
cb

S. Götz, L. Linsbauer, I. Schaefer, A. Wortmann (Hrsg.): Software Engineering 2021 Satellite Events,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

A Requirements Management Template in Polarion for
Model-Based Development of Airborne Systems

Kevin Schmiechen1, Shanza Ali Zafar2, Konstantin Dmitriev3, Christoph Krammer4,
Markus Maly5, Florian Holzapfel6

Abstract: With numerous startups and small companies entering the market of air mobility, safety-
critical system development has become relevant for an increasing number of project teams with little
or no experience in that field. In a previous publication, we presented a custom software development
workflow for research and prototype development based on objectives from industry standards
DO-178C and DO-331. An important part of this custom workflow is requirements management since
poor requirements and a lack of proper traceability has been attributed as a major source of project
delays and increased costs. This paper presents the setup of an extended data model in the application
lifecycle management platform Polarion including the artifact types and their attributes. Exemplary
key workflows are demonstrated. It also provides more details regarding the linking strategy between
the textual requirements and model artifacts in theMathWorks toolchain, as well as the trace report
for the requirements including links to model artifacts and source code. The setup has proven its
functionality in multiple projects at our institute without significant rework.

Keywords: lean software development, safety-critical systems, model-based development, require-
ments management, requirements engineering, data model, traceability

1 Introduction

Requirements engineering is undoubtedly an important part for the successful development
of safety-critical systems and software. Many projects cite poorly defined requirements as
the source of project delays and increased costs [FM15; LH16; Ri17]. As the complexity
and criticality of the systems increase, it is extremely difficult to fulfill the goals of the
development project without properly defined and managed requirements along with a
1 Technical University of Munich, Institute of Flight System Dynamics,
Boltzmannstr. 15, 85748 Garching, Germany, kevin.schmiechen@tum.de
2 Technical University of Munich, Institute of Flight System Dynamics,
Boltzmannstr. 15, 85748 Garching, Germany, shanza.zafar@tum.de
3 Technical University of Munich, Institute of Flight System Dynamics,
Boltzmannstr. 15, 85748 Garching, Germany, konstantin.dmitriev@tum.de
4 Technical University of Munich, Institute of Flight System Dynamics,
Boltzmannstr. 15, 85748 Garching, Germany, christoph.krammer@tum.de
5 Technical University of Munich, Institute of Flight System Dynamics,
Boltzmannstr. 15, 85748 Garching, Germany, markus.maly@tum.de
6 Technical University of Munich, Institute of Flight System Dynamics,
Boltzmannstr. 15, 85748 Garching, Germany, florian.holzapfel@tum.de

Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/
mailto:kevin.schmiechen@tum.de
mailto:shanza.zafar@tum.de
mailto:konstantin.dmitriev@tum.de
mailto:christoph.krammer@tum.de
mailto:markus.maly@tum.de
mailto:florian.holzapfel@tum.de


2 K. Schmiechen, S.A. Zafar, K. Dmitriev, C. Krammer, M. Maly, F. Holzapfel

user-friendly platform to work with the artifacts. For the aircraft development process,
there are multiple standards about system and software requirements engineering and how
to implement them in the overall process (e.g., IEEE 29148:2018 [In18a], ARP-4754A
[So10], DO-178C [Ra11a]). However, full compliance with those standards is expensive and
complex; not only for the setup but also during the development process itself. Our institute,
the Institute of Flight System Dynamics at the Technical University of Munich, developed
“A Lean and Highly-Automated Model-Based Software Development Process Based on
DO-178C/DO-331” [Dm20] to simplify the airborne software development process for
research and prototype aircraft, where full compliance is not necessary, but a certain quality
of software and basis for future certification may be needed. This process also includes
requirements management due to the importance of requirement related objectives. The
current paper provides a more detailed and extended view on the setup of the requirements
management, the artifact types, their attributes and workflows in the context of the process
in [Dm20]. It also further explains the linking strategy between requirements and model
elements as well as automatic trace reports. However, this paper does not describe the
process of requirement elicitation, meaning how to identify necessary requirements and
how to write them. There are already numerous sources (e.g., [FM15; LM09; LT08; Po10])
available that cover this topic.

Unlike [KK19], we decided not to develop our own requirements management tool but to
use the commercial and widely adopted application lifecycle management tool Polarion7 by
Siemens Digital Industry Software. It is a web-based platform that runs on a server, thus
only needs to be setup once for a company and can be used by all developers simply from
their web browser. There is also a tool qualification kit for ISO-26262-8 [In18b] which can
be modified for DO-178C and applied to qualify the use of Polarion in one’s toolchain.8
This is only one benefit over a self-developed management tool. Polarion also fulfills all
high priority requirements for requirements management tools from [Ho04] except for data
encryption on the server, the ability to check-out artifacts for offline editing and automatic
content updates in the user interface when multiple users are simultaneously working on
the same object. Polarion has been previously used by our institute [MSH19; Sc19]. The
tool is shipped with several template and demo projects (e.g., V-model, CMMI, agile)
and further templates are available from the extensions portal9. However, in order to use
the project templates for our purposes, we modified them heavily. These adaptations are
described in this paper, thereby distinguishing it from a straightforward tool application
report. This includes modification of the data model (e.g., requirement types, attributes and
workflows; link roles; document types) as well as automatic processing of the contained
information. At the same time, we see the possibility of modifying the project templates as
a major advantage of this tool. Polarion allows the developers to set up the implementation
according to their needs. A data model tailored to Polarion for conformity assessment in
the context of nuclear power plants has been presented in [LA19].

