by SMODELS contains a lot of information which is not always
required, or can be difficult to interpret easily. So being able to pass the output to another
program or script for formatting can be welcome. Also, it might be important to save
the answer sets of certain programs. To allow for this, we have added an extra tab to
the SMODELS launch dialog that allows the SMODELS output to be piped to a different
program. It will be the output of this other program that will be displayed in the console
part of the IDE.

4.5 Dependency Graphs

The questionnaire demonstrated strong support for the display of dependency graphs,
and so this feature was chosen to be implemented given the availability of the source
file model.

[4] defines the dependency graph of a program to consist of:
– a set of vertices, such that each vertex corresponds to a predicate name.
– a set of edges, such that the edge from Pi to Pj is in the set if and only if there

exists a rule in the program that has Pi in the head and Pj in the body. The edge is
labelled with a + if Pj appears as a positive literal, with a - if it appears as a negative
literal, or indeed with + and - if rules exist such that both cases are present.
The dependency graph functionality was defined in a separate plug-in (section 3).

This allows other ASP tools to reuse the functionality.
In order to display the dependency graph in Eclipse a suitable library to support

graph drawing had to be chosen. The criteria for this package were that it had to be
platform independent and use the Eclipse graphical packages (Eclipse’s SWT) rather
than Swing. In the end we decided to use the Draw2D plug-in from the Eclipse Graph-
ical Editing Framework (GEF) feature. support for drawing classes for modelling and

112 A. Sureshkumar et al.

Fig. 5. ASPSyntaxColouring Dialog

To display the graph within the IDE, the DependencyGraphView was imple-
mented, which given an AnsPrologProgram data model would build a dependency
graph model using the Draw2D graph classes and display this in its GraphViewer
(Figure 3 on page 110). The LPARSE editor was also updated to make sure that the
dependency graph was updated every time the active source file was changed.

4.6 Extra Features

During several intermediate validation and observation sessions, it was pointed out to us
that it would have been nice to have the facility to have block comments and the short-
cuts similar to the subjects favourite browsers, which was Emacs in this particular case.
The latter was easy to accommodate as Eclipse has a set of built-in short-cut schemes,
one of which is Emacs. The former did not take much effort either as a similar action
had already been implemented as part of the JDT, which we were able to use as an
example. The action was named ‘Toggle Comment’ in order to be consistent with the
JDT, and was implemented to behave in the same way. The option was also added to the
menu and a short-cut key was associated to it. It was again set to be the same as used in
the JDT: Ctrl + / under the default configuration and Ctrl + 7 under the Emacs
configuration. However the use of Ctrl + % for the default configuration may have
been more natural for the user, given that % is the single line comment character for
LPARSE, rather than the // used in Java. In the end it was decided to keep the Eclipse
default, in order not to confuse users who also use Eclipse for different languages. of
both plug-ins

APE: An AnsProlog* Environment 113

Fig. 6. LPARSE command-line options dialog box

5 Conclusions and Future Work

As far as we are aware, very little research has been taken place on software engineering
for answer set programming. Apart from a graphical user interface for the SMODELS
solver [32], perhaps the Emacs mode for LPARSE/SMODELS is the only one publicly
available. The Emacs mode provides Emacs users with indentation, syntax highlighting
and running LPARSE and SMODELS via commands [30].

Apart from providing an initial IDE for ASP, this paper provided the first set of
requirements for ASP development tools. In a way the presented IDE is only the tip of
the iceberg compared to programming tools available for traditional languages.

The questionnaire only reached a small proportion of the ASP field. In the future,
a wider range of users needs to be considered for the evaluations of the system. This
wider view would have allowed a better definition of the requirements of the IDE to
be produced, by considering the needs of a more varied user base and any conflicts of
interest between their different needs.

At present, the IDE has only been tested within the department. To evaluate it in a
more scientific manner, it needs to be tested by a wider group including experienced
ASP programmers and novices. Such an evaluation should bring to light the require-
ments from different user groups. Furthermore, observing people using the tool will
also give more insight into programming techniques.

During the requirements analysis, another tool that was identified to be of potential
use when programming in ASP was that of automatically indenting the code to facilitate
maintaining a consistent, easy to read layout throughout the program. However, the
layout that the tool should adhere to would first need to be defined. Therefore it is
proposed that a study into coding styles for ASP should be undertaken in order to define

114 A. Sureshkumar et al.

a common set of coding standards to improve the readability and maintainability of
code.

In addition to the new ASP tools that were identified in the requirements elicitation
process, an improvement to an existing tool was also identified. One requirement of the
IDE that was raised throughout the elicitation process was for a tool to perform block
commenting. This was due to the syntax of the LPARSE solver only supporting single
line comments rendering the commenting of large blocks of code a tedious process.
Although developing this tool supports the programmer, it is resolving the problem in
the wrong place. It would be better to add Multi-line comments to the LPARSE syntax,
in order that all ASP programmers could benefit from faster commenting, regardless of
whether they use the IDE or not.

Although APE is only the first version of an IDE for answer set programming, we
are sure it already provides a number of tools that make it easier to write programs
in the language. Initial trials support this belief. In the future we will be extending
and improving the current set of available features. The first feature on the list is to
incorporate debugging tools in the IDE.

References

1. A. W. Appel and M. Ginsburg. Modern Compiler Implementation in C. Press Syndicate of
the University of Cambridge, 2004.

2. Y. Babovich, E. Erdem, and V. Lifschitz. Fages’ theorem and answer set programming. In
C. Baral and M. Truszczynski, editors, Proceedings of the 8th International Workshop on
Non-Monotonic Reasoning, NMR’2000, 2000.

3. M. Balduccini. CR-MODELS homepage. http://krlab.cs.ttu.edu/∼marcy/
crmodels/.

4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, UK, 2003.

5. M. Brain and M. De Vos. Debugging logic programs under the answer set semantics. In
M. De Vos and A. Provetti, editors, Answer Set Programming: Advances in Theory and
Implementation, pages 142 – 152. Research Press International, 2005.

