
Using UML for Knowledge Engineering –
A Critical Overview �

Grzegorz J. Nalepa1 and Igor Wojnicki1

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland
gjn@agh.edu.pl, wojnicki@agh.edu.pl

Abstract The paper analyzes UML, the well known software engineer-
ing tool, from the knowledge engineering perspective. The goal of the
paper is to evaluate UML as the possible design tool for knowledge en-
gineering (KE). Some fundamental conceptual differences between UML
and classic knowledge engineering methods are outlined. The paper aims
to identify possibilities of an effective and normative UML application
and extension in order to use it effectively in KE. One of the goals of the
Hekate project is to develop such extensions, basing on the ARD and
XTT knowledge representation methods.

1 Introduction

The domain of software engineering (SE) is driven by both research and practical
industrial applications. While new technologies and applications are developed
rapidly, it takes time and experience to create mature design methods and pro-
cesses. In software engineering a number of well-proven methods and conceptual
tools exist [1]. Today the Unified Modelling Language is the de facto standard
when it comes to the practical software design. It is tailored towards modern
object-oriented languages.
However, the industry seems to recognize some major limitations of UML,

and UML-based methods. These limitations are related to: the UML-based de-
sign process itself, semantic gaps between different stages of design and imple-
mentation, limited capabilities of expert knowledge modeling, and problems with
the so-called executable design.
This paper is written from the knowledge engineering (KE) perspective [2].

Being an AI domain, KE uses different conceptual tools, mainly knowledge rep-
resentation methods, for knowledge modelling and processing. The research ori-
ented towards an integration of SE and KE, has been – to some extent – always
visible. Recently there have been a number of approaches towards practical in-
corporation of KE methods, such as decision rules-based design and implemen-
tation into SE. This trend is especially visible in the so-called business rules
approach [3].
� The paper is supported by the HEKATE Project funded from 2007–2009 resources
for science as a research project.



In the paper some practical experiences with UML are described; these are
related to a possible use of UML in the Hekate Project [4]. A critical evaluation
of UML is given in Sect. 2, with some observations on possible UML use in KE in
Sect. 3. In Sect. 4 possible applications of UML for knowledge modelling are con-
sidered. In Sect. 5 Hekate, Hybrid Knowledge Engineering project is described.
Directions for future work are contained in the final section.

2 UML – A Critical Overview

UML approach identifies two distant domains of Software Engineering. One of
them is modelling software structure, the other is modelling its behavior. There
are two classes of diagrams then: Structure Diagrams and Behavior Diagrams
containing different types of diagrams.
Structure Diagrams, which model software structure, comply with object-

oriented software engineering. It seems that Structure Diagrams are the UML
basis. They are fairly complete and allow for expressing software components
and denoting relationship among them easily (i.e.: Class Diagram, Component
Diagram etc.).
Behavior diagrams model software logic. It is modelled at different abstrac-

tion levels. First of all there is a big picture perspective: modelling what partic-
ular software should do, from the user point of view (i.e.: Use Case Diagram).
There is also a detailed perspective: what particular software components de-
fined by the Structure Diagrams should do (i.e.: State Machine Diagram, Inter-
action Diagram etc.). And the problem is that these two perspectives do not mix
well with the Structure Diagrams. While the detailed perspective corresponds to
classes, the big picture one serves more as a guideline, than a real modelling tool.
What is even worse, some of the Behavior Diagrams share common functionality,
and judging which one to use is often not clear.
It seems that there is almost no relationship between modelling software

behavior and its structure. If the structure is guessed, then the behavior can
be added, but it seems to be a really hard task to infer the structure from the
behavior.
There is another issue with interpretation of the diagrams, either over inter-

pretation or under interpretation. The diagrams tend to be not clear, and some
additional explanation describing diagram semantics is needed. To deal with this
issue, UML Profiles have been introduced. They tend to specify meaning of the
diagrams regarding particular application or domain. While they offer a solu-
tion for diagram interpretation, they do not deal with the modelling software
behavior, and subsequently its structure, as it was pointed out earlier.
A typical software design process based on UML consists of the following