7 https://polarion.plm.automation.siemens.com/
8 https://extensions.polarion.com/extensions/315-tool-qualification-kit
9 https://extensions.polarion.com/



A Requirements Management Template in Polarion for MBD of Airborne Systems 3

The other tools we used in conjunction with the requirements management process areMAT-
LAB10/Simulink11 by The MathWorks for model-based development, and SimPol12, which
was developed at our institute and offers bidirectional traceability between requirements
in Polarion and models and test cases in MATLAB/Simulink [HMH18; MSH19; Sc19].
We also wrote a user guide that provides step-by-step instructions for our requirements
management workflows. However, the user guide will not be described in this paper.

The remaining sections of the paper are structured as follows. In section 2, the artifact data
model consisting of the artifact types, the corresponding attributes and the linking between
the different artifact types is described. Based on that, key workflows of the requirements
themselves, certification references and question lists for the customer or project partner are
shown in section 3. Section 4 gives a detailed description of the linking strategy between
the requirements in Polarion and the different types of models inMATLAB/Simulink. The
features of the automatic trace reports are presented in section 5. Finally, section 6 concludes
the presented setup and section 7 gives an outlook of future work.

2 Data Model

Artifacts in Polarion are called work items. By specifying the name of a work item type,
its attributes and workflow, work items can be configured to represent almost anything in
the development process. This includes requirement types on different levels, configuration
indexes, tasks, test cases, issues etc. The custom link roles define the relationship between
different work item types and are used for traceability. The work items can be edited
individually or as part of a document in Polarion that contains multiple work items. This
allows users to create, e.g., a requirement specification document that is considered as one
unit and can easily be shared for collaboration or exported as a PDF file. Documents have
workflows and attributes as well.

2.1 Work Item Types and Link Roles

Fig. 1 shows the setup of the work item types and their link roles. The bold framed boxes
indicate work item types that were already presented in [Dm20]. The thin framed boxes
indicate work item types of an extended setup that may be optional depending on the project.
Dotted boxes are used to cluster work item types and thus reduce the number of links in Fig. 1.
We followed the classical V-model approach, structuring high-level customer requirements by
breaking them down into aircraft, system, component and software requirements where each
level refines the previous level (indicated by blue arrows). Independent of the development
project scope, one requirement type always addresses only one level. Aircraft requirements

10 https://www.mathworks.com/products/matlab.html
11 https://www.mathworks.com/products/simulink.html
12 https://www.fsd.lrg.tum.de/software/simpol/



4 K. Schmiechen, S.A. Zafar, K. Dmitriev, C. Krammer, M. Maly, F. Holzapfel

Fig. 1: Work Item Types and Link Roles

address the aircraft as a whole. System requirements relate to specific systems of the aircraft
(e.g., flight control system, propulsion system, high-lift system). Component requirements
consider subsystems (e.g., flight control computer of flight control system, fan of propulsion
system, flap of high-lift system).

A different approach was realized in the System of Systems13 project template for Polarion,
where everything is considered a system. To identify the layout of the different systems,
they are linked in a tree structure. This approach requires less work item types and thus
results in a lean Polarion project setup, with the disadvantage that it may be more difficult
to identify the requirement level one is currently working on.

As a simplification in our setup, the aircraft and component requirements can be skipped in
the traceability chain. This is the case when system requirements directly refine customer
requirements or software requirements refine system requirements. Furthermore, require-
ments up until system level can refine other requirements from the same level to provide
more detail. Software requirements can also directly implement system requirements.

The direction of the arrows indicates with which work item the link information is stored
and to which other requirement the link is pointing to. Nevertheless, in the user interface and
when accessed via the application programming interface (API), the link is still bidirectional
(e.g., forward trace: refines / backward trace: is refined by). The links represent the trace data
as required in paragraphs a. to d. in section MB.11.21 of DO-331 [Ra11b]. Paragraph e.,
linking between test cases and test procedures, is not included, since we do not distinguish

13 https://extensions.polarion.com/extensions/364-system-of-systems-template



A Requirements Management Template in Polarion for MBD of Airborne Systems 5

between test cases and test procedures. Linking of test cases and test results in paragraph f.
is established when uploading the test results as described in section 4.