6. F. Calimeri and G. Ianni. External sources of computation for answer set solvers. Lecture
Notes in Computer Science, 3662:105–118, 2005.

7. F. Calimeri, G. Ianni, and S. Cozza. http://www.mat.unical.it/ianni/wiki/
dlvex.

8. Eclipse. Eclipse platform technical overview. 2003.
9. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR system dlv: Progress

report, comparisons and benchmarks. In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors,
KR’98: Principles of Knowledge Representation and Reasoning, pages 406–417. Morgan
Kaufmann, San Francisco, California, 1998.

10. W. Faber and G. Pfeifer. DLV homepage. http://www.dbai.tuwien.ac.at/proj/
dlv/.

11. N. Francez, S. Goldenberg, R. Y. Pinter, M. Tiomkin, and S. Tsur. An environment for logic
programming. In Proceedings of the ACM SIGPLAN 85 symposium on Language issues in
programming environments, pages 179–190, New York, NY, USA, 1985. ACM Press.

12. Free Software Foundation. Gnu general public license version 2, 1992.

APE: An AnsProlog* Environment 115

13. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving. In
M. Veloso, editor, Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 386–392. AAAI Press/The MIT Press, 2007. Available at
http://www.ijcai.org/papers07/contents.php.

14. M. Heidt and V. S. Mellarkod. ASET homepage. http://www.cs.ttu.edu/
∼mellarko/aset.html.

15. M. L. Heidt. Developing an inference engine for aset-prolog. Master’s thesis, University of
Texas at El Paso, December 2001.

16. L. Kolvekal. Developing an inference engine for cr-prolog with preferences. Master’s thesis,
Texas Tech University, December 2004.

17. H. J. Komorowski and S. Omori. A model and an implementation of a logic programming
environment. In Proceedings of the ACM SIGPLAN 85 symposium on Language issues in
programming environments, pages 191–198, New York, NY, USA, 1985. ACM Press.

18. Y. Lierler. CMODELS homepage. http://www.cs.utexas.edu/∼tag/cmodels/.
19. Y. Lierler and M. Maratea. Cmodels-2: Sat-based answer set solver enhanced to non-tight

programs. Lecture Notes in Computer Science, 2923:346–350, 2004.
20. F. Lin and Y. Zhao. ASSAT homepage. http://assat.cs.ust.hk/.
21. F. Lin and Y. Zhao. Assat: computing answer sets of a logic program by sat solvers. Artificial

Intelligence, 157(1-2):115–137, 2004.
22. I. Niemelä, editor. WASP WP3 Report: Language Extensions and Software Engineering for

ASP. 2005.
23. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded

semantics for normal LP. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of the
4th International Conference on Logic Programing and Nonmonotonic Reasoning, volume
1265 of LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

24. E. Pontelli and T. C. Son. ustifications for logic programs under answer set semantics. In
S. Etalle and M. Truszczynski, editors, ICLP, volume 4079 of Lecture Notes in Computer
Science, pages 196–210. Springer, 2006.

25. J. Preece, Y. Rogers, and H. Sharp. Interaction Design. John Wiley & Sons, Inc., New York,
NY, USA, 2002.

26. A. Provetti. Wasp homepage. http://wasp.unime.it/.
27. P. Simons. SMODELS homepage. http://www.tcs.hut.fi/Software/

smodels/.
28. I. Sommerville. Software Engineering. Addison-Wesley Publishers Ltd., Harlow, England,

6th edition, 2001.
29. A. Sureshkumar. Ansprolog* programming environment (ape): Investigating software tools

for answer set programming through the implementation of an integrated development en-
vironment. B.Sc. Dissertation, Department of Computer Science, University of Bath, June
2006.

30. T. Syrjänen. Lparse 1.0 User’s Manual.
31. T. Syrjänen. Debugging inconsistent answer set programs. In J. Dix and A. Hunter, editors,

Proceedings of the 11th Workshop on Nonmonotonic Reasoning (NMR), number Ifl-06-04 in
Ifl Technical Report Series, 2006. Available from http://cig.in.tu-clausthal.
de/NMR06/.

32. H. Takahashi. A GUI for Smodels. http://www.baral.us/bookone/
ansprolog/, October 2004.

33. R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley Publishing Co. Inc., Wok-
ingham, England, 1995.

34. A. Wolfe. Toolkit: Eclipse: A platform becomes an open-source woodstock. Queue, 1(8):14–
16, 2003.

Planning for Biochemical Pathways: A Case Study of
Answer Set Planning in Large Planning Problem

Instances

Tran Cao Son and Enrico Pontelli

Department of Computer Science
New Mexico State University

tson,epontell@cs.nmsu.edu

Abstract. The paper describes an experiment of answer set planning in biochem-
ical pathway planning. The focus is on large planning problem instances. It is
shown that well-known planning techniques, such as planning graph analysis,
landmarks recognition, and planning using landmarks are useful in answer set
planning and can be easily incorporated in an answer set planning system.

1 Introduction

Over the past decade, answer set planning [6, 17, 26] has become a viable planning
approach. It has been successfully applied in conformant planning [7, 25], conditional
planning with sensing actions and incomplete information [28], planning with domain-
specific knowledge [22], or dealing with user’s preferences[23]. It has also been ap-
plied successfully in several real-world problems [1, 2]. Answer set planning builds on
the idea of using answer set programming [20, 19] to support the process of reason-
ing about actions. The success of answer set planning rests on two factors. The first
one is the availability of efficient answer set solvers, suchassmodels [21], dlv [8],
cmodels [16], andASSAT [18]. The second factor is the combination of the simplic-
ity and expressiveness of logic programming, which allows asimple representation and
reasoning about action and change.

