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Model-Based Reinforcement Learning for Type 1
Diabetes Blood Glucose Control
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Abstract. In this paper we investigate the use of model-based rein-
forcement learning to assist people with Type 1 Diabetes with insulin
dose decisions. The proposed architecture consists of multiple Echo
State Networks to predict blood glucose levels combined with Model
Predictive Controller for planning. Echo State Network is a version
of recurrent neural networks which allows us to learn long term de-
pendencies in the input of time series data in an online manner. Ad-
ditionally, we address the quantification of uncertainty for a more
robust control. Here, we used ensembles of Echo State Networks to
capture model (epistemic) uncertainty. We evaluated the approach
with the FDA-approved UVa/Padova Type 1 Diabetes simulator and
compared the results against baseline algorithms such as Basal-Bolus
controller and Deep Q-learning. The results suggest that the model-
based reinforcement learning algorithm can perform equally or better
than the baseline algorithms for the majority of virtual Type 1 Dia-
betes person profiles tested.

1 Introduction

Type 1 Diabetes is a chronic condition that is characterized by the
lack of insulin secretion and resulting in uncontrolled blood glucose
level increase [1, 9]. High blood glucose levels for extended peri-
ods of time can result in permanent damage to the eyes, nerves, kid-
neys and blood vessels, while low blood glucose levels can lead to
death [19, 20, 23]. To manage blood glucose level, people on multi-
dose injection (MDI) therapy usually take two types of insulin injec-
tions: basal and bolus. The basal is long-acting insulin, which pro-
vides a constant supply of insulin over 24-48 hours, helping main-
tain resting blood glucose levels. The bolus is fast-acting insulin
which helps to suppress the peak of the blood glucose levels caused
by meals or to counteract hyperglycemia [23]. People with diabetes
must make constant decisions of the timing and amount of these in-
sulin injections, which is often challenging as insulin requirements
for meals can change depending upon many factors such as exercise,
sleep, or stress. The idiosyncratic nature of the condition means that
triggers, symptoms and even treatments are often quite individual
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[18, 24, 25, 26, 29], which creates challenges to developing diabetes
self-management technologies.

In this paper we consider the benefits of using model-based rein-
forcement learning (MBRL) to assist decisions about bolus insulin
injections. The goal of reinforcement learning (RL) is to learn se-
quences of actions in an unknown environment [30]. The learner
(Agent) interacts with the environment, observes its consequences,
and receives a reward (or a cost) signal, which is a numerical num-
ber assessing current the situation. The agent decides a sequence of
actions to maximize the reward (or minimize the cost) as shown in
Fig.1. RL is well-suited to this task because it can learn the model
in an online manner with minimal assumptions about the underlying
process of the blood glucose behaviour and hence can adapt to dif-
ferent individuals or changes over time. MBRL is particularly well
suited to this objective because it is more sample-efficient than alter-
native RL approaches (model-free reinforcement learning (MFRL))
and also allows us to generate predictions for consequences of coun-
terfactual actions that can be used as explanations of the suggestion.
In our MBRL setting, we also can estimate the confidence level of the
predictions by using the prediction uncertainty. It is very important to
show the explanation for the suggestion together with its confidence
level so that the person that receives the suggestion can make a deci-
sion whether they would follow the recommended course of action.

Environment

Action State

Figure 1. Reinforcement learning framework overview.

Reward
(Cost)

As a first step towards realising such a recommender system, we
investigated how well MBRL can learn the insulin injection deci-
sion and compared it with both a typical MFRL algorithm (deep
Q-Learning (DQN)) and an algorithm that mimics human decision-
making (Basal-Bolus controller (BBController)). We used an FDA-
approved Type 1 Diabetes computer simulator and let the algorithms
decide the insulin injections and evaluated its blood glucose level
behaviours.

Our MBRL approach builds upon previous work on Echo State



Networks (ESNs) [13, 14], the ensembles of models for MBRL [5]
and model predictive controller (MPC) for artificial pancreas [3, 4].
However we believe this is the first attempt to combine these algo-
rithms for the Type 1 Diabetes blood glucose level control task, and
evaluate its performance against non-MBRL algorithms.