In addition to the published workflow [Dm20] for software development, the extended setup
includes hardware requirements. We also introduced the new work item type Certification
Regulation, which is used to track requirements from certification authorities like CS-23
[Eu20] from the European Union Aviation Safety Agency (EASA) or development standards
like SAE AS94900A [So18] in Polarion. A similar approach has been published [WZ20],
however, our workflow presented in section 3.1 provides more implementation details.

The four surrogate work item types in Fig. 1 (i.e., specification, assessment and design
model, as well as test case) are Polarion representations of corresponding elements in the
MathWorks toolchain. The complete context of the surrogate work items will be described
in section 4. In addition to the surrogate test cases, the setup now also includes test
cases for functional tests which are not model-based and verification items which contain
the description of non-functional tests. Both the surrogate and functional test cases are
used for validation of the requirements and verification of the implementation against the
requirements, while verification items are, as the name implies, only used for verification.

With reference document work items, reference management is setup in Polarion. They
can represent any type of document (e.g., aircraft manuals, data sheets, emails, meeting
minutes, scientific papers, reports, etc.) and be linked with the requirements. That way, it
can be traced where a specific requirement or an aspect of it originates from. For lower
level requirements, reference documents can also serve as implementation trace. A common
example for this are data sheets of commercial off-the-shelf (COTS) products.

We also implemented questions as work item type since we found it useful to be able to trace
statements from the customer or project partners to requirements within the same platform.
More details about this can be found in section 3.3. A central list of flight conditions (e.g.,
altitude, speed) and aircraft configurations (e.g., flap and gear setting) makes it consistent
and easier for the user to specify which requirements apply to which of these conditions or
configurations.

Change request work items are used to reopen already accepted work items for modification.
Only after the change request has been accepted, the e.g., requirement can be reopened to
the status Draft and modified again. This prevents quick fixes by users without considering
extensive impact on other work items. The change request will also appear in the link list of
the modified work item which makes it easier to track changes afterwards.

As a modification to the published review checklists [Dm20], we now use the more general
task work items. In the case of requirement specification documents, a review section is
appended to the document template containing multiple task work items, one for each task
of the requirement review. This way, the relevant information is directly stored with the
document and the content of the review does not have to be implemented as one work item
type but can be assembled by multiple task work items. This provides more flexibility for



6 K. Schmiechen, S.A. Zafar, K. Dmitriev, C. Krammer, M. Maly, F. Holzapfel

the setup of the requirement review and the status of the review tasks can be easily tracked
individually.

2.2 Work Item Attributes

Besides the work item types and the linking between them, the second important part of
the data model are the attributes of each work item type. By default, every work item on
Polarion already has a set of fields. This includes the unique work item ID, a title, the status
(e.g. draft, in review, accepted, rejected), an assignee field, the name of the original author,
a description field (e.g., the requirement text), a severity field (i.e., must, shall or should), a
comment section, hyperlinks, work item links and many more. However, we only use the
explicitly named fields above (severity only for requirement work items) and additional
custom fields that will be described later in this subsection.

The status field shows the current status within the workflow of the work item, and via a
drop-down menu, the user can choose from the permissible transitions to other statuses.
The workflow can be freely modified for every work item type in the administration panel.
However, from our experience, it is advisable to reduce the complexity and strictness of
the workflow to a minimum. Otherwise, especially users new to requirements management
processes may get confused and not use the workflow at all. To encourage users to use
the status field, we have implemented very basic work item workflows. Fig. 2 shows an
exemplary requirement work item workflow. It is limited to the very basic states Draft,
In Review, Accepted and Rejected. However, the workflow can be extended according to
the needs of the project, even for an ongoing project. Instead of introducing a new status
for requirements that are released to the implementation engineers or external parties, we
recommend to use the baseline feature of Polarion. It enables the user to highlight specific
versions of the document and provide links to these. We also discourage using the status field
to track the validation and verification status of requirements. Otherwise, the requirement
revision would change every time the verification status changes. Rather, automatic report
pages should be used that determine the validation and verification status based on the
linked requirements, test cases and the latest test results.

The built-in description field is a rich text field with basic HTML formatting where the user
can also add equations, tables and figures. For the requirement description, we recommend
to use formal templates like FRET [Gi20] or basic wording templates [ERZ14, Ch. 3].

Furthermore, from the list of built-in fields, we also use linked work items and hyperlinks.
The first one is used to link Polarion-internal items according to the schema in Fig. 1. The
second one is used to store links to external elements such as online sources for reference
document work items.

In addition to the aforementioned fields, the administrator of the Polarion project is able
to create custom fields with different data types like string, rich text HTML formatting,



A Requirements Management Template in Polarion for MBD of Airborne Systems 7

Fig. 2: Requirement Work Item Workflow with Optional Extension

Boolean, enumeration, integer, date and time. For the scope of this paper, we present the
implemented custom fields only of some of the work items in the following.