Despite its success and its elegance, and despite the development of excellent in-
ference engines for answer set programming, answer set planning is not capable of
handling large problem instances. In our experiments, answer set planners perform well
in problem instances that admit short solutions, while it encounters difficulties in in-
stances with long solutions—e.g., typically, when the length of the minimal solution is
more than 20, the computation time grows beyond acceptable levels. One of the main
reasons behind this problem is that answer set planning researchers did not concen-
trate on the development of special purpose planners. Rather, the focus has been on
the development of methodologies for using answer set programming in planning. It
is expected that large problem instances will be solvable bymore efficient answer set
solvers. While this is certainly true, it raises the question of whether the currently avail-
able technologies have more to offer.

Another reason leading to the fact that answer set planning cannot cope with large
planning instances lies in the way solutions are computed inanswer set programming.

Planning for Biochemical Pathway in ASP 117

Most inference engines rely on a two-phase computation. During the first phase, the
program is grounded, and possibly simplified. Thelparse is a typical program used
for this phase. The actual solution (expressed by a collection of answer sets) will be
computed by one of the answer set solvers in the second phase.This computing style
does not allow for a direct application of well-known planning techniques to answer set
planning (e.g., the use of the planning graph to simplify thedomain, the use of heuristic
in deciding which actions should be chosen, etc.) as many of these techniques require
the ability to affect the way the computation search develops—inference engines for
answer set programming typically do not expose the search process to the programmer.
Furthermore, answer set planning puts a huge burden on the grounder,lparse, as
the size of the grounded program for large problem instancesis often too large to be
produced or too large to be acquired by the answer set solver.

The limitation of the grounder has an important consequenceon the representation
of planning domains and instances, which sometimes requires a careful analysis of the
domain and instances. For instance, if we wish to define an action p(X,Y) whereX
andY are variables with domainDx andDy respectively, a typical representation would
lead to a clause of the form

action(p(X,Y)) :− dx(X), dy(Y).

Depending on the instance (Dx andDy), lparse will simplify this clause and gener-
ate the correct set of actions—described by ground facts of the formaction(p(x, y)).
From the knowledge representation perspective, this is certainly a good practice, since
it allows a simple specification of the problem instances (only facts need to be speci-
fied). This representation can, however, quickly increase the number of rules that the
grounder has to deal with, as

(a) the number of parameters increases; and/or
(b) the size of the domain of the parameters increases.

As we will see later, this representation does increase the size of the grounding programs
significantly.

In this work, we investigate the use of well-known planning techniques in the con-
text of answer set planning. The planning techniques discussed in this paper involve a
simplification of a planning problem based onreachability analysis[13] andlandmark
recognition, and the use of landmarks in planning [14].

We choose theBiochemical Pathwaydomain, one of the planning domains used in
the recent International Planning Competition [12] as an example for our case study.
The main reason behind this selection is the conceptual simplicity of the domain, and
the need to deal with large instances. The following is an excerpt from the domain
description available at [12]:

This domain is inspired by the field of molecular biology, andspecifically bio-
chemical pathways. “A pathway is a sequence of chemical reactions in a bi-
ological organism. Such pathways specify mechanisms that explain how cells
carry out their major functions by means of molecules and reactions that pro-
duce regular changes. Many diseases can be explained by defects in pathways,
and new treatments often involve finding drugs that correct those defects” [27].

118 Tran Cao Son and Enrico Pontelli

We can model parts of the functioning of a pathway as a planning problem by
simply representing chemical reactions as actions. The biochemical pathway
domain of the competition is based on the pathway of the Mammalian Cell
Cycle Control as it described in [15] and modeled in [3].

There are different kinds of basic actions corresponding tothe different kinds of reac-
tions that appear in the pathway. For example, one of the actions, calledassociate, is
encoded in PDDL as follows1.

(:action associate
:parameters (?x1 ?x2 - molecule ?x3 - complex)
:precondition (and (association-reaction ?x1 ?x2 ?x3)

(available ?x1) (available ?x2))
:effect (and (not (available ?x1))

(not (available ?x2)) (available ?x3)))

Fig. 1.Action associate

In the above specification,?x1, ?x2, and?x3 denote variables; the condition
(available ?x) states that?x is available;(association-reaction ?x1
?x2 ?x3) says that there is an association reaction between?x1 and?x2 to create
?x3. This action creates the complex molecule?x3, by associating the two molecules
?x1 and?x2. This action is executable only if the two molecules?x1 and?x2 are
available and it is known that the two molecules?x1 and?x2 can combine in a reaction
to produce?x3.

A planning instance, in this domain, is given by a set of available molecules and the
information encoding the knowledge about the possibility of creating new molecules by
association, syntheses, and other types of interactions.

This paper discusses different ways to introduce current planning techniques, taken
from advanced planning systems, in answer ser planning. Thepaper also presents some
preliminary experimental results; these provide encouraging indication that answer set
planning can be used to tackle large planning instances. We start the presentation with
the basics of answer set planning, and a brief description ofthe ASP− PROLOG

system. We then discuss the problems faced by answer set planners in the biochemical
pathway domains, discuss a preliminary implementation of the planning graph analysis
and landmark recognition techniques, and their use in answer set planning.

2 Preliminaries

2.1 Answer Set Planning

We will use a variation of the high-level action descriptionlanguageA of [11] to repre-
sent action theories. We assume the presence of two finite, disjoint sets of names called
actionsandfluents. A fluent literal is either a fluentf or its negation¬f . We will also
say thatf and¬f are complement of each other. For a fluent literall, ¬l denotes its

1 A complete description of the domain is included in [24].

Planning for Biochemical Pathway in ASP 119

complement. A fluent formula is a propositional formula constructed from fluent liter-
als. For a set of fluent literalsγ, ¬γ = {¬l | l ∈ γ}. For a set of fluent literalγ, l holds
in γ if l ∈ γ. In such a language, an action domainD is a set of propositions of the
following form:

a causesf if ψ (1)

a executableψ (2)

wheref andψ’s are fluent literal and fluent formula, respectively, anda is an action. The
axiom (1) represents aconditional effectof a, while axiom (2) states an executability
condition ofa.

