
Knowledge-Based Approach to the Executable
Design Concept �

Grzegorz J. Nalepa1 and Igor Wojnicki1

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland
gjn@agh.edu.pl, wojnicki@agh.edu.pl

Abstract The paper describes the Executable Design Concept which is
one of the main components of HeKatE: Hybrid Knowledge Engineer-
ing methodology. HeKatE project aims at developing a methodology
and supporting technologies for Software Engineering based on Knowl-
edge Engineering methods and paradigms. The Executable Design is a
concept which allows to close the so-called semantic gap which exists be-
tween software design and its implementation. Thanks to the HeKatE
ARD/XTT approach software can be designed in a new, declarative,
knowledge-based way. The Executable Design assures that ARD/XTT
design can be easily turned into a running application without any other
efforts such as coding. The paper presents the Executable Design from
the methodological and technological points of view of the HeKatE project.

1 Introduction

An effective development of complex software remains a challenge in software en-
gineering. To cope with it, new design approaches are researched, and advanced
programming languages are introduced. In order to build conceptual models of
business logic, software engineers apply Artificial Intelligence (AI) methods.
Knowledge-based systems (KBS) are an important class of intelligent systems

in the field of AI [1]. They can be especially useful for solving complex problems
in cases where purely algorithmic or mathematical solutions are either unknown
or demonstrably inefficient. In AI, rules are probably the most popular choice
for building knowledge-based systems, that is the so-called rule-based expert
systems [2,3]. Rule-based systems (RBS) constitute today one of the most im-
portant classes of KBS. However, building real-life KBS is a complex task. Since
their architecture is fundamentally different from classic software, typical Soft-
ware Engineering (SE) approaches cannot be applied efficiently. Some specific
development methodologies, commonly referred to as Knowledge Engineering
(KE), are required.
This paper presents a concept of a new software engineering approach based

on knowledge engineering methods. In the paper some important features of both
� The paper is supported by the HEKATE Project funded from 2007–2009 resources
for science as a research project.



KE and SE approaches are summarized in Sect. 2. Furthermore, common design
problems encountered in the SE are outlined in Sect. 3. Most of these problems
can be successfully approached, and possibly minimized in the field of KE and
RBS design. This is why, selected concepts and tools developed for theMirella
Project are presented; they aim at supporting the design and evaluation of RBS.
Finally, the main concept of the hybrid knowledge engineering, on which the
HeKatE project is based, is discussed in Sect. 4. The new SE approach is based
on the concept of executable design (ED) discussed in Sect. 5. The HeKatE
project aims at providing a platform for the ED, outlined in Sect. 6. The paper
ends with concluding remarks in Sect. 7 where main features of HeKatE are
summarized.

2 Knowledge to Software Engineering Approaches

In this section it is asserted, that some important concepts and experiences
in the field of Knowledge Engineering could be transferable into the domain
of Software Engineering. Several observations regarding relations between these
two approaches are discussed below.

2.1 Principles of Knowledge Engineering

What makes KBS distinctive, is the separation of knowledge storage (the knowl-
edge base) from the knowledge processing facilities. In order to store knowledge,
KBS use various knowledge representation methods, which are declarative in
nature. In case of RBS these are production rules. Specific knowledge processing
facilities, suitable for particular representation method being used, are selected
then. In case of RBS these are logic-based inference engines.
The knowledge engineering process, in case of RBS, involves two main tasks:

knowledge base design, and inference engine implementation. Furthermore, some
other tasks are also required, such as: knowledge base analysis and verification,
and inference engine optimization. The performance of a complete RBS should
be evaluated and validated. While this process is specific to expert systems, it is
usually similar in case of other KBS.
What is important about the process, is the fact that it should capture the

expert knowledge and represent it in a way that is suitable for processing (this
is the task for a knowledge engineer). The actual structure of a KBS does not
need to be system specific – it should not „mimic” or model the structure of the
real-world problem. However, the KBS should capture and contain knowledge
regarding the real-world system. The task of programmers is to develop process-
ing facilities for the knowledge representation. The level at which KE should
operate is often referred to as the knowledge level [4].
It should be pointed out, that in case of KBS there is no single universal

engineering approach, or universal modelling method (such as UML in software
engineering). Different classes of KBS may require specific approaches, see [3,5].
Having outlined the main aspects of KBS development, it can be discussed

how they are related to classic software engineering methods.