For requirement work items, we added an enumeration for the type and sub-type of
requirements. The enumerations and their mapping are based on ARP-4754A [So10]. A
Boolean field Derived indicates whether the requirement is derived, meaning it is an
“additional requirement[] resulting from design or implementation decisions during the
development process which [...] [is] not directly traceable to higher-level requirements”
[So10, p. 11]. Another Boolean field is used to identify requirements where no downstream
trace (i.e., to a lower level requirement or model) is necessary. Refer to section 5 for
details. A text field is used to log the justification why no downstream trace is necessary. A
rationale field holds additional information about the requirement, e.g., a justification. An
enumeration consisting of the means of compliance (MoC) codes from [Eu12] indicates
the verification strategy for the requirements. More MoC details are provided in a rich text
description field.

Besides the basic set of fields, certification regulation work items also have the already
mentioned fields MoC code and description. Additionally, they have an enumeration called
applicability with the values yes, no or discussion. A field for a translation of the description
is provided in case the original text is not available in English, which is the working
language at our institute. The output of the internal review regarding the applicability of the
certification requirement or standard is logged in another text field.

The different types of surrogate work items only have the basic set of fields. SimPol stores
a screenshot of the linked model in the description field if specified by the user. The tool
also adds a hyperlink to the linked element in theMathWorks toolchain. More details are
provided in section 4.

The description field of the question work items contains the question or proposal to the
customer or project partner. Furthermore, a field for the rationale is used to provide reasoning
for the question or potential implications. In case of a yes/no question or a proposal, an



8 K. Schmiechen, S.A. Zafar, K. Dmitriev, C. Krammer, M. Maly, F. Holzapfel

enumeration field tracks the confirmation or rejection by the customer or project partner. A
detailed answer can be provided in a separate rich text field.

In our implementation, documents only have the status field. The version of the document is
identified via the Polarion repository revision number which is maintained automatically.

3 Work Item and Document Workflows

Since describing all workflows would be beyond the scope of this paper, only the following
key workflows are presented. They are a combination of work item and document workflows
and illustrate the steps the users have to perform.

3.1 Certification Regulation

The results of a development project not only need to fulfill customer requirements but also
regulatory requirements and comply with applicable standards. Examples like EASA CS-23
[Eu20] or SAE AS94900A [So18] have already been named in section 2.1. To ensure that
all relevant requirements of these standards are addressed, we implemented the following
workflow.

In a first step, the original document is parsed into a spreadsheet where each row represents
either a headline or a paragraph of the document. This sheet can be imported as a Polarion
document. During the import, the headline rows will be converted to document headlines
and the paragraph rows will be converted to certification regulation work items.

The resulting document is then used in a succeeding review process to evaluate the
applicability of each paragraph. In case multiple systems or functions are to be developed, it
is advisable to add an enumeration to the work item configuration with the different systems
or functions. Once the paragraph is applicable, requirement engineers can also log to which
part of the project it is applicable. As stated in section 2.2, further details about the review
can be stored in a specific text field of each work item.

Once the document has been completely processed by the users, it can easily be identified
which parts of the certification document or standard are relevant for the project. The created
requirements based on these paragraphs are then linked to enable thorough traceability and
automatic coverage reports.

3.2 Requirements

Instead of creating new requirement documents, e.g., a system requirement specification
from blank, we specified document templates for each document type which are then used in



A Requirements Management Template in Polarion for MBD of Airborne Systems 9

the projects. The templates are already preconfigured to only hold the appropriate work item
types and the visibility settings of the work item fields for both the document itself and the
editing sidebar. Work item fields visible in the document will also be included in a PDF or
Word export. Fields only visible in the sidebar are only available in Polarion. Examples for
fields which are important for requirements engineering and system development but we do
not necessarily consider relevant for the exported version of the document to the customer
or project partner are the requirement type, rationale and information regarding individual
traces. Having this information in the document would make the specification harder to read
and may distract the reader from the more important information. The document templates
are already filled with a table of contents and numerous headings providing guidance for
which aspects requirements have to be created. The last section in the requirement document
includes the review tasks as explained in section 2.1.

Once the document is created, the users will simultaneously work on the document and add
the requirements. The comments functionality of the document or the work items themselves
can be used for internal discussions. This approach has the benefit that information does not
get lost in endless email conversations or various messenger apps. The basic workflow of
Fig. 2 also applies to the documents, except that the document itself and the task work items
can still be edited when the document has the status In Review. However, the requirement
work items will inherit the document status and can thus not be edited. If the review process
determines that requirements need to be modified, they need to transition back to the
status Draft in order to be editable again. This process is iterated until the requirement
specification document is accepted. During the review, the review tasks from the end of the
document need to be performed. For the custom workflow of [Dm20], the tasks only consist
of checking the trace reports, which are described in section 5. Bidirectional traceability
is required by ARP-4754A (section 5.4.6 a.) and DO-178C/DO-331 (objectives 1, 4, 6 of
table MB.A-2) and creating these traces in later stages of development can result in higher
cost of the project. We found that requiring all requirements having proper upstream and
downstream traces aids in achieving a better quality of requirements, since it necessitates
a thorough analysis and consideration of the requirements. In a subsequent step, once the
test cases for the requirements are created, the verification coverage review is necessary to
ensure that all requirements are associated with at least one test case.