A set of fluent literals is consistent if it does not contain two complementary fluent
literals. A state (ofD) is a maximal and consistent set of fluent literals. An actiona is
executable in a states if there exists an executability condition (2) such thatψ ⊆ s. The
effects of an actiona in a states is denoted bye(a, s) and is given by

e(a, s) = {f | a causesf if ψ ∈ D,ψ ⊆ s}.

Given a states and an actiona executable ins, the state resulting from the execution of
a in s, denoted byRes(a, s), is defined by

Res(a, s) = s ∪ e(a, s) \ ¬e(a, s).

Let α = [a1; . . . ; an] be a sequence of actions; we will denote withα[i] the sequence
of actionsα[i] = [a1; . . . ; ai], where, by convention,α[0] denotes the empty sequence.
TheRes function can be easily extended to describe the effects of a sequence of actions.
Given a domain descriptionD, a states and a sequenceα = [a1; . . . ; an] of actions,
the final state afterα is executed ins, Φ(α, s), is defined as follows:

Φ(α, s) =







s if n = 0
⊥ if s′ = ⊥ or an is not executable ins′

Res(an, Φ(α[n − 1], s)) otherwise

For an action sequenceα and a states, if Φ(α, s) 6= ⊥ then we say thatα is executable
in s. α is executable in a set of statesS if it is executable in every states ∈ S.

A planning problemis specified by a triple〈D, s0, ∆〉, whereD is an action domain,
s0 is a state describing the initial state of the world, and∆ is a fluent formula (orgoal),
representing the goal state.2 A sequence of actionsα = [a1; . . . ; am] is aplan for∆ if
Φ(α, s0) 6= ⊥ and∆ holds inΦ(α, s0).

Given a planning problem〈D, s0, ∆〉, answer set planning solves it by translat-
ing it into a logic programΠ(D, s0, ∆), whose answer sets correspond to plans for
∆. The signature ofΠ(D, s0, ∆) includes terms corresponding to fluent literals and
actions ofD, as well as non-negative integers used to represent time steps. We often
writeΠ(D,n) to denote the restriction ofΠ(D, s0, ∆) to time steps between0 andn
(i.e., plans of length at mostn). Atoms ofΠ(D, s0, ∆) are formed using the following
(sorted) predicate symbols:

2 For simplicity of our discussion, we will assume that∆ is a set of fluent literals. Encoding the
goal can be done as in [22].

120 Tran Cao Son and Enrico Pontelli

– fluent(F) is true ifF is a fluent;
– literal(L) is true ifL is a fluent literal;
– contrary(L,L′) is true ifL is the complement of literalL′;
– h(L, T) is true if the fluent literalL holds at time stepT ;
– occ(A, T) is true if the actionA occurs at time stepT ;
– poss(A, T) is true if the actionA is executable at time stepT .

In our representation, lettersT , F , L, andA (possibly indexed) (resp.t, f , l, anda)
are used to represent variables (resp. constants) of sorts time, fluent, fluent literal, and
action correspondingly. For a set of fluent literalsγ, we define:

h(γ, T) = {h(l, T) | l ∈ γ} not h(γ, T) = {not h(l, T) | l ∈ γ} ¬γ = {¬l | l ∈ γ}

The set of rules ofΠ is divided into the following five subsets:
• Dynamic causal laws:for each statement of the form (1) inD, the rule:3

h(f, T+1)← occ(a, T), h(ψ, T) (3)

belongs toΠ(D, s0, ∆). This rule states that if the actiona occurs at time stepT
and the preconditionψ holds at that time step thenf holds afterward.
• Executability conditions:for each statement of the form (2) inD, Π(D, s0, ∆)

contains the following rule:

poss(a, T)← h(ψ, T) (4)

← occ(a, T), not poss(a, T) (5)

This rules state thata is executable at the time stepT iff there exists one of the
executability conditions of the form (2) such thatψ holds at time stepT .
• Initial state:Π(D, s0, ∆) contains the rule

h(s0, 0)←

• Action generation:Π(D, s0, ∆) contains the rule

1 {occ(A, T) : action(A)} 1←

which states that, at every time step, exactly one action must occur.
• Goal:Π(D, s0, ∆) contains the constraint

← not h(∆,n)

• Inertia: Π(D, s0, ∆) contains the following rule for the inertial law:

h(L, T)← h(L, T − 1), not h(¬L, T), T > 0 (6)

This rule says that a literalL holds at time stepT if it holds at the previous time
step and its negation does not hold atT .

3 In practice, the atomh(ψ, T) has to be replaced by a conjunction of atoms for each literal in
ψ.

Planning for Biochemical Pathway in ASP 121

• Auxiliary rules:Π(D, s0, ∆) also contains the following rules:

literal(F)← fluent(F) (7)

literal(¬F)← fluent(F) (8)

contrary(F,¬F) ← fluent(F) (9)

contrary(¬F, F) ← fluent(F) (10)

The first constraint stops two complementary fluent literalsfrom holding at the
same time. The last four rules are used to define fluent literals and complementary
literals.

The next theorem states that the programΠ(D, s0, ∆) correctly solves the planning
problem〈D, s0, ∆〉 (see, e.g., [22, 29]).

Theorem 1. Given a planning problem〈D, s0, ∆〉,
◦ for each plana1, . . . , an for ∆, the programΠ(D,n) ∪ {occ(ai, i − 1) | i =
1, . . . , n} is consistent;
◦ if A is an answer set ofΠ(D,n) thena1, . . . , an is a plan for∆whereocc(ai, i−
1) ∈ A for i = 1, . . . , n.

2.2 ASP − PROLOG

In order to support our development activities, we need a framework with the following
characteristics:
• It provides access to an inference engine for answer set programming—to allow

answer set planning;
• It provides access to a general purpose, declarative programming framework, which

allows arbitrary forms of reasoning and transformation of an action theory.
For this project, we selected a recently developed framework calledASP− PROLOG [10].
ASP− PROLOG is a fully modular system, which allows the integration of modules
written in Prolog with modules written in the SMODELS flavor of answer set program-
ming. EachASP− PROLOG program is a composition of modules. It allows pro-
grammers to compose modules expressed using different flavors of logic programming,
including Prolog, Constraint Logic Programming, and answer set programming. Each
program is composed of a main module—at this time restrictedto be a Prolog or CLP
module and encoded in CIAO Prolog4—and a collection of modules organized accord-
ing to an acyclic graph structure (e.g., see Fig. 2).