2.2 Principles of Software Engineering

Software Engineering (SE) is a domain where a number of mature and well-
proved design methods exist; furthermore, the software development process and
its life cycle is represented by several models. One of the most common models
is called the waterfall model [6]. In this process a number of development roles
can be identified: users and/or domain experts, system analysts, programmers,
testers, integrators, and end users (customers). What makes this process differ-
ent from knowledge engineering is the fact that system analysts try to model
the structure of the real-world information system in the structure of computer
software system. So the structure of the software corresponds, to some extent,
to the structure of the real-world system. The task of the programmers is to
encode and implement the model (which is the result of the system analysis) in
some lower-level programming language.
The most important difference between software and knowledge engineering

is that the former tries to model how the system works, while the latter tries
to capture and represent what is known about the system. The knowledge engi-
neering approach assumes that information about how the system works can be
inferred automatically from what is known about the system.

3 Design Problems in Software Engineering

Having outlined some distinctive features of KE and SE approaches, several
observations can be made in the field of Software Engineering. They provide
a basis for a critical overview of current SE approaches and pinpointing most
common problems. These issues are presented below.
Historically, there has always been a strong feedback between SE and com-

puter programming tools. At the same time, these tools have been strongly
determined by the actual architecture of computers themselves. For a number
of years there has been a clear trend for the software engineering to become
as implementation-independent as possible. Modern software engineering ap-
proaches tend to be abstract and conceptual [6].
On the other hand, knowledge engineering approaches have always been de-

vice and implementation-agnostic. The actual implementation of KBS has been
based on some high-level programming languages such as Lisp or Prolog. How-
ever, modern knowledge engineering tools heavily depend on some common de-
velopment tools and programming languages, especially when it comes to user
interfaces, network communication, etc.
It could be said, that these days software engineering becomes more knowledge-

based, while knowledge engineering is more about software engineering. This
opens multiple opportunities for both approaches to improve and benefit. Soft-
ware engineering could adopt from knowledge engineering advanced conceptual
tools, such as declarative knowledge representation methods, knowledge transfor-
mation techniques based on existing inference strategies, as well as verification,
validation and refinement methods.



This trend is already visible in the Model-Driven Architecture proposed by
the OMG [7]. It is a new software engineering paradigm that tries to provide a
unified design and implementation method and appropriate tools for the declar-
ative specification of software. MDA has already been adapted for business logic
applications, so-called business rules approach [8,9].
In order to improve and better integrate KBS with existing software, knowl-

edge engineering could adopt programming interfaces to existing software sys-
tems and tools, interfaces to advanced storage facilities such as databases and
data warehouses, modern user interfaces, including graphical and web-based
ones. In this paper a concept of possible integration of some KE solutions with
SE is put forward.

3.1 Critical Overview

The Software Engineering is derived as a set of paradigms, procedures, speci-
fications and tools from pure programming. It is heavily tainted with the way
how programs work which is the sequential approach, based on the Turing Ma-
chine concept. Historically, when the modelled systems became more complex,
SE became more and more declarative, in order to model the system in a more
comprehensive way. It made the design stage independent of programming lan-
guages which resulted in number of approaches; the best example is the MDA
approach [7]. So, while programming itself remains mostly sequential, design-
ing becomes more declarative. The introduction of object-oriented programming
does not change the situation drastically. However, it does provide several useful
concepts, which simplify the coding process.
Since there is no direct bridge between declarative design and sequential