Once the requirements have the status Accepted, they are considered final and ready to
serve as a basis for further refinement or ultimately for implementation. To prevent both
intentional and unintentional changes that remain undetected for other project members,
already accepted requirements cannot be directly reopened to implement changes. First,
a work item of the type Change Request has to be created and linked to the requirement
providing reasoning and a proposal for the necessary change. It can be specified that only
a certain user type can accept change requests, e.g., project responsibles. Only after this
change request has been accepted, the requirement can be reopened into the drafting stage.
Once the updated requirement was reviewed and accepted, the linked change request is
closed automatically.



10 K. Schmiechen, S.A. Zafar, K. Dmitriev, C. Krammer, M. Maly, F. Holzapfel

Following the specified workflow, objectives 1, 3, 4 of table MB.A-2 of DO-331 [Ra11b] are
completely fulfilled. Objectives 2 and 5 are only partially fulfilled, since a safety assessment
process is not part of the workflow. As we only included a review of the traces to reduce
manual effort in our workflow, only objective 6 of tables MB.A-3 and MB.A-4 of DO-331
[Ra11b] is fulfilled. However, to improve the compliance with tables MB.A-3 and MB.A-4,
further review tasks can be included in the review section of the requirement document at
any time (see section 2.1). The other tables are not relevant for requirements management
and are thus out of the scope of this paper. In addition, our project template also supports
requirements capture and validation as described in section 5.3 and 5.4 of ARP-4754 [So10].

For more complex projects, Polarion also supports branching of documents. However, since
we did not have a use-case for branching, we did not consider using this function. The more
powerful feature of variant management was also not considered since it requires a separate
commercial license.

3.3 Questions

Top-level project requirements are defined in collaboration with the customer or partner and
collected in a customer requirements document, which ensures a common understanding
among all parties. For example, customer requirements may define use-cases or mission
requirements, desired operational features of the aircraft, or serve as a basis for the derivation
of applicable standards and certification requirements [Na20]. Customer requirements
provide the basis for the further development of the system and therefore are crucial for
staying within the project scope, schedule and budget plan [Ri17]. From our experience,
customer requirements are often ambiguous and thereby may cause additional iterations in
the development process, which increases development time and costs.

Therefore, in order to obtain unambiguous customer requirements, we implemented the
aforementioned question work items, which can serve as the basis for the communication
with the customer and for iterating the customer requirements. For example, if a requirement
seems ambiguous to us or contradicts other requirements, we create new question work items
and reference them to the requirements to serve as rationale. Optionally, we describe the
implications of the answer in the rationale field of the question. In general, the question work
items are collected within a question list and reviewed internally before they are exported
from Polarion (e.g., as Word Round-trip file) and sent to the customer or project partner.
Using the Word Round-trip feature of Polarion, external parties can only modify specified
fields of the work items (i.e., the ones to provide the answer), and the modified question
work items can be directly imported back to Polarion. This can be iterated until all parties
have come to an agreement. Referencing the question work items allows tracing the answer
to the affected requirements and tracking of agreements directly within the requirements
management platform. Because of theWord Round-trip feature, it is not necessary to provide
the external party access to the own requirements management platform. Although the focus



A Requirements Management Template in Polarion for MBD of Airborne Systems 11

is on improving customer requirements, question work items can be linked to all types of
requirements and may also be utilized for internal questions or discussions.

4 Requirements to Model and Test Case Linking

Combining requirements management in Polarion with Simulink models and test cases
in the Simulink Test Manager has already been introduced in the context of model-based
requirement validation [MSH19]. Early steps in requirement and model linking habe been
presented in [Sc19]. In addition to that, linking between requirements, design models and
model test cases was already shown as part of our custom workflow [Dm20]. In the current
paper, we present the combined and refined approach to link textual requirements in Polarion
and modeling artifacts in MATLAB/Simulink.

The overview of the linking workflow is shown in Fig. 3. The left hand-side represents
the Polarion domain while the right hand-side represents theMATLAB/Simulink domain.
As stated in DO-331 [Ra11b], the specification models provide an abstract unambiguous
representation of the textual requirement to support the understanding of the functionality.
We used them for all higher-level requirements up until customer level. The output of this
model is the desired behavior or response according to the requirement. In contrast to the
specification models, the assessment models check whether the output of a specification or
design model satisfies the requirements. In model-based design, design models represent the
low-level requirement from which source code can be directly generated. The combination
of specification and assessment models will result in validation test cases. After the
implementation, the same assessment models can be combined with the design models for
the verification test cases.