Each Prolog module is allowed to import predicates defined inother modules,
through an import declaration, and to export predicates defined within the module (all
solutions to the given predicates are exported). Similarly, each ASP module is allowed
to import and export predicates.

Importing from a Prolog modulem will effectively achieve the effect of enriching
the local module with the least Herbrand model ofm projected over its exported predi-
cates. Importing from an ASP module will allow to either perform skeptical reasoning—
e.g., in

4 http://www.clip.dia.fi.upm.es/Software/Ciao

122 Tran Cao Son and Enrico Pontelli

Main
Prolog Module

Goals Answer
Substitutions

Prolog
Module

CLP
Module

ASP
Module

imported
predicates

constraints solutions

rules/facts

asnwer
sets

Fig. 2. Program Organization inASP− PROLOG

:- import(aspmodule1, ’aspmodule1.lp’).
...
... :- ... aspmodule1:p(5) ...

aspmodule1:p(5)will succeed only ifp(5) holds in each answer set ofaspmodule1—
or to access each individual answer set—e.g., in

:- import(aspmodule1, ’aspmodule1.lp’).
...
... :- ... aspmodule1:model(Q), Q:p(5) ...

the conjunctionaspmodule1:model(Q), Q:p(5) will succeed ifp(5) holds in
at least one answer set ofaspmodule1.

Prolog modules are also allowed to perform meta-operationson other modules—
e.g., they can useclause to read the clauses of a module, and they can useassert
andretract to add or remove rules.

In the context of this project, answer set programming modules are employed to
encode the answer set planners, while the Prolog modules areused to perform analysis
of action theories and to drive the planning process (e.g., implement heuristics). Prolog
is particularly advantageous, thanks to its ability to easily manipulate the syntax of
action theories and its flexible search and backtracking mechanisms.

3 Describing Biochemical Pathway in Answer Set Planning

The problem of finding a biochemical pathway can be represented as a planning prob-
lem. The propertieslevel, simple, andcomplex (representing, correspondingly, the
substrate level of a molecule, a simple molecule, and a complex molecule) can be spec-
ified as domain predicates, and the two rules

molecule(X)← simple(X)
molecule(X)← complex(X)

encode the fact that every molecule is either simple or complex. There are five actions:

Planning for Biochemical Pathway in ASP 123

◦ choose(X,L1, L2)—the action requires thatX is a simple molecule andL1 is a
higher substrate level thanL2; the effects of this action are that the simple molecule
is chosen andL1 indicates the substrate level considered.
◦ initialize(X)—creates the simple moleculeX if it has been chosen;
◦ associate(X1, X2, X3)—this is an action if the association reaction betweenX1,
X2, andX3 exists; the effect of this action is to create the moleculeX3 if the two
moleculesX1 andX2 are available;
◦ associate with catalyze(X1, X2, X3)—creates the moleculeX3 if the two molecules
X1 andX2 are available and a catalyzed association reaction betweenX1,X2, and
X3 exists;
◦ synthesize(X1, X2)—creates the moleculeX2 from the moleculeX1 if it is avail-

able and there is a synthesis reaction betweenX1 andX2.
A planning problem in this domain is characterized by the following parameters:

– The number of simple molecules;
– The number of complex molecules;
– The number of substrate levels;
– The number of association reaction combinations;
– The number of catalyzed association reaction combinations; and
– The number of synthesis reaction combinations.

The number of actions in this domain grows very fast. The nexttable describes some of
the biochemical planning problems, used in the recent planning competition5, in terms
of the parameters listed above. The last two columns indicate the number of potentially
useful actions and the length of a known plan in each problem.

Problem # Simple # Complex# Number# Asso.# Cata.# Syn.# Actions Plan
MoleculesMolecules Subs Combi. Combi.Comb. length

1 16 9 4 7 5 0 75 5
2 12 26 4 14 0 14 75 10
3 19 24 4 21 5 10 111 14
4 22 46 4 33 2 22 145 14
5 22 66 7 53 0 25 254 26
10 39 117 14 99 9 102 795 84
15 45 143 18 120 12 149 1135 ?

Table 1.Biochemical Pathways as Planning — Problem and Parameters

3.1 Using Answer Set Planning: Some Problems

The first problem we have to deal with when using answer set planning to tackle this
planning domain is the size of the ground instances. Besidesthe set of laws describing
the actions’ effects and executability conditions, the setof action generation rules is very
large. The current parserlparse is effective only for problems with short solutions.
This led us to search for ways to reduce the size of the ground instances.

5 Seehttp://zeus.ing.unibs.it/ipc-5/

124 Tran Cao Son and Enrico Pontelli

One of the commonly used techniques in planning is to examinethe planning graph
[4]. Intuitively, a planning graph is a structure consisting of alternative sets of fluents
and actions,F0, A0, . . . , Fn, An,Fi is the set of fluents that can be reached by every
possible action sequences whose length is less than or equalto i, andAi is the set of
possible actions that can be executed afteri actions. The planning graph has been useful
in analyzing planning problems and extracting heuristics [5]. Given a planning problem,
a planning graph can be easily computed in Prolog, using the following rules:6

forward_closure(0, Fluents, Actions) :-
findall(G,(fluent(G), initially(G)), Fluents),
findall(A,(action(A), executable(A,[])), Actions).

forward_closure(Time, Fluents, Actions) :-
Time1 is Time-1,
forward_closure(Time1, PrevFluents, PrevActions),
collect_applicable(PrevFluents,NewActions),
collect_consequence(NewActions,NewFluents),
union(PrevFluents, NewFluents, Fluents),
union(PrevAction,NewActions,Actions).

wherecollect applicable determines the actions whose (positive) executability
conditions are met byPrevFluents, andcollect consequences collects all
the positive consequence of the actions inNewActions. The collection of actions
and consequences can be easily realized using appropriate instances of thefindall
predicate—e.g., for the consequences:

collect_consequences([],[]).
collect_consequences([Action|Rest],Fluents) :-

findall(Res,(causes(Action,Res1,_),
member(Res,Res1),
\+(Res=neg(_)
), List1),

collect_consequences(Rest,List2),
append(List1,List2,Fluents).