implementation, a substantial work is needed in order to turn a design into a
running application. This problem is often referred to as a Semantic Gap between
the design and its implementation [10].
It is worth noting, that while the conceptual design can sometimes be par-

tially formally analyzed and evaluated, the full formal analysis is impossible in
most cases. The exceptions include purely formal design methods, such as Petri
Nets, or Process Algebras. However, there is no way to assure, that even fully
formally correct model, would translate to a correct code in a programming lan-
guage. What is even worse, if an application is automatically generated from a
designed conceptual model, then any changes in the generated code have to be
synchronized with the design. It is not always possible because of the lack of
compatibility between these two separate approaches: the declarative model and
sequential application, which constitutes the mentioned earlier semantic gap.
Sometimes such a code is generated in a way, which is barely human readable.
There is also another gap in the specification-design-implementation process

called Analysis Specification Gap [11]. It regards the difficulty with the transition
from the specification to the design. Formulating a specification which is clear,
concise, complete and amenable to analysis, turns out to be a very complex task,
even in small scale projects.



3.2 Problem statement

It could be summarized, that constant sources of errors in SE are:

– The Semantic Gap between existing design methods, which are becoming
more and more declarative, and implementation tools that remain sequen-
tial/procedural. This issue results in the problems mentioned below.
– Evaluation problems due to large differences in semantics of design methods
and lack of formal knowledge model. They appear at many stages of the
SE process, including not just the correctness of the final software, but also
validity of the design model, and the transformation from the model to the
implementation.
– The so-called Analysis Specification Gap, which is stems from the difficulty
with proper formulation of requirements, and transformation of the require-
ments into an effective design, and then implementation.
– The so-called Separation Problem, which is the lack of separation between
Core Software Logic, software interfaces and presentation layers.

While some of the methodologies, (mainly the MDA) and design approaches
(mainly the MVC (Model-View-Controller) [12]) try to address these issues,
it is clear that they do not solve the problems. However, it seems that some
of the problems could be more easily solved in case of KBS, thanks to the
fact that the field is narrower and well formalized. The proof of concept is the
Mirella [13] approach which is shortly discussed below. Within this approach
a new knowledge representation method and design process has been developed.
Based on outcomes from the Mirella Project, a foundation of a more general
approach to software design, called HeKatE, is proposed.

4 The HeKatE Project

The HeKatE project addresses the described problems. Basing on experiences
with the Mirella project, it extends its RBS perspective towards SE.
Mirella proposed an integrated design process, that can be considered a

top-down hierarchical design methodology It based on the idea of meta-level ap-
proach to the design process. It includes three phases: conceptual, logical, and
physical. It provides a clear separation of logical and physical (implementation)
design phases. It offers equivalence of logical design specification and proto-
type implementation, and employs XTT (eXtended Tabular Trees) [13], a hybrid
knowledge representation.

1. Conceptual modeling, in which system attributes and their functional re-
lationships are identified; during this design phase the ARD (Attribute-
Relationship Diagrams) [14,3] modelling method is used. It allows for speci-
fication of functional dependencies of system attributes using a visual repre-
sentation. ARD allows for specification of functional dependencies of system
attributes using a visual representation. An ARD diagram is a conceptual



system model at a certain abstract level. The ARD model is also a hierarchi-
cal model. The most abstract level 0 diagram shows the functional depen-
dency of input and output system attributes. Lower level diagrams are less
abstract, i.e. they are close to full system specification. They contain also
some intermediate conceptual variables and attributes.

2. Logical design with on-line verification, during which system structure is rep-
resented as XTT hierarchy, which can be instantly analyzed, verified (and
corrected, if necessary) and even optimized on-line, using Prolog. The main
idea behind XTT [13] knowledge representation and design method aims
at combining some of the existing approaches, namely decision trees and
decision tables, by building a special hierarchy of Object-Attribute-Tables
(OAV) [3]. It allows for a hierarchical visual representation of the OAV tables
linked into tree-like structure, according to the control specification provided.
XTT, as a design and knowledge representation method, offers transparent,
high density knowledge representation as well as a formally defined logi-
cal, Prolog-based interpretation, while preserving flexibility with respect to
knowledge manipulation.