When the user links the model artifact (right side of Fig. 3) and the textual requirement
(left side of Fig. 3) via the SimPol user interface, SimPol creates the model and test case
surrogate work items (center of Fig. 3) in Polarion, which have been introduced in Fig. 1.
The different types of models and test case surrogates, differentiated through link roles,
represent the models and test cases from MATLAB/Simulink. This intermediate item is
necessary to make sure that the revision of the Polarion requirement work item is not
updated when creating or updating the link. With the auto-suspect mode active, SimPol
can suspect and thus highlight links between requirements and models after changes have
been made on the requirement side. This allows the user to identify the impact of envisaged
changes to other work items, and it enables an impact analysis after changes have been
made. Suspecting those links between requirements and models directly on Polarion is only
possible with the surrogate work item setup. Another option would be to have SimPol create
direct links between requirements and the models. However, in that case, SimPol would
have to determine outdated links based on the revisions of the work items and models.

The Design Models have the link role implements to software requirements and to those
component and system requirements that are allocated to software. Specification and



12 K. Schmiechen, S.A. Zafar, K. Dmitriev, C. Krammer, M. Maly, F. Holzapfel

Fig. 3: Linking of Requirements, Models and Test Cases

assessment models use the link roles specifies and assesses, respectively. The model links
are established in the first step of the process shown in Fig. 3. In the second step, the
model-based validation and verification test cases, which are linked to the different model
types along with the rest of the testing framework in the Simulink Test Manager, are linked
to requirements in Polarion with the roles validates or verifies.

The third step is to run the tests and upload the records to Polarion. Therefore, a custom
routine processes the records from the test run of the Simulink Test Manager containing a
single or multiple test cases and saves them into an XML file in the xUnit format. A custom
extension on the Polarion server processes this XML file, creates the test run records and
links them to the test case surrogates. The last step is not mandatory, because the verification
results are already available in MATLAB/Simulink, but we found it useful to also have a
complete overview of the test results in Polarion. The process is already proven functional,
however, obtaining the XML file currently requires manual effort. Full automation of this
process is under development. The overview on Polarion is useful because test results will
not only be generated in theMathWorks toolchain but also from the Polarion test case and
verification item work items. Furthermore, the overall validation and verification status of
the requirements can only be displayed on Polarion.



A Requirements Management Template in Polarion for MBD of Airborne Systems 13

5 Requirement Traceability Report

As mentioned in section 3.2, we identified traceability between artifacts to be a key factor to
be considered from early development. To provide an overview of the trace status and to
identify traceability gaps, a so-called LiveReport page was created in Polarion. Based on
the widgets of the page that contain the reporting code, these LiveReport pages retrieve data
from the projects and display them in a formatted way. Since the already available widgets
for traceability reports did not provide the capability and flexibility we needed, we created a
custom widget. This custom widget is loosely based on the general traceability table widget
and the test case coverage traceability table widget available in Polarion. The first widget
supports checking traces in both directions (e.g., from higher to lower levels and vice versa),
but since there are no colored icons indicating the trace status, it is hard to identify trace
gaps. The test case coverage traceability table widget has this kind of icons included but
is not capable of showing upstream traces. Both widgets also do not account for derived
requirements, which per definition do not have an upstream trace and should thus not be
flagged as not having a trace in the report. After almost completely rewriting the Velocity14
code of the two aforementioned examples, the custom widget can be configured for trace
reports between the following exemplary artifact types:

• All requirement types

• Requirements and specification / assessment / design surrogate models

• Requirements to source code

• Requirements and test cases

For traces to models and source code, the tool can only provide a complete report from
the requirements to the models and source code. The report can show the trace status for
all surrogate models but not for those model elements where no surrogate work item has
been created in Polarion. However, this is covered by a Simulink Model Advisor check15 in
our custom software development process. The trace report from the source code to the
requirements is not possible because an automatic analysis of the source code regarding
which lines need to be linked would be required. However, this can of course be implemented
as an extension in the future.

Tab. 1 shows the different types of statuses our custom widget can distinguish. A software
requirement regarding the maximum allowable size of the compiled code is one example
where it is justified not to have a trace to a lower level requirement or code. The trace report
creates a pie chart, as shown in Fig. 4, with the distribution of the trace status types listed in
Tab. 1. This serves as an overview to quickly perceive the traceability status. The detailed
trace information is provided in multiple tables. Since we follow the document-centric

14 https://velocity.apache.org/
15 https://www.mathworks.com/help/slcheck/ref/hism-checks_hism_checks.html#hisl_0070



14 K. Schmiechen, S.A. Zafar, K. Dmitriev, C. Krammer, M. Maly, F. Holzapfel

Tab. 1: Requirement Trace Status Types

The work item has a trace of the specified link role.
The work item has a trace, but the link is suspected.
A justification is provided why the work item does not have a trace.
The work item is marked as derived and thus does not require an upstream trace.
The work item does not have a trace matching the report configuration.
The work has a trace and concurrently is marked as derived or justified as not having a trace.
The work item has a link to another work item which cannot be resolved (i.e., was deleted).