A planning graph can provide us with the set of actions that can be possibly executed
given the initial state of the world, and the set of fluents that can be possibly changed
their value fromfalse to true. This information allows us to(1) remove actions that
can never be executed,(2) remove fluents that never change value, and(3) simplify
the remaining actions. The above can be repeated until everyaction can be possibly
executed and every fluent might change its value fromfalse to true. The planning
graph can also be used in a backward fashion, to eliminate actions that are irrelevant to
the goal. This can be done using the following Prolog rules:

back_closure(0,Fluents,Actions) :-
findall(G,goal(G),Fluents), Actions=[].

back_closure(Time, Fluents, Actions) :-

6 Simplified to enhance readability.

Planning for Biochemical Pathway in ASP 125

Time1 is Time-1, back_closure(Time1,RFluents,RActions),
findall(A, (action(A), causes(A,Cons),

intersect(Cons,RFluents)),NewActions),
findall(F1, (member(A,NewActions),

executable(A,Cons), member(F1,Cons),
fluent(F1)), Set1),

findall(F2, (member(A,NewActions), causes(A,Cons),
member(F2,Cons),fluent(F2)), Set2),

union(RActions,NewActions, Actions),
union(RFluents, Set1, Set2, Fluents).

The result of the execution of this module are described in Table 2.
Problem Forward Forward + BackwardPlan Found

Fluents# Actions# Fluents # Actions by smodels

1 61 75 45 37 Yes
2 67 75 55 34 Yes
3 95 111 76 51 Yes
4 115 145 93 63 Yes
5 142 254 120 163 No
10 250 795 211 638 No
15 297 1135 252 953 No

Table 2.Simplifications due to forward and backward planning graph analysis

It should be noted that the application of this method allowsfor a domain represen-
tation which is less susceptible to the specification of actions and fluents. For example,
we examine the PDDL representation of the domain and define theassociate action
by the rule

action(associate(X,Y,Z)):-
molecule(X), molecule(Y), complex(Z),
association_reaction(X,Y,Z). (*)

In doing so,association reaction(X,Y,Z) becomes a static property of the
domain. This is slightly different than the encoding of [12]where the representation

action(associate(X,Y,Z)):-
molecule(X), molecule(Y), complex(Z). (**)

is used. In this caseassociation reaction(X,Y,Z) is viewed as a fluent. The
second representation (**) will be better than the first one (*) if the information on
whether or notassociation reaction(X,Y,Z) holds is not a static relation.
This encoding, will, however, increase the size of the grounded program tremendously
comparing to the first encoding as the number ofassociate(X,Y,Z) actions is
now the product of the square of the number of molecules and the number of com-
plex molecules. As an example, consider the first instance ofthe problem (Table 1). In
this instance, there are 25 molecules, 9 complex molecules,and 7 possible association
reactions among the molecules. Thus, the second encoding will yield 25*25*9=5625
possibleassociate actions while the first encoding records only 7 possible actions.

126 Tran Cao Son and Enrico Pontelli

Planning graph analysis allows us to remove the actions thatmight be defined but
are not possible in the domain. We experimented with both representations and found
that the number of actions that are retained for the plan computation step is the same.
For this reason, there is little change in the number of actions between the two tables if
onlyforward analysis is used as we used the first encoding in our experiment.

3.2 Landmarks Recognition

The size of the ground program does matter in the sense that ifthe grounderlparse
cannot finish its work, our quest of computing a plan using answer set programming
cannot even begin. The second problem that answer set planning needs to face is the
size of the search space. To this end, we investigate anothertechnique, calledordered
landmarks, that has been developed in [14] and is currently implemented in various
planners, such as FF [13]. Let us recall some of the definitions.

Definition 1. Given a planning problemP = 〈D, s0, ∆〉, a fluent literall is called a
landmarkof P iff for every solutionα = [a1; . . . ; ak] of P , there exists an integeri,
1 ≤ i ≤ k, such thatl ∈ Φ(α[i], s0).

Intuitively, a landmarkl represents a “necessary” precondition that needs to be satisfied
before (or at the same time) the goal can be achieved.

Example 1.LetD = {a causesf if h b causesf if h,¬f c causesh} It is easy to
see thath is a landmark of the problem〈D, {¬f,¬h}, {f}〉.

Definition 2. Given a planning problemP = 〈D, s0, ∆〉 and two fluent literalsl and
l′. There is anecessary orderbetweenl and l′, denoted byl →n l′, iff l′ 6∈ s0 and for
every action sequenceα = [a1; . . . ; ak], if l′ ∈ Φ(α, s0) thenl ∈ Φ(α[n− 1], s0).

The ordering betweenl andl′ states thatl is necessary for achievingl′. In Example 1,
there is a necessary order betweenh andf .

Definition 3. LetP = 〈D, s0, ∆〉 be a planning problem andl, l′ two fluent literals.

1. Let S(l,¬l) be the set of statess such that there exists an action sequenceα =
[a1; . . . ; ak], s = Φ(α, s0), l′ ∈ e(ak, s), andl 6∈ Φ(α[i], s0) for 0 ≤ i ≤ k.

2. l′ is in the aftermath of l if, for all statess ∈ S(l,¬l′), and all solutionsα =
[a1; . . . ; ak] of the planning problem〈D, s,∆〉, there are1 ≤ i ≤ j ≤ k such that
l ∈ Φ(α[i], s) andl′ ∈ Φ(α[j], s).