stages: general behavior modeling (use cases), structure modeling, behavior and
interaction modeling [5]. The general behavior modeling (applying Use Case
Diagrams) describes what the system should do in the most general terms. The
second stage which is structure modeling tries to describe what the system will
consists of, using class diagrams mostly. And here comes an issue. While knowing



what the system should do one has to guess what the system consists of (with
use of Class Diagrams). There is no consistent and clear process, or guidelines,
regarding the transition from the use case diagrams to class diagrams. Coming up
with class diagram is often an iterative process of trail-and-error kind. It involves
a strong feedback from other stages. Often, while having a preliminary class
diagrams, subsequent behavioral and interaction diagrams are created, then class
diagrams are reviewed and updated, behavioral and interaction are updated and
so on. This process is not recorded and it is informal – as a result there are ready
to use, but highly complicated structure diagrams. It is usually hard to perceive
from these diagrams what the system should do and how, not mentioning, that
any modification requires deep analysis.

There are two more issues which are not covered by UML. The first one
regards the semantic gap between the design and the implementation [6]. The
second one regards the gap between the specification and the design and is called
the analysis specification gap.

From the software manufacturing perspective, the semantic gap problem is
the most important one. Having a well designed piece of software, at some point
there is a need to implement it. Even if discussed diagrams support the imple-
mentation process by describing software in a comprehensive way, it is impossible
to verify in a reasonable time if the implementation matches the design. At some
point, there are structural diagrams which describe what the system consists of,
behavioral diagrams, describing how the system should work, and finally the im-
plementation, in case of which, it is believed that it corresponds to the designed
structure and that it behaves accordingly.

It is worth noting, that while the behavior design can sometimes be partially
formally analyzed and evaluated, a formal analysis of the implementation is im-
possible in most cases. There have been some substantial work conducted to
automate a transition from design to implementation, however none of these ap-
proaches solves the problem. It is a well know UML disadvantage which is called
only the code is in sync with the code [7]. An application which is automatically
generated from a designed behavioral and structural model, is not 100% com-
plete. Some parts are missing which have to be coded by hand. And here comes
an issue. Often, such automatically generated code is barely human readable. An
attempt to modify it, to make complete software, involves a tremendous amount
of time. What is even worse, applying such changes by hand can make the im-
plementation not compliant with the design. In general, the design tends to be
declarative, while implementation is sequential, and far from being declarative.
There is a lack of compatibility between these two separate approaches then,
which constitutes the mentioned earlier semantic gap.

There is also another gap in the specification-design-implementation process
called analysis specification gap [8]. It regards a difficulty with the transition
from a specification to the design. Formulating a specification which is clear,
concise, complete and amenable to analysis turns out to be a very complex task,
even in small scale projects. While use cases try to model user requirements,
there is actually no guarantee that the structure model complies with them.



Assuming that use cases describe exactly what user wants the software to do,
there is still no certainty that the system structure is capable of fulfilling the
cases.

3 Observations

There are some general observations regarding the usability of UML. As a lan-
guage it has a syntax, semantics, pragmatics. The syntax seems to be well de-
fined; however, in some cases the semantics is not. One of the limitations of
UML is its heavy dependability on the concept of an object. This concept may
be fundamental for OO languages, but it is of marginal importance for AI. The
limitations of semantics are in some cases decreased with the use of UML pro-
files. However, the problem is, that in some cases profiles can totally redefine the
original semantics, rendering its relation with the syntax nonexistent.
In case of the UML language pragmatics is about the process of using it,

in this case the UML-based design process. But the practise indicates, that the
process is in most cases the know-how of the users. The fact is that, UML is only
a language suitable for software design, but it does not offer a design process.
The process is somehow hidden, and only the final result is visible. This can be
partially fixed with the methodologies such as the MDA, which tries to formalize
the process.
Another domain where important problems of UML are exposed is the so-

called executable design. Shortly speaking, in the field of SE, it aims at providing
design methods that could translate directly into an executable. The main so-
lution concerns the extension of UML into the Executable UML (xUML) with
action semantics (see [9] for more details). The principal idea is to fill in gaps
present in UML, in order to offer a translation from an UML specification, into
an executable prototype. However, it must be pointed, out that the current state
of the xUML is unclear, and its applications are limited.
The two gaps described in Sec. 2 make UML design approach unreliable. The