Fig. 4: Example of Pie-Chart Overview (With Enlarged Trace Labels) and Trace Report Table

approach for requirements management, we also decided to structure the report tables by
documents instead of one large table. This makes it easier to understand the trace status per
document and thus per aspect of the project.

A filter and customization panel allows even further report modifications from the front-end.
First of all, the trace direction can be specified, meaning either from higher to lower level
(downstream) or from lower to higher level (upstream). Consequently, it is not only possible
to identify requirements with missing child elements but also requirements with missing
parent elements. In that context, test cases and surrogate models are considered to be on a
lower level than requirements. Furthermore, the report and thus the pie chart can be filtered
to only show specific documents. Similarly, the report can be filtered by specific work item
types (e.g., system requirements). It is also possible to modify the report to only show work
items with a specific trace status, for example, create a list of all work items still missing
traces. Lastly, if the aforementioned options are not sufficient, a Lucene16 query can be
provided for further filtering. This is the same query language that is also used for the work
item tracker of Polarion.

An example of a pie-chart serving as an overview and a trace table is shown in Fig. 4. Each
line of the trace report consists of a work item identified by ID and title, the corresponding
trace icon from Tab. 1, and either the ID and title of the linked work item (i.e., the trace) or
a description which of the other trace statuses is true.

16 https://lucene.apache.org/core/



A Requirements Management Template in Polarion for MBD of Airborne Systems 15

6 Conclusion

In this paper, we presented a requirements management template in Polarion and the linking
strategy to model artifacts for airborne systems in the context of industry standards. The data
model of the template not only consists of different types of requirements, but also contains
associated artifacts that enable the developer to trace the requirements to certification
references, customer or project partner decisions, flight condition and aircraft configuration
indexes, test cases, and (review) tasks. We described the fields of the work item types
and their purpose. Exemplarily, we also presented the workflows to manage certification
references, requirements and questions. The different model types and the linking strategy
to bridge the gap between the two platforms, i.e. Polarion and MathWorks, were explained.
Lastly, we presented the trace report between the different requirement types, the design
models and the source code. This report helps to automate the review process.

The presented setup has already proven its applicability and benefits in multiple research
projects at our institute. The template provides the aforementioned features to the project
without requiring project-specific modifications. Furthermore, a user guide was written to
provide the users with step-by-step instructions.

7 Future Work

As already mentioned in [Dm20], we are planning to integrate FRET [Gi20] into Polarion
as an extension, either directly as a frame in the user interface or as a pop-up window where
the user can construct the requirement text. This text is then stored in the description field of
the Polarion work item. This approach would guarantee that the requirement text is strictly
following the wording template.

We are also planning to automate the upload of test results from the model domain to
Polarion. Besides verification coverage reports (i.e., is there at least one test case per
requirement) we will then also be able to provide validation and verification status reports
from these test results (i.e., can a requirement be considered validated or the implementation
verified because the associated validation or verification test passed). Ultimately, this
automatic test result upload shall be integrated in a continuous integration (CI) process.

The aim of a current student thesis is to develop a connector to GitLab (instead of cloning
the git repository on the Polarion server) for source code traceability, and an Eclipse user
interface to manage the links from the source code to the Polarion work items similar to
SimPol.

Since we are planning to extend our custom development workflow to full DO-178C
development assurance level (DAL) A compliance [Dm20], this template will likewise be
extended for full support. One task of this effort will be to apply the tool qualification kit to
the trace reports.



16 K. Schmiechen, S.A. Zafar, K. Dmitriev, C. Krammer, M. Maly, F. Holzapfel

References

[Dm20] Dmitriev, K.; Zafar, S. A.; Schmiechen, K.; Lai, Y.; Saleab, M.; Nagarajan, P.;
Dollinger, D.; Hochstrasser, M.; Holzapfel, F.; Myschik, S.: A Lean and
Highly-automated Model-Based Software Development Process Based on
DO-178C/DO-331. In: 39th Digital Avionics System Conference. San Antonio,
TX, USA, 2020.

[ERZ14] Eigner, M.; Roubanov, D.; Zafirov, R., eds.: Modellbasierte virtuelle Produk-
tentwicklung. Springer Verlag, Berlin, Heidelberg, 2014, isbn: 978-3-662-
43816-9.

[Eu12] European Aviation Safety Agency: AMC and GM to Part 21 Acceptable Means
of Compliance and Guidance Material, 2012, visited on: 06/28/2017.

[Eu20] European Union Aviation Safety Agency: Certification Specifications for
Normal-Category Aeroplanes (CS-23), 2020.