3. Physical design, in which a preliminary Prolog-based implementation is car-
ried out. Using the predefined XTT translation it is possible to automatically
build a prototype. It uses Prolog-based meta-language for representing XTT
knowledge base and rule inference.

The main goal of the methodology is to move the design procedure to a
more abstract, logical level, where knowledge specification is based on the use
of abstract rule representation. The design specification can be automatically
translated into a low-level code, including Prolog and XML, so that the designer
can focus on logical specification of safety and reliability. On the other hand,
selected formal system properties can be automatically analyzed on-line during
the design, so that its characteristics are preserved. The generated Prolog code
constitutes a prototype implementation of the system. Since it is equivalent to
the visual design specification it can be considered an executable.
A principal idea in the HeKatE approach is to model, represent, and store

the logic behind the software (sometimes referred to as business logic) using
advanced knowledge representation methods taken from KE. The logic is then
encoded with the use of a Prolog-based representation. The logical, Prolog-based
core (the logic core) would be then embedded into a business application, or
an embedded control system. The remaining parts of the business or control
applications, such as interfaces, or presentation aspects, would be developed with
a classic object-oriented or procedural programming languages such as Java or C.
The HeKatE project should eventually provide a coherent runtime environment
for running the combined Prolog and Java/C code.
From the implementation point of view HeKatE is based on the idea of mul-

tiparadigm programming. The target application combines the logic core imple-
mented in Prolog, with object-oriented interfaces in Java, or procedural in ANSI
C. This is possible due to the existence of advanced interfaces between Prolog and
other languages. Most of the contemporary Prolog implementations have well de-



veloped ANSI C interfaces. There is also a number of Object-Oriented interfaces
and extensions in Prolog. The best example is LogTalk [15] (www.logtalk.org).
In HeKatE, the Semantic Gap problem is addressed by providing declar-

ative design methods for the business logic. There is no translation from the
formal, declarative design into the implementation language. The knowledge
base is specified and encoded in Prolog. The logical design which specifies the
knowledge base, which becomes an application, executable by a runtime envi-
ronment, combining an inference engine and classic language runtime (e.g. Java
Virtual Machine – JVM).
The knowledge base design process and knowledge visualization is derived

from the XTT methodology. The XTT methodology is currently being extended
(code name XTT2) towards covering not only forward and backward chaining
RBS but also control applications, databases and general purpose software.

5 The Executable Design Concept

The executable design concept (ED) aims at solving the main problems outlined
at the previous section. The concept itself is not new, and can be considered one
of the “holy grails” of systems engineering. The main goal of this concept is to
avoid semantic gaps, mainly the gap between the design and the implementa-
tion [10]. In order to do so the following elements should be developed: 1) a rich
and expressive design method, 2) a high-level runtime environment, and 3) an
effective design process.
A full ED method should eventually shorten the development time, improve

software quality, provide a design-once-run-everywhere solution, transform the
„implementation” into the runtime-integration. Instead of developing a single
robust platform such as Java, the focus should be on the possible integration of
runtime platforms.1

The development of a ED has been approached on several fronts, namely: the
implementation front, with the development of new, experimental languages; as
well as on the design front, with new design approaches; with a lot of recent
development in the area of advanced runtimes, including virtual machines.
From the ED perspective, in the domain of software design there are at least

two interesting developments. The first one concerns the extension of UML into
Executable UML (xUML) with action semantics, see [16] for more details. The
principal idea is to fill in gaps present in UML, in order to offer a translation
from an UML specification into an executable prototype, thus fulfilling a premise
of the ED. However, it must be pointed out the the current state of the xUML
is unclear, and its applications are limited.
A very important and influential concept concerns the so-called design pat-

terns [17]. The idea is to identify certain patterns on the design level, and use
them as the foundation for the future design. The design patterns are usually
1 At the first sight this approach could look similar to the .NET platform, which
aimes at providing a common runtime for different languages. However, HeKatE is
different, because it aims at offering a different knowledge-based design paradigm.