unreliability is present at the very early stage which is the analysis specification
gap, and later on between the design and the implementation, which is the se-
mantic gap. Extending UML is not easy – introducing new diagrams is somehow
prohibited. It seems that OMG tends to assume that thirteen diagrams, that
UML currently consists of, is a finite and complete set, which does not need to
be extended any more. Some functionality of the diagrams still overlaps with
other diagrams.
The following observations regarding Knowledge Engineering with UML may

be formulated. Applying UML as a Knowledge Engineering method is not straight
forward. Existing diagrams are not suitable for rule modeling or expressing
knowledge in general. Using an UML profile, which is redefining the semantics of
certain diagrams, does not help much, and in some cases might complicate the
design. It forces using existing diagrams for purposes they were not designed for
i.e. representing rules is tricky and inefficient. OMG request for proposal [10]
tries to adapt Action Diagrams for modeling rules. Actual rules are textual and



they are fired upon transitions. It is not clearly defined what rules operate on
or whether other actions in addition to the transitions are allowed or not.

4 UML Applications for Knowledge Engineering

There are several possible approaches when it comes to practical UML applica-
tion for knowledge engineering:

1. Model system with a knowledge-based approach, that uses some classic
knowledge representation method, such as decision trees, then design the
software implementation using UML, and generate an object-oriented (OO)
code.

2. Model rule-based knowledge with UML diagrams, and then generate the
corresponding OO code.

3. Incorporate a complete rule-based logic core into an OO application, imple-
menting I/O interfaces, including presentation layer, in an OO language.

The first solution is the “classic” and definitely the easiest one. It can be
found in a number of tools and approaches. In this case, KE methods are used in
the “design” stage, while SE methods provide “implementation” means (UML
is somehow used to design the implementation previously designed with KE
methods). But the fact is, it can be considered the worst solution, since it exposes
the so-called semantic gap [11]. The problem is, that there is a fundamental
difference in the semantics of the KE methods, such as decision rules, and UML.
The second approach relies on either extending, or redefining the original

semantics of UML. Some early beginning can be observed in OMG Production
Rule Representation [12], where some ideas of extending existing semantics of
UML were contained. However, a complete example of this approach may be
found in the Unified Rule Modelling Language (URML), (see [13]). In this case,
existing UML diagrams are used to model different type of rules.
The last one is possibly the most complicated approach. It relies on the

incorporation of the knowledge-based component into an OO application, in a
way that minimizes the semantic gap between SE and KE. This is the solution
visible, to some extent, in the business rules approach [3]. A similar, but more
complete solution is being developed in the Hekate project, where a declarative,
rule-based core is integrated into an OO application as a logical model (as in
the Model-View-Controller design pattern [14]).

5 The Hekate Approach

The approach considered in this paper is based on an extended rule-based model.
The model uses the XTT knowledge method with certain modifications. The
XTT method was aimed at forward chaining rule-based systems (RBS).



5.1 Knowledge Representation

The XTT (EXtended Tabular Trees) knowledge representation [15], has been
proposed in order to solve some common design, analysis and implementation
problems present in RBS. In this method three important representation levels
has been addressed:

– visual – the model is represented by a hierarchical structure of linked ex-
tended decision tables,
– logical – tables correspond to sequences of extended decision rules,
– implementation – rules are processed using a Prolog representation.

On the visual level the model is composed of extended decision tables. A
single table is presented in Fig. 1. The table represents a set of rules, having the
same attributes. A rule can be read as follows:

(A1 ∈ a11) ∧ . . . ∧ (An ∈ a1n) → retract(X = x1), assert(Y = y1), do(H = h1).

It includes two main extensions compared to classic RBS: 1) non-atomic
attribute values, used both in conditions and decisions, 2) non-monotonic rea-
soning support, with dynamic assert, retract operations in decision part. Every
table row correspond to a decision rule. Rows are interpreted from top row to
the bottom one. Tables can be linked in a graph-like structure. A link is followed
when rule (row) is fired.