This paper is organized as follows. Section 2 introduces related
work regarding the blood glucose control task. Section 3 describes
our MBRL method. Section 4 presents our evaluation method, bench-
mark algorithms and the evaluation results. Finally, Section 5 con-
cludes with a summary and possible future work.

2 Related Work

Several attempts have been made for a closed-loop artificial pancreas,
especially in the control system society using MPC [3], proportional-
integral-derivative control [28] and fuzzy logic [2].

However, there are relatively few studies on the blood glucose lev-
els control task using RL approaches. Most of the early works em-
ploy compartmental blood glucose and insulin models to infer some
of insulin/glucose related internal states of human body, and then
learn its insulin injection policy with relatively simple MFRL algo-
rithms such as Q-Learning [21, 22] or Actor-Critic [7, 8]. Fox et
al. employed more recent RL techniques [12], such as deep neural
networks for the Q-Learning algorithm — arguably the most com-
mon MFRL algorithm. They showed that although the agent was not
given any prior knowledge of the blood glucose/insulin relations, it
learns its insulin injection policy and achieves performance compa-
rable with existing algorithms.

In the field of model-based system control several approaches ex-
ist — we refer the reader to [3] and the references therein. The clos-
est to our work is [4], where the authors use a linear compartmental
model for predicting the mean and variance of the future blood glu-
cose levels. It exploits MPC for planning by taking into account the
variance of the blood glucose level prediction. The main differences
from our work are: (1) they employ a linear compartmental model
which has a small number of parameters and hence easier to learn,
whereas we use more generic recurrent neural networks, which have
greater flexibility to adapt to any personal blood glucose level be-
haviour; (2) their model parameters are learnt off-line, whereas ours
are adjusted online; and (3) the handling of uncertainty — we measure
the model’s uncertainty while they measure the uncertainty involved
in meal events.

3 Methods

In order to apply RL algorithms to this problem, we formulate the
task as Markov Decision Process (MDP), which has four tuples
(S, A, p, c) where S is a set of states, A is a set of actions, p is the
state transition probabilities and c is a cost function. Essentially the
blood glucose control task is a Partially Observable MDP, however
we see it as an MDP by defining state S as all history of insulin doses
and carbohydrate intakes.

More precisely, the overall pipeline makes use of ESNs to store
the history in its hidden states, shown in Section3.2. The corre-
sponding actions A are the dosages of bolus insulin. We exploit the
risk function introduced in [16] as our cost function ¢, described
in Section 3.1. While we use the model-based reinforcement learn-
ing (MBRL) algorithm with ESNs for the prediction of blood glucose
levels, MPC generates the insulin dose suggestions from the blood
glucose level predictions (Section 3.4) and their uncertainty estima-
tions (Section 3.3).

3.1 Cost function

For our task, it is natural to use as cost function a measure of risk
associated with the given blood glucose level. However it is not
straightforward to define such a measure, as it presents different
scales of risks between higher than normal blood glucose levels (hy-
perglycemia) and lower than normal blood glucose levels (hypo-
glycemia). Kovatchev et al. proposed the following expression to
symmetrize the risks of hyper and hypoglycemia [16]. This blood
glucose risk function f, is defined as in Eq. 1. The blood glucose
level transition from 180 to 250mg/dl would appear threefold larger
than a transition from 70 to 50mg/dl, whereas these are similar in
terms of the risk function variations.

£-(BGL) = 10 (1.509 (log(BGL)“"* — 5.381))> (1)

where BGL is the blood glucose level in mg/dl. Fig. 2 shows the
mapping between blood glucose level (x-axis) to the risk function
(y-axis). We used the risk function value as the cost function, hence
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Figure 2. Risk function proposed by Kovatchev et al. [16]. The figure
shows the relationship between blood glucose level [mg/dl] and its risk
function value.

our RL agent searches a policy minimising the total risk values over
an episode.