identified in the object-oriented paradigm. What is important, common patterns
nowadays have practical implementations in the programming environments such
as Java. So they are not only used to speedup and simplify the design, but also
for providing a kind of ED.
There are a few assumptions and observations regarding ED. Since the soft-

ware design process is declarative, its result, an application, is declarative as
well (not counting interactions with existing non-declarative components, user
interface, operating system etc.). This implies that execution of a declarative
application must be provided through a declarative or at least partially declar-
ative languages, including functional programming ones. Common choices are:
Lisp, Prolog and Haskel. What is more such an approach allows to formally ana-
lyze the designed application by the same runtime environment which runs it. It
reduces number of software components implementing the runtime technology.
The application is knowledge-based, it is subject to modification both while

being developed and executed. That is why the runtime environment for ED
should be based on a dynamic language [18,19]. What is more, the application is
just another representation of the designed knowledge base, expressed in a high
level language, it is always possible to translate it back into the design this way.
The runtime environment is a compound of technologies constituting a virtual

machine. The main component would be an interpreter of one of the languages
mentioned earlier. Other components are to provide communication with envi-
ronment: input/output, user interface, interaction with the operating system etc.
The virtual machine technology proved to be a robust solution (JVM, .NET) and
a theme of ongoing research (LLVM, www.llvm.org, HLVM, www.hlvm.org, Par-
rot, ww.parrotcode.org). Software, once designed, can be run on any hardware
platform supporting the runtime environment. It is so-called design-once-run-
everywhere which paraphrases write-once-run-everywhere: write is replaced by
design, since there is no coding (implementing, writing) stage.

6 Executable Design in HeKatE

One of the main goals of HeKatE is to offer an effective platform for the ED.
In order to solve the Analysis Specification Gap problem the ARD method

is used. In HeKatE, ARD is extended and renamed to Advanced Relationship
Diagrams. ARD allows to specify components of the system and dependencies
among them at different levels of detail. It allows to design software in a top-down
fashion: starting from a very general idea what is to be designed, and going into
more and more details about each single quantum of knowledge which refers
to the system. This approach is somehow similar to the Requirements Based
Programming proposal, however implemented in a different way than R2D2C
(Requirements To Design To Coding) [11].
The executable design concept is presented in Fig. 1. It is based on the

ARD/XTT mothodology. ARD is used to describe dependencies in the knowl-
edge base on different abstraction levels, while XTT represents the actual knowl-
edge. The design process starts with an ARD model at a very general level which



is developed to be more and more specific. The nature of knowledge dependen-
cies, facts and rules, are encoded with XTT. Since ARD is hierarchical, it makes
XTT-based knowledge hierarchical as well. Since knowledge base is hierarchical
it can be managed easier than a monolithic one. An application model based on
combined XTT and ARD, along with interfaces and views, becomes the Applica-
tion. The Application, in turn, is executed by the HeaRT (HeKatE Run-Time),
an inference engine supported with optional sequential (C/Java) runtime.