A1 An −X +Y H

a11 a1n x1 y1 h1

am1 amn xm ym hm

Figure 1. A single XTT table

On the logical level, a table corresponds to a number of rules, processed in
a sequence. If a rule is fired and it has a link, the inference engine processes
the rule in another table. The rule is based on a attributive language [16,17]. It
corresponds to a Horn clause: ¬p1∨¬p2∨ . . .∨¬pk∨h where p is a literal in SAL
(set attributive logic) (see [16]) in a form Ai(o) ∈ t where o ∈ O is a object refer-
enced in the system, and Ai ∈ A is a selected attribute of this object (property),
t ⊆ Di is a subset of attribute domain Ai. Rules are interpreted using a unified
knowledge and fact base, that can be dynamically modified during the inference
process using Prolog-like assert/retract operators in rule decision. Rules are im-
plemented using Prolog-based representation (see [18]). Rule representation uses
Prolog terms, which is a very flexible solution. However, it requires a dedicated
meta-interpreter [19].



Attempts to represent XTT diagrams with UML failed. None of thirteen
available UML diagrams serves the purpose of rule modeling with similar ex-
pressiveness as XTT. The best candidates were: the State Machine Diagram
and the Activity Diagram. While it is possible to express rules with them, and
explicitly define system states, such diagrams tend to grow very fast while soft-
ware is being developed. It turned, out that these diagrams can be effectively
used for small scale cases, only with a few rules. They are not suitable for real
life rule-based systems.

5.2 The Design Process

In addition to XTT which represents rules, there is an entire design process
involved. XTT diagrams are at the very end of this process. It is an Attribute
Relationship Diagram (ARD) based approach. It offers a process of identifying
attributes and relationships among them. Attributes are subsequently identified
at more and more detailed levels. The process includes all levels. At the most
detailed level, XTT diagrams are added to precisely define dependencies among
attributes and to describe how to calculate attribute values.
The key underlying assumption in the ARD design with knowledge specifi-

cation in attributive logics is that, similarly as in the case of Relational Data-
bases [20], the attributes are functionally dependent. A basic ARD table for spec-
ification of such a functional dependency is presented in Fig. 2. The attributes on
the left (i.e. the ones of X) are the independent ones, while the ones on the right
(the ones of Y ) are the dependent ones. An ARD diagram is a conceptual system
model at a certain abstract level. It is composed of one or several ARD tables.
If there are more than one ARD table, a partial order relation among the tables
is represented with arcs. The ARD model is also a hierarchical model. The most
abstract level 0 diagram shows the functional dependency of input and output
system attributes. Lower level diagrams are less abstract. An ARD diagram of
level i can be further transformed into a diagram of level i + 1, which is more
detailed (specific). A transformation includes table expansion and/or attribute
specification.

or

number/level

X Y X1
X2
. ..
Xn

Y1
Y2
...
Ym

number/level

Figure 2. An ARD table: the basic scheme for X → Y

At first sight, the ARD process is similar, in terms of its goals, to Struc-
ture Diagrams. However, while the Structure Diagrams tend to describe what
elements the software consists of, ARD describes what is known about it.



5.3 Hekate and UML

The main difference between the Hekate knowledge representations and UML
diagram is, that UML, after all, does not provide a design process. Whereas,
Hekate is about the integrated design process. So the methods on which Hekate
is based, have been invented with the design process in mind. Where UML
provides means to model the system from different perspectives, or aspects;
Hekate focuses on the subsequent phases of the design process of the very same
system. So different levels of abstraction (e.g. subsequent ARD levels, or XTT
design iterations) describe the very same holistic model all the time.
It could be argued, that this comparison is not correct, simply because UML

is not the design methodology, but merely a language, providing an alphabet (di-
agrams), syntax (structures) and semantics (the default diagram interpretation
in terms of the object-oriented programming). So a more accurate comparison
of Hekate is with the MDA.
What makes the integration of UML with knowledge-based approach difficult,

is the very strong assumption behind UML, that “the world can be accurately
described in terms of so-called objects”. Knowledge engineering is much more
abstract and flexible with a number of different symbolic knowledge representa-
tions, objects being just one of them (object-oriented methods where anticipated
with classic frames by M. Minsky.).