3. There is areasonable orderbetweenl and l′, denoted byl →r l′, if l′ is in the
aftermath ofl and

∀s ∈ S(l,¬l′) : ∀α = [a1, . . . , ak] : l ∈ Φ(α, s)→ ∃i : ai causes¬l′ if ψ ∈ D.

Intuitively, S(l,¬l′) is the set of states in whichl′ is just added to the state andl has not
been achieved yet. The aftermath relation states that for every solution starting from
S(l,¬l′), l′ must be achieved simultaneously withl or at some later point.l →r l

′ states
that for everys ∈ S(l,¬l′), every action sequence achievingl deletesl′ at some point.
This implies that a planner can try to achieve a state¬l′ before try to achieve the goall.

Planning for Biochemical Pathway in ASP 127

The main problem in utilizing this knowledge is that the computation of the af-
termath ordering or reasonable ordering among landmarks isPSPACE-complete. As
such, in systems employing this technique, only an approximation of this ordering is
computed and used in the search process. The key ideas in thistask are:

◦ Compute a graph (calledLGG), consisting of the landmark candidates with an ap-
proximated greedy necessary order between them;
◦ Remove fromLGG the candidates that cannot be proved to be landmarks; and
◦ Use the landmarks as intermediate goals in the search for a solution.

The search starts with the goal as the disjunction of all leafnodes ofLGG. As soon as
one disjunct is satisfied, theLGG is updated, by removing the node corresponding to
the achieved landmark and the links to and from this node. Theset of leaf nodes is then
recomputed (as a disjunction) and set as the new goal. The planner continues until all
landmarks have been achieved.

3.3 Implementation

The Prolog preprocessor described earlier has been extended to support theLGG com-
putation. The graph is described by a list of nodes and a list of edges. The main predicate
for theLGG computation is:

hoffmann(Fluents,Actions, Nodes, Edges) :-
compute_goal_state(Goals,Fluents),
compute_initial_state(Init),
candidate(Goals,[],[],Nodes1,Edges1,Fluents,Actions),
findall([neg(X),X],

(member(neg(X),Nodes1), member(X, Nodes1)), CEdges),
append(CEdges,Edges1,Edges2),
verify_landmarks(Nodes1,Edges2,Fluents,Init,Actions,Goals,

Nodes,Edges).

The core of the computation is performed by the predicatecandidate, which
navigates the dependence graph, composed of executabilityconditions and effects of ac-
tions, to locate elements that represent potential landmarks. Theverify landmarks
procedure is simply used to verify that the elements collected in theLGG graph are in-
deed reachable w.r.t. the given initial state of the action theory.

This recursive predicatecandidate is defined as follows:7

candidate([],N,E,N,E,_,_).
candidate([A|B],N,E,FinalNodes,FinalEdges,Fluents,Actions) :-

level(A,0),!,
candidate(B,N,E,FinalNodes,FinalEdges,Fluents,Actions).

candidate([A|B],N,E,FinalNodes,FinalEdges,Fluents,Actions) :-
level(A,L2),
findall(X,(member(X,Actions),causes(X,List,_),

member(A,List),level(X,L1),L1 =:= L2-1
),Actions),

7 The definition as been simplified for readability.

128 Tran Cao Son and Enrico Pontelli

findall(Y,appears_always(Y,Actions),Cback),
findall(Y1,appears_forward(Y1,Actions),Cforward),
append(Cback,B,B21), append(B21,Cforward,NewB),
findall([Z,A],(member(Z,Cback),level(Z,ZZ),ZZ>0),NewEdges1),
findall([N1,N2],(member(N1,Cback),level(N1,ZZ1), ZZ1>0,

member(N2,Cforward)), NewEdges3),
append(E,NewEdges1,NewEdges2),
append(NewEdges3,NewEdges2, Edges1),
candidate(NewB,[A|N],Edges1,FinalNodes,FinalEdges,Fluents,Actions).

The candidate procedure iterates until the set of items of interest (initialized to the
set of goals) becomes empty. Candidate nodes are added to theset if they have a level
greater than 0 (i.e., they are not part of the initial state) and they either

– appear in the preconditions of all the actions that in one step produce anotherLGG
node (predicateappears always), or

– appear in the consequence of all the actions that in one step produce anotherLGG
node (predicateappears forward).

This is intuitively illustrated in figure 3. The edges are created in the obvious manner to
link fluents connected by the selected actions.

Level iLevel i-1

new
node

new
node

Action

Action

Action

ex
ec
ut
ab
leex

ec
ut
ab
le

executable

causes

causes

causes

older
node

Fig. 3. Intuition behind theLGG construction

4 Experimentation

We implemented the planning graph and theLGG computation in Prolog. The simplified
planning problem is then fed intosmodels. In all, we were able to solve5 problems
from the set of problems given at the planning contest, a results comparable with most of
the planning systems competing in the IPC’2006 (see [12]). The first four instances can
be solved using a single call tosmodels (as shown in Table 2). For the5th instance,

Planning for Biochemical Pathway in ASP 129

we useASP− PROLOG in the following way. We have a Prolog module that performs
the following activities:
◦ It takes(a) an answer set program representing the instance with the parameter
length, and(b) a disjunctive goal consisting of the leaf nodes of the landmark
graph, and callssmodels to find a plan for the disjunctive goal; the value of the
parameterlength is iteratively changed from1 to 2, to 3, etc., until an answer set
is returned (as described in [9].
◦ It analyzes the answer set, creates the new initial state andthe new goal (by remov-

ing achieved goals from the landmark graph), and repeats thefirst step.
We observed that the system does not require backtracking onthe choice of satisfied
landmark. Analyzing the problem and the landmark graph, we found that the landmark
graph does indeed provide an ordering that can be achieved one by one. Whether this is
always the case (even for this domain) is an important question that is currently under
investigation.

5 Conclusions

In this paper, we described our preliminary investigation of how to bring state-of-the-art
techniques developed by the planning community to the realmof answer set planning.
Our preliminary results shows that the adoption of logic programming technologies
does not prevent the use of simplification techniques (such as reachability analysis and
landmarks identification), and these techniques can be introduced in an elegant and
declarative manner. In particular, the use of logic programming (specifically, Prolog)
significantly simplifies the problem of implementing different forms of analysis of the
action theories.