XTT 2

ARD

Executable Design
Knowledge Base /

Inference Engine C/Java Runtime

Application
HeaRT

Logic Core

Figure 1. Executable Design Concept

From representing actual Knowledge to running application there is a clear
transition. XTT is both knowledge representation and design methodology. How-
ever, there is a transformation needed for actually running XTT. XTT-based
knowledge is translated into Prolog language based rules and executed by HeaRT.
This translation is lossless: a reverse translation: from Prolog based representa-
tion into XTT is possible. Proper 1:1 translation is guaranteed. The Prolog based
representation is not just another translation, it is the same knowledge base.
The HeKatE project provides means for the design and implementation

of software logic, and the integration of this logic with the presentation layer.
It allows for integrating and interfacing the Executable Design with existing
technologies i.e. interfaces written using classical sequential ways provided by
object-oriented or procedural languages. It is also possible to interface with ex-
isting modules and libraries implemented in procedural (or object-oriented) lan-
guages – they often provide access to specialized hardware, or communication
protocols. The approach forms so-called Multiparadigm Programming, making a
bridge between declarative logic and sequential presentation. It is worth pointing
out that this is not to negate a possibility of declarative presentation layer design,
but to provide compatibility with other, conservative programming approaches.
A declarative presentation layer is also a research thread within HeKatE. Re-



gardless, whether the design contains a presentation layer or not, there is a clear
separation between it and the software logic.
In some aspects, there is a analogy between some solutions within HeKatE

and the MVC approach used in object-oriented software design. It consists in
strong separation between the software logic model, and the presentation layer.
However, in HeKatE the emphasis is on the rich formally designed and analyzed
knowledge-based model. Also, at first sight, the HeKatE point-of-view may seem
somehow similar to the MDA approach, and the formalized transition from the
PIM to the PSM. However, in HeKatE different abstraction layers correspond
to different levels of the knowledge base specification (more, and more detailed).
No different implementation technologies (platforms) are considered, since the
Prolog-based unified run-time environment is provided by HeaRT.
The above multiparadigm hybrid approach is presented in Fig. 2. The ap-

plication’s logic is given in a declarative way as the Knowledge Base. Interfaces
with other systems (including Human-Computer Interaction) can be provided in
classical sequential manner. There is a bridging module between the Knowledge
Base and the sequential Code (C/Java language code): the Sequential Language
Interface (SLIN). It allows communication in both directions. The Knowledge
Base can be extended, new facts or rules added by a stimuli coming through SLIN
from the View/Interface. There are two types of information passed this way:
events generated by the HeaRT Runtime and knowledge generated by the Code.
Any inferred knowledge, facts or even rules could be passed to other systems, or
visualized by the View/Interface through SLIN.

Code
C/Java

Runtime
C/Java

Knowledge Base

SLIN

Application

View/InterfaceModel

Inference Engine

HeaRT

Hardware

Figure 2. Multiparadigm Hybrid Approach: an Application

It is hoped, that this methodology could provide universal modelling methods
for software design and implementation. The HeKatE project aims at applying



this methodology to practical design and analysis of real-life software. Main goals
of the HeKatE project are to: develop an extended, hierarchical methodology
for practical design, analysis and implementation of selected software classes,
build CASE tools package supporting this methodology, test the approach on
illustrative software examples, and benchmark test cases.
The project focuses on wide class of software, namely two very different

“benchmark” classes, that is: general business software, based on the so-called
business logic, (including business rules), and low-level control software (pos-
sibly for the embedded control systems, based on a control logic. Other soft-
ware classes, such as general purpose or scientific software are also consid-
ered. Several well-documented test cases for HeKatE have been identifed so
far, including the classic UServ example from the Business Rules Forum (see:
www.businessrulesforum.com/2005_Product_Derby.pdf). When it comes to
classic programming cases, some limitations of the approach can be shown, most
important of them include complex data structures manipulation.
It is important to emphasize, that compared to some standard software en-

gineering approaches, in HeKatE there are no differences in semantics of design
methods. Thanks to the XTT-based logic core, the knowledge base is described
using a formal knowledge model. This allows for avoiding some common eval-
uation problems. This also opens up possibilities of formal analysis, including
verification and evaluation. Such an analysis can be provided at the design stage,
which in turn allows for gradual refinement of the designed system. In HeKatE,
this aspect is referred to as EVVA, that is Evaluation, Verification, Validation
and Analysis of the designed KB. This approach makes software testing stage
shorter and the bug squashing process becomes mostly non-existent. Important
properties of the future application can be validated in the design stage and it
is guaranteed that they will remain valid during execution because of the nature
of the Executable Design.