3.2 Echo State Networks

ESNs were proposed as an alternative structure of standard recurrent
neural networks in machine learning [14]. They are also called liquid
state machine in computational neuroscience [13]. ESNs take an in-
put sequence u = (u(1),u(2),...,u(7)) by recursively processing
each symbol while maintaining its internal hidden state x. At each
time step ¢, the ESN takes input u(t) € R and updates its hidden
state x(t) € RY by:

x(t) = f(W™ - u(t)+W-x(t—1)) )
x(t) =1—-a) x(t—1)+a-x(t), 3)

where f is the internal unit activation function, which is tanh in our
model, W™ ¢ RV*¥ is the input weight matrix, W € RV*¥ s
the internal connections weight matrix and o € (0, 1] is the leak-
age rate, which controls the speed of the hidden states change hence
controls the output smoothness.

The output at time step ¢, y(t) € R” is obtained from the hidden
states and the inputs by:

y(t) = f" (W‘”“ [x®" @] T) : o)



where f°“* is the output unit activation function (which is the iden-
tity function in our model as we are dealing with a regression task)
and WUt ¢ REX(VHE) s the output weights matrix.

The matrices for updating the hidden states, W*" and W, are ran-
domly initialized and fixed (not updated during learning process),
only the output weights matrix W°“? is leaned to obtain the target
output sequences. As it only learns the output weights, it doesn’t re-
quire back propagation through the network nor time, hence it learns
much faster than the normal recurrent neural networks. The downside
of using ESN is that it requires much higher number of hidden states
to achieve good performance, hence it required more computational
power for inference.

To make ESNs work properly, the fixed weights must satisfy
the so-called echo state property: the internal states x(¢) should be
uniquely defined only by the past inputs u(k)|x=.. ¢
tual method to initialise the weights can be found in [17], which also
gives useful guidance for using ESNs.

ESNs for the blood glucose level prediction task In our work,
the ESN takes a sequence of bolus insulin injection and carbohydrate
intakes as inputs, and predicts the blood glucose level.

To learn the ESN output weights we use the Mean Squared Error
between predicted and observed blood glucose levels as loss func-
tion.

La(6) = 7. 3" (uo() ~ BGL(1))? )

Here, pg(t) is the predicted blood glucose level by ESN at time
step t, where 6 is the optimization parameter (here it is W°**) and
BGL(t) is observed blood glucose level. As it can be seen as a lin-
ear regression problem, the output weights are derived by solving the
Normal equation [17].

To capture model (epistemic) uncertainty, it applies multiple in-
stances of ESNs, and each of them has different input and internal
connection weights. ESNs are well suited for the ensemble approach
as it has fixed random internal weights which project the inputs se-
quence into different hidden states. So naturally they output different
values where there is no training data, capturing higher epistemic un-
certainty. In our evaluation, we employ five instances of ESNs, which
is suggested by [5].

3.3 Uncertainty quantification

We employ multiple ESNs to capture the uncertainty in predicted
blood glucose level. They produce multiple predictions of the blood
glucose levels from the ESN models for each action sequence. To
quantify the cost (risk) of uncertainty, we take the mean of the
cost of the predicted blood glucose levels for each of action se-
quence 11+ PHTELSM ¢(BGLYY), where ¢(.) is a cost func-
tion, BGL{" is blood glucose levels prediction from ESN model m
at time step t, and M and 71" are number of ESN models and num-
ber of time steps in the action sequence. We then select the action
sequence which minimises this mean cost.

We encourage (optimistic or exploratory approach) or discour-
age (pessimistic or safe approach) taking risks by designing the cost
function accordingly. Here we define a risk margin RM as the dif-
ference between the averaged cost function and cost of the averaged
blood glucose level predictions.

RM = E[¢(BGL)] — ¢(E[BGL)). (6)

A positive (negative) risk margin means our metric E[c(BGL)] dis-
courages (encourages) taking risks. If we use a convex cost function
as described in Section 3.1, RM is positive according to Jensen’s
inequality, hence it discourages risks.