6 Future Work

UML seems to be a poor tool for modelling KBS for now. However, there is a
way out. Research in this domain can go two ways. Either the UML Rule Profile
evolves into more precise and detailed specification, or current thirteen diagrams
are extended.
It could have been concluded that applying UML in the domain of knowledge

engineering is possible but not worth the effort, especially if there are already
well developed Knowledge Engineering methodologies present. Or perhaps ex-
pressiveness of UML is just not sufficient to cover this domain? It seems that
there is no consistent answer to that. One way or the other, research in this
domain could be fruitful, especially detailed specification of rule modelling with
the existing Behavior Diagrams. Having such a specification better defined than
that of [12], could lead to applying UML in the KE which can make it truly
Unified Modelling Language.
The other possible course of action could be extending current UML diagrams

with knowledge oriented ones such as ARD/XTT. While having these thirteen
diagrams for general software modelling, additional ARD and XTT diagrams
would provide Behavior Modelling at the level not covered by UML so far. The
OMG is reluctant to extend the current diagrams but applying ARD and XTT
to UML is still subject of further research.
The research presented in this paper is work in progress. Investigating pos-

sible applications of UML in the knowledge engineering domain is an important



issue in the Hekate project. The project should eventually provide UML im-
provements, or methods superior to UML.

References

1. Sommerville, I.: Software Engineering. 7th edn. International Computer Science.
Pearson Education Limited (2004)

2. Torsun, I.S.: Foundations of Intelligent Knowledge-Based Systems. Academic
Press, London, San Diego, New York, Boston, Sydney, Tokyo, Toronto (1995)

3. Ross, R.G.: Principles of the Business Rule Approach. 1 edn. Addison-Wesley
Professional (2003)

4. Nalepa, G.J., Wojnicki, I.: A proposal of hybrid knowledge engineering and refine-
ment approach. In Sutcliffe, G.C.J., Goebel, R.G., eds.: FLAIRS 2007 : proceedings
of the 20th international Florida Artificial Intelligence Research Society conference,
AAAI Press (2007)

5. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. 3rd edn. Addison-Wesley Professional (2003)

6. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Ar-
chitectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(2002)

7. Reeves, J.W.: Code as design. developer.* The Independent Magazine for Software
Professionals (1992,2005)

8. Rash, J.L., Hinchey, M.G., Rouff, C.A., Gracanin, D., Erickson, J.: A tool for
requirements-based programming. In: Integrated Design and Process Technology,
IDPT-2005, Society for Design and Process Science (2005)

9. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Ar-
chitecture. 1st edn. Addison-Wesley Professional (2002)

10. OMG: Production rule representation rfp. Technical report, Object Management
Group (2003)

11. Merrit, D.: Best practices for rule-based application development. Microsoft Ar-
chitects JOURNAL 1 (2004)

12. OMG: Production rule representation. Technical report, Object Management
Group (br/2003-09-03)

13. Lukichev, S., Wagner, G.: Visual rules modeling. In: Sixth International An-
drei Ershov Memorial Conference Perspectives Of System Informatics, Novosibirsk,
Russia, June 2006. LNCS, Springer (2005)

14. Burbeck, S.: Applications programming in smalltalk-80(tm): How to use model-
view-controller (mvc). Technical report, Department of Computer Science, Uni-
versity of Illinois, Urbana-Champaign (1992)

15. Nalepa, G.J., Ligęza, A.: A graphical tabular model for rule-based logic program-
ming and verification. Systems Science 31(2) (2005) 89–95

16. Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,
Heidelberg (2006)

17. Ligęza, A., Fuster-Parra, P.: A granular attribute logic for rule-based systems
management within extended tabular trees. In Trappl, R., ed.: Cybernetics and
systems 2006 : proceedings of the eighteenth European meeting on Cybernetics
and systems research. Volume 2., Vienna, Austrian Society for Cybernatic Studies
(2006) 761–766



18. Nalepa, G.J., Ligęza, A.: Prolog-based analysis of tabular rule-based systems with
the xtt approach. In Sutcliffe, G.C.J., Goebel, R.G., eds.: FLAIRS 2006: pro-
ceedings of the 19th international Florida Artificial Intelligence Research Society
conference, AAAI Press (2006) 426–431

19. Covington, M.A., Nute, D., Vellino, A.: Prolog programming in depth. Prentice-
Hall (1996)

20. Connolly, T., Begg, C., Strechan, A.: Database Systems, A Practical Approach to
Design, Implementation, and Management. 2nd edn. Addison-Wesley (1999)