[FM15] Fernandes, J.M.; Machado, R. J.: Requirements in engineering projects.
Springer, Cham, 2015, isbn: 9783319185972.

[Gi20] Giannakopoulou, D.; Pressburger, T.; Mavridou, A.; Rhein, J.; Schumann, J.;
Shi, N.: Formal requirements elicitation with FRET. In: CEUR Workshop
Proceedings. Vol. 2584, 2020.

[HMH18] Hochstrasser, M.; Myschik, S.; Holzapfel, F.: A modular model-based DO-
178C software life cycle - Planning, realization, and preservation. In: DGLR
Workshop. Munich, Germany, 2018.

[Ho04] Hoffmann, M.; Kuhn, N.; Weber, M.; Bittner, M.: Requirements for require-
ments management tools. In: Proceedings. 12th IEEE International Require-
ments Engineering Conference. Kyoto, Japan, pp. 301–308, 2004, visited on:
10/07/2020.

[In18a] Institute of Electrical and Electronics Engineers: ISO/IEC/IEEE 29148:2018(E):
Systems and software engineering – Life cycle processes –Requirements
engineering, 2018.

[In18b] International Organization for Standardization: ISO 26262-8:2018: Road vehi-
cles — Functional safety — Part 8: Supporting processes, Geneva, Switzerland,
2018.

[KK19] Kildishev, D.; Khoroshilov, A.: Developing Requirements Management Tool
for Safety-Critical Systems. In: 2019 Actual Problems of Systems and Software
Engineering (APSSE). Pp. 50–57, 2019.

[LA19] Linnosmaa, J.; Alanen, J.: Demonstration of a conformity assessment data
model. In: 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN). Helsinki, Finland, pp. 369–373, 2019.

[LH16] Lineberger, R. S.; Hussain, A.: Program management in aerospace and defense:
Still late and over budget, Oct. 2016.



A Requirements Management Template in Polarion for MBD of Airborne Systems 17

[LM09] Lempia, D. L.; Miller, S. P.: REQUIREMENTS ENGINEERING MAN-
AGEMENT HANDBOOK, Springfield, VA, USA, June 2009, visited on:
02/18/2020.

[LT08] Langer, B.; Tautschnig,M.: Navigating the requirements jungle. In: International
symposium on leveraging applications of formal methods, verification and
validation. Springer Berlin, Heidelberg, pp. 354–368, 2008.

[MSH19] Meidinger, V.; Schmiechen, K.; Holzapfel, F.: A Model-Based Requirement
Validation Process For Handling Qualities of eVTOLs. In: Deutscher Luft- und
Raumfahrtkongress 2019. Deutsche Gesellschaft für Luft- und Raumfahrt -
Lilienthal-Oberth e.V, Darmstadt, Germany, 2019.

[Na20] Nagarajan, P.; Maly, M.; Jaisle, J.; Gesting, P.; Steffensen, R.; Wechner, M.;
Gierszewski, D.; Krammer, C.; Holzapfel, F.: Taking Autonomy Out-of-the-
Loop – Proposal of a Novel Methodology for the Development and Automated
Operation of UAS in Integrated Airspace. In: 2020 IEEE/AIAA 39th Digital
Avionics Systems Conference (DASC). San Antonio, TX, USA, 2020.

[Po10] Pohl, K.: Requirements engineering: Fundamentals, principles, and techniques.
Springer, Heidelberg, 2010.

[Ra11a] Radio Technical Commission for Aeronautics: DO-178C: Software Considera-
tions in Airborne Systems and Equipment Certification, Washington DC, USA,
2011.

[Ra11b] Radio Technical Commission for Aeronautics: DO-331: Model-Based Devel-
opment and Verification Supplement to DO-178C and DO-278A, Washington
DC, USA, 2011.

[Ri17] Rierson, L.: Developing safety-critical software: a practical guide for aviation
software and DO-178C compliance. CRC Press, 2017.

[Sc19] Schmiechen, K.; Hochstrasser, M.; Rhein, J.; Schropp, C.; Holzapfel, F.: Trace-
able and Model-Based Requirements Derivation, Simulation, and Validation
Using MATLAB Simulink and Polarion Requirements. In: AIAA Scitech 2019
Forum. San Diego, CA, USA, 2019.

[So10] Society of Automotive Engineers Aerospace: Guidelines for development of
civil aircraft and systems: SAE ARP 4754 rev. A, 2010.

[So18] Society of Automotive Engineers Aerospace: AS94900A: Vehicle Management
Systems - Flight Control Function, Design, Installation and Test of Piloted
Military Aircraft, General Specification For, 2018.

[WZ20] Wang, Y.; Zhang, X.: Requirements Management Applied in Airworthiness
Certification in the Civil Aircraft. IOP Conference Series: Materials Science
and Engineering 751/, 2020.