3.4 Model Predictive Controller

Model predictive controller (MPC) is a planning method to facilitate
control of systems with a long time delay and non-linear characteris-
tics. The MPC uses a prediction model to estimate the consequences
of a sequence of actions and repeats the process for many action se-
quences. Then it picks the sequence of actions that gives the best
consequence and applies the first action of the sequence. In the next
time step this process is repeated. This effectively means it re-plans
the sequence of actions based on the latest state information from the
environment, which makes the algorithm robust against any noise or
prediction errors.

There are several algorithms to generate the sequence of actions to
test — such as random shooting [27] and cross entropy method [10].
In our work, we use a fixed table for the sequence of actions to test.
The table has six action sequences, each of which takes a different
amount of bolus injection as its first action. The amount of bolus in-
jection at the first action is {0, 5, 10, 20, 40, 80} times of the person’s
basal infusion rate. Following the approach of [12], the basal infusion
rate is given for each virtual person’s model, and we use it to scale
the bolus injection. While our model generates suggestions for bolus
injections, for the basal injections, it assumes the person is taking the
given basal infusion rate. The action sequence length (time horizon)
is set to 48 time steps, which is 4 hours long as each time step repre-
sents a five-minute period. Each action sequence has a bolus injection
as the first action of the sequence. We believe this is sensible because
the bolus injections is normally taken just after or before a meal and
there is no meal announcement in our system at moment (the algo-
rithm does not know the meal event until it happens). Therefore, the
best time to take bolus injection would be immediately after detect-
ing the meal event, which is the first action in the sequence. A proper
meal announcement mechanism is left for future work.

4 Evaluation

We empirically evaluated how well the model-based reinforcement
learning (MBRL) can learn insulin injection decisions and compared
it with a typical model-free reinforcement learning (MFRL) algo-
rithm and also with a non-RL algorithm designed to mimic human
decision-making. In this paper, we did not compare the blood glucose
level prediction accuracy with other prediction models. Instead, we
focused on evaluating the performance of the agents. The overview of
the evaluation system is shown in Fig. 3. We used an FDA-approved
Type 1 Diabetes simulator, which takes meal and insulin injection in-
formation, then outputs a blood glucose level (BGL) as a continuous
glucose monitor (CGM) reading at each time step. The algorithms
(agents) receive the meal, insulin and blood glucose level informa-
tion and decides the amount of insulin taking in the next time step.
We simulated the algorithms together with the Type 1 Diabetes sim-
ulator, and evaluated how well the blood glucose levels are managed.

4.1 UVa/Padova Type 1 Diabetes simulator

The UVa/Padova Type 1 Diabetes Simulator [6] was the first com-
puter model accepted by the FDA as a substitute for preclinical tri-
als of certain insulin treatments, including closed-loop algorithms.
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Figure 3. Evaluation system top level diagram.

The model takes carbohydrate intakes and insulin injection as inputs,
simulates human body insulin/blood glucose behaviours and outputs
the blood glucose level measurements. It has gastro-interstinal tract,
glucose kinetics and insulin kinetics sub models. Each of these sub
models is defined with differential equations with parameters to sim-
ulate different individuals. Our simulator is based on an open source
implementation of the UVa/Padova Type 1 Diabetes simulator [15],
which comes with different profiles for 30 virtual people with type 1
diabetes — ten each for children, adolescents and adults. Our experi-
ments use nine virtual people, three of each age group.

4.2 Benchmark algorithms

We used two benchmark algorithms to compare the proposed ap-
proach against, one from RL algorithms (GRU-DQN) and the other
one from non-RL approaches (BBController). These are described
below.