We demonstrated our approach on a challenging planning instance, dealing with a
problem from systems biology and obtained from the most recent International Planning
Competition.

References

1. M. Balduccini and M. Gelfond. Diagnostic Reasoning with A-Prolog. Theory and Practice
of Logic Programming, 3(4,5):425–461, 2003.

2. M. Balduccini, M. Gelfond, and M. Nogueira. Answer Set Based Design of Knowledge
Systems.Annals of Mathematics and Artificial Intelligence, 2006.

3. BIOCHAMP. http://contraintes.inria.fr/BIOCHAM/EXAMPLES/cell
cycle/cell cycle.bc.

4. A. Blum and M. Furst. Fast planning through planning graphanalysis. InProceedings of
the 14th International Joint Conference on Artificial Intelligence, pages 1636–1642. Morgan
Kaufmann Publishers, San Francisco, CA, 95.

5. D. Bryce, S. Kambhampati, and D. Smith. Planning Graph Heuristics for Belief Space
Search.Journal of Artificial Intelligence Research, 26:35–99, 2006.

6. Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in non-monotonic
logic programs. InProceedings of European conference on Planning, pages 169–181, 1997.

7. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. ALogic Programming Approach to
Knowledge State Planning, II: The DLVK System.Artificial Intelligence, 144(1-2):157–211,
2003.

130 Tran Cao Son and Enrico Pontelli

8. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR Systemdlv: Progress
Report, Comparisons, and Benchmarks. InInternational Conference on Principles of Knowl-
edge Representation and Reasoning, pages 406–417, 1998.

9. O. Elkhatib, E. Pontelli, and T. C. Son.ASP− PROLOG : A System for Reasoning about
Answer Set Programs in Prolog. PADL-04, 148-162, 2004.

10. O. Elkhatib, E. Pontelli, T.C. Son. A Tool for Knowledge Base Integration and Querying.
AAAI Spring Symposium, AAAI/MIT Press, 2006.

11. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.Journal
of Logic Programming, 17(2,3,4):301–323, 1993.

12. A. Gerevini, Y. Dimopoulos, P. Haslum, and A. Saetti. 5thinternational planning competition
— deterministic part.http://zeus.ing.unibs.it/ipc-5/.

13. J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through Heuristic
Search.Journal of Artificial Intelligence Research, 14:253–302, 2001.

14. J. Hoffmann, J. Porteous, and L. Sebastia. Ordered landmarks in planning.J. Artif. Intell.
Res. (JAIR), 22:215–278, 2004.

15. K. Kohn. Molecular interaction map of the mammalian cellcycle control and dna repair
systems.Mol Biol Cell, 10(8), 1999.

16. Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-
tight Programs. In Vladimir Lifschitz and Ilkka Niemelä, editors, Proceedings of the 7th
International Conference on Logic Programming and NonMonotonic Reasoning Conference
(LPNMR’04), volume 2923, pages 346–350. Springer Verlag, LNCS 2923, 2004.

17. V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1–
2):39–54, 2002.

18. F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of A LogicProgram By SAT Solvers.
In AAAI, pages 112–117, 2002.

19. V.W. Marek and M. Truszczyński. Stable Models as an Alternative Logic Programming
Paradigm.The Logic Programming Paradigm, Springer Verlag, 1999.

20. I. Niemelä. Logic Programming with Stable Model Semantics as a Constraint Programming
Paradigm.AMAI, 25(3–4):241–273, 1999.

21. P. Simons, N. Niemelä, and T. Soininen. Extending and Implementing the Stable Model
Semantics.Artificial Intelligence, 138(1–2):181–234, 2002.

22. T.C. Son, C. Baral, N. Tran, and S. McIlraith. Domain-dependent knowledge in answer set
planning.ACM Trans. Comput. Logic, 7(4):613–657, 2006.

23. T.C. Son and E. Pontelli. Planning with Preferences using Logic Programming.Theory and
Practice of Logic Programming, 6:559–607, 2006.

24. T.C. Son and E. Pontelli. Planning for Biochemical Pathways: A Case Study of Answer
Set Planning in Large Planning Problem Instances. Technical Report. NMSU-CS-2007-004.
2007.

25. T.C. Son, P.H. Tu, M. Gelfond, and R. Morales. An Approximation of Action Theories of
AL and its Application to Conformant Planning. InProceedings of the the 7th International
Conference on Logic Programming and NonMonotonic Reasoning, pages 172–184, 2005.

26. V.S. Subrahmanian and C. Zaniolo. Relating stable models and AI planning domains. In
Proceedings of the International Conference on Logic Programming, pages 233–247, 1995.

27. P. Thagard. Pathways to biomedical discovery.Philosophy of Science, 70, 2003.
28. P. H. Tu, T. C. Son, and C. Baral. Reasoning and Planning with Sensing Actions, Incomplete

Information, and Static Causal Laws using Logic Programming. Theory and Practice of
Logic Programming, 7:1–74, 2006.

29. H. Turner. Representing actions in logic programs and default theories. Journal of Logic
Programming, 31(1-3):245–298, May 1997.

Author Index

Balduccini, Marcello, 41
Brain, Martin, 26, 71, 101

Cianni, D., 86

De Vos, Marina, 101

Faber, Wolfgang, 26
Fitch, John, 101

Gallucci Lorenzo, 56
Gebser, Martin, 71

Janhunen, Tomi, 12

Maratea, Marco, 26

Pührer, Jörg, 71
Perri, S., 86

Polleres, Axel, 26
Pontelli, Enrico, 116

Ricca, F., 86
Ricca, Francesco, 56

Schaub, Torsten, 26, 71
Schindlauer, Roman, 26
Sureshkumar, Adrian, 101

Terracina, G., 86
Tompits, Hans, 71
Tran Cao, Son, 116
Truszczyński, Mirosław, 3

Veltri, P., 86

Woltran, Stefan, 71