7 Concluding Remarks

The paper presents a concept of a hybrid design methodology with multiparadigm
approach to the software implementation. This concept is being developed within
the HeKatE project. It offers superior capabilities of formal verification, and
gradual refinement of the system from the conceptual model phase to an exe-
cutable prototype. This is possible due to: ARD, XTT, knowledge representation
methods and Prolog-based implementation.
There are the following main features of the proposed Hybrid Knowledge En-

gineering approach regarding SE: consistency : the Semantic Gap in the design
process is decreased or even eliminated, reduced implementation time: the design
becomes an application; enabled by the Executable Design concept, the imple-
mentation time of the business logic is almost zeroed, prone to errors: Evalua-
tion, Verification, Validation and Property Checking (EVVA) is provided in the
design stage by the integrated ARD/XTT design environment, prone to bugs:
since the application design is validated and the design is simultaneously im-



plementation (thanks to the Executable Design concept) the programming bugs
can be eliminated. It is believed that ultimately, while being a work in progress,
the proposed methodology is going to provide an alternative for contemporary
Software Engineering approaches.

References

1. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edn.
Prentice-Hall (2003)

2. Jackson, P.: Introduction to Expert Systems. 3rd edn. Addison–Wesley (1999)
ISBN 0-201-87686-8.

3. Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,
Heidelberg (2006)

4. Newell, A.: The knowledge level. Artificial Intelligence 18(1) (1982) 87–127
5. Torsun, I.S.: Foundations of Intelligent Knowledge-Based Systems. Academic
Press, London, San Diego, New York, Boston, Sydney, Tokyo, Toronto (1995)

6. Sommerville, I.: Software Engineering. 7th edn. International Computer Science.
Pearson Education Limited (2004)

7. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. OMG. (2003)
8. Ross, R.G.: Principles of the Business Rule Approach. 1 edn. Addison-Wesley
Professional (2003)

9. von Halle, B.: Business Rules Applied: Building Better Systems Using the Business
Rules Approach. Wiley (2001)

10. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Ar-
chitectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(2002)

11. Rash, J.L., Hinchey, M.G., Rouff, C.A., Gracanin, D., Erickson, J.: A tool for
requirements-based programming. In: Integrated Design and Process Technology,
IDPT-2005, Society for Design and Process Science (2005)

12. Burbeck, S.: Applications programming in smalltalk-80(tm): How to use model-
view-controller (mvc). Technical report, Department of Computer Science, Uni-
versity of Illinois, Urbana-Champaign (1992)

13. Nalepa, G.J.: Meta-Level Approach to Integrated Process of Design and Imple-
mentation of Rule-Based Systems. PhD thesis, AGH University of Science and
Technology, AGH Institute of Automatics, Cracow, Poland (September 2004)

14. Nalepa, G.J., Ligęza, A.: Conceptual modelling and automated implementation of
rule-based systems. In Krzysztof Zieliński, T.S., ed.: Software engineering : evolu-
tion and emerging technologies. Volume 130 of Frontiers in Artificial Intelligence
and Applications., Amsterdam, IOS Press (2005) 330–340

15. de Moura, P.J.L.: Logtalk. Design of an Object-Oriented Logic Programming Lan-
guage. PhD thesis, Universidade da Beira Interior, Departamento de Informatica,
Covilha (2003)

16. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Ar-
chitecture. 1st edn. Addison-Wesley Professional (2002)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. 1st edn.
Addison-Wesley Pub Co. (1995)

18. Norvig, P.: Design patterns in dynamic programming. Tutorial at Object World,
Boston, MA (May 1996) Tutorial slides at http://norvig.com/design-patterns/.

19. Sullivan, G.: Advanced programming language features for executable design pat-
terns (2002)