GRU-DQN Deep Q-Learning (DQN) is a common MFRL al-
gorithm, which learns the action-value function Q(s, a) — expected
cumulative future rewards starting with state s and action a. It then
uses the learned action value function to decide which action to take
at time step ¢ by a; = argmazac4Q(s¢, a). In our work, the agent
observes the blood glucose levels from a CGM, carbohydrate intakes
and insulin injections, and infers the action value function. It is a
partially observable model so we used gated recurrent units (GRU)
to infer the hidden states and approximate the action value function.
GRU-DQN was successfully applied to this problem before [12] so
we followed their same set up which involves two GRU recurrent
layers of 128 hidden states and followed by a fully connected output
layer size of 128. However, our our states (the input of GRU-DQN)
include carbohydrate information, whereas [12] does not. We include
it here to make our comparison fair against the MBRL algorithm,
which has acess to the carbohydrate information.

BBController Basal-Bolus Controller mimics how an individ-
ual with Type 1 Diabetes controls their blood glucose levels. The
UVa/Padova simulator comes with the necessary parameters for this
algorithm for each of the virtual people with Type 1 Diabetes models,
such as basal insulin rates bas, a correction factor C'F' and a carbohy-
drate ratio C'R. The simulator decides the amount of insulin injection
by bas + (Ct > 0) . (Ct/CR+ (bt > 150) . (bt — btgt)/CF), where
¢t is carbohydrate intake at time step ¢, b is the blood glucose mea-
surements, by is a target blood glucose level. The last term is only
applied when the blood glucose measurement exceeds 150 mg/dl.
We use the implemented model that comes with the Type 1 Diabetes
simulator [15].

4.3 Simulation Conditions

Each episode lasts 24 hours, starting at 6am and finishing at 6am
the next day. Three meals and three snack events are simulated with
some randomness in terms of amount, timing and also whether they
take the meal/snack. The timing follows a truncated normal distribu-
tion and the amount is normally distributed. The meal parameters are
shown in Table 1. The agent receives information from the environ-

Table 1. Parameters for meal event generator.

Time [hours] Carbs. [g]
Meal type | Prob. | lower upper mean std. | mean  std.
bound  bound
Breakfast 0.95 5 9 7 1 45 10
Snack#1 0.3 9 10 9.5 0.5 10 5
Lunch 0.95 10 14 12 1 70 10
Snack#2 0.3 14 16 15 0.5 10 5
Dinner 0.95 16 20 18 1 80 10
Snack#3 0.3 20 23 215 05 10 5

ment such as the meal (carbohydrate), insulin and blood glucose lev-
els, and decides the insulin dose for the next time step. Each time step
is set to five minutes in length. In this evaluation, the person does not
take food to compensate for low blood glucose levels (the meal event
always follows a pre-defined order as described above). While this
is not realistic, it is a good way to measure how well the algorithm
works because ultimately we would like to develop an algorithm that
does not require any corrections from the user. The episode is termi-
nated if the blood glucose level goes below 20 mg/dl or beyond 600
mg/dl, as these limit are extreme and they are outside of the possible
blood glucose level range considered by [16].

4.4 Results

We train MBRL for 200 episodes and GRU-DQN for 1000 episodes,
then use the last 30 episodes to measure the percentage of episodes
completed without termination due to extreme blood glucose levels.
For BBController, we just run 30 episodes to measure, as it has pre-
optimized model parameters and no training is required.

The results are given in Table 2. MBRL gives better results than
GRU-DQN and comparable with BBController. MBRL struggles
with child#002, #003 and adolescent#002. By looking into these
cases, we found that MBRL fails due to the MPC time horizon not be-
ing long enough. The MPC time horizon is set to 4 hours, hence the
agent could not foresee a possible hypoglycemia event in the early
morning after the person takes an evening meal. The agent suggests
too much insulin, and it causes hypoglycemia in the early morning.
This can be fixed by increasing the MPC time horizon, but requires
some additional consideration as it might lead to inappropriate sug-
gestions during the day.

Table 3 shows the percentage of time spent in a target blood glu-
cose level range (70-180 mg/dl.) These are measured in the last 10 of
the completed episodes(i.e., not terminated). Here MBRL gives the
best overall results compared to the other agents. Note that no data
is available for adolescent#002, as it fails to get any non-terminated
episode (due to the reason described above).

We also evaluated the effect of the uncertainty estimation by com-
paring the results from MBRL with/without it. For MBRL without
uncertainty, we take an average over multiple ESNs predictions to



Table 2. % of number of completed episodes without termination due to
extreme blood glucose level value.

Person Profile BBCont. GRU-DQN MBRL
child#001 30.0 33 100
child#002 90 233 53.3
child#003 66.7 433 30.0
adolescent#001 100 100 100
adolescent#002 66.7 56.7 0.0
adolescent#003 90 20 100
adult#001 100 70.0 96.7
adult#002 100 100 100
adult#003 96.7 16.7 100

Table 3. % of time spent in the target blood glucose level range (70 - 180

mg/dl).

Person Profile BBCont. GRU-DQN MBRL
child#001 44.0 28.3 59.6
child#002 42.6 38.2 55.3
child#003 40.7 36.0 45.1
adolescent#001 85.8 81.4 100.0
adolescent#002 49.0 39.8 n/a
adolescent#003 46.7 424 66.1
adult#001 60.1 50.3 56.8
adult#002 73.3 66.9 73.3
adult#003 58.7 46.9 68.8

come up with a single blood glucose prediction, and then we calcu-
late its cost. Whereas MBRL with uncertainty computes the cost of
the all predictions, then takes average of the costs as described in
Section 3.3.

Figure 4 shows the learning curves for these two MBRL algo-
rithms with adult#001. The upper plot shows the episode period,
which goes up to 24 hours if there is no termination, and the bot-
tom plot shows % of time spent in the target blood glucose range.
From the upper plot, the algorithm with uncertainty achieves “no
episode termination” (24 hours episode) much earlier than the one
without estimating uncertainty. At an early stage of the learning pro-
cess, the prediction model is not very accurate, so it is much better
by taking into account its uncertainty. For the later stages, the pre-
dictions become more accurate, hence it shows similar performance
in both cases. Table 4 shows asymptotic results of the percentage of
time spent in the target blood glucose range, indicating that both have
similar asymptotic performances.

Table 4. % of time spent in the target blood glucose range (70 - 180

mg/dl).
Person Profile MBRL MBRL
(with uncertainty) (without uncertainty)
child#001 59.6 57.5
adolescent#001 100.0 95.9
adult#001 56.8 56.7

5 Conclusions and Future Work

We investigated the use of MBRL to assist Type 1 Diabetes decision-
making by evaluating MBRL with the FDA-approved UVa/Padova
simulator. We compared the results with two baseline algorithms,
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Figure 4. Comparison between MBRL with uncertainty and without
uncertainty models. The upper plot shows the learning curve for simulated
period for each episode, which goes up to 24 hours if the blood glucose level
is controlled well. The lower plot shows % of time spent in the target blood
glucose range (70-180mg/dl)

GRU-DQN and BBController. The results suggest that the MBRL
approach works better than the GRU-DQN algorithm and similar or
slightly better than the BBController. Also, our results show that tak-
ing into account the model uncertainty improves its performance in
the early stages of learning.

There are several avenues for future work. At the present stage we
only tested our algorithms with the UVa/Padova Type 1 Diabetes sim-
ulator, which is good for single meal scenarios but not for multiple
meals [6]. This is primarily because the model has fixed parameters
for each person and does not simulate meal-by-meal nor day-by-day
parameter drifting. In addition, our current learning method must be
extended to adapt to parameter drifts. A possible approach for such
an extension would be to introduce meta-learning [11].

Another area for further work relates to meal information. We as-
sumed all meal events are correctly given by the person when the
event is happening; however, this may not be very realistic as it is
a considerable burden for a person to put every single meal event
into the algorithm. It is also hard to know the exact carbohydrate
count of each meal. Some researchers therefore structure the blood
glucose predictor without having a meal input. Another alternative
would be to have a model to back-predict a meal event from the ob-
served blood glucose levels. We think it is possible to learn the meal
event in conjunction with the blood glucose level prediction model
with occasional human inputs.
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